Recall that the data set at hand is composed of pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$ independent and identically distributed, with the same distribution as the generic pair (X, Y). Recall that a local averaging estimate is an estimate of the form

$$\widehat{r}_n(\mathbf{x}) = \sum_{i=1}^n W_{ni}(\mathbf{x}) Y_i, \text{ for all } \mathbf{x} \in \mathbb{R}^d,$$

where $(W_{n1}(\mathbf{x}), \ldots, W_{nn}(\mathbf{x}))$ is a weight vector and each $W_{ni}(\mathbf{x})$ is a Borel measurable function of \mathbf{x} and $\mathbf{X}_1, \ldots, \mathbf{X}_n$ (not Y_1, \ldots, Y_n). Stone's theorem (1977) offers general necessary and sufficient conditions on the weights in order to guarantee universal L^p -consistency of local averaging estimates.

Theorem 1. Consider the following five conditions:

1. There is constant C such that, for every Borel measurable function $g : \mathbb{R}^d \to \mathbb{R}$ with $\mathbb{E}|g(\mathbf{X})| < \infty$,

$$\mathbb{E}\Big[\sum_{i=1}^{n} |W_{ni}(\boldsymbol{X})| |g(\boldsymbol{X}_{i})|\Big] \le C\mathbb{E}|g(\boldsymbol{X})|, \quad for \ all \ n \ge 1.$$

2. There is a constant $D \ge 1$ such that, for all $n \ge 1$,

$$\sum_{i=1}^{n} |W_{ni}(\boldsymbol{X})| \le D \quad almost \ surrely.$$

3. For all a > 0,

$$\sum_{i=1}^{n} |W_{ni}(\boldsymbol{X})| \mathbb{1}_{\|\boldsymbol{X}_{i}-\boldsymbol{X}\|>a} \to 0, \quad in \ probability.$$

4. One has

$$\sum_{i=1}^{n} W_{ni}(\boldsymbol{X}) \to 1, \quad in \ probability.$$

5. One has

$$\max_{1 \le i \le n} |W_{ni}(\boldsymbol{X})| \to 0, \quad in \ probability.$$

If (i)-(v) are satisfied for any distribution of \mathbf{X} , then the corresponding regression function estimate r_n is universally L^p -consistent $(p \ge 1)$, that is,

$$\mathbb{E}|r_n(\boldsymbol{X}) - r(\boldsymbol{X})|^p \to 0,$$

for all distribution of (\mathbf{X}, Y) with $\mathbb{E}|Y|^p < \infty, p \ge 1$.