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Abstract The random forest algorithm, proposed by L. Breiman in 2001, has
been extremely successful as a general-purpose classification and regression
method. The approach, which combines several randomized decision trees and
aggregates their predictions by averaging, has shown excellent performance
in settings where the number of variables is much larger than the number of
observations. Moreover, it is versatile enough to be applied to large-scale prob-
lems, is easily adapted to various ad-hoc learning tasks, and returns measures
of variable importance. The present article reviews the most recent theoretical
and methodological developments for random forests. Emphasis is placed on
the mathematical forces driving the algorithm, with special attention given to
the selection of parameters, the resampling mechanism, and variable impor-
tance measures. This review is intended to provide non-experts easy access to
the main ideas.
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1 Introduction

To take advantage of the sheer size of modern data sets, we now need learn-
ing algorithms that scale with the volume of information, while maintaining
sufficient statistical efficiency. Random forests, devised by L. Breiman in the
early 2000s (Breiman, 2001), are part of the list of the most successful methods
currently available to handle data in these cases. This supervised learning pro-
cedure, influenced by the early work of Amit and Geman (1997), Ho (1998),
and Dietterich (2000), operates according to the simple but effective “divide
and conquer” principle: sample fractions of the data, grow a randomized tree
predictor on each small piece, then paste (aggregate) these predictors together.

What has greatly contributed to the popularity of forests is the fact that
they can be applied to a wide range of prediction problems and have few pa-
rameters to tune. Aside from being simple to use, the method is generally
recognized for its accuracy and its ability to deal with small sample sizes and
high-dimensional feature spaces. At the same time, it is easily parallelizable
and has therefore the potential to deal with large real-life systems. The cor-
responding R package randomForest can be freely downloaded on the CRAN
website (http://www.r-project.org), while a MapReduce (Jeffrey and Sanja,
2008) open source implementation called Partial Decision Forests is available
on the Apache Mahout website at https://mahout.apache.org. This allows the
building of forests using large data sets as long as each partition can be loaded
into memory.

The random forest methodology has been successfully involved in various prac-
tical problems, including a data science hackathon on air quality prediction
(http://www.kaggle.com/c/dsg-hackathon), chemoinformatics (Svetnik et al.,
2003), ecology (Prasad et al., 2006; Cutler et al., 2007), 3D object recognition
(Shotton et al., 2011), and bioinformatics (Dı́az-Uriarte and de Andrés, 2006),
just to name a few. J. Howard (Kaggle) and M. Bowles (Biomatica) claim
in Howard and Bowles (2012) that ensembles of decision trees—often known
as “random forests”—have been the most successful general-purpose algorithm
in modern times, while H. Varian, Chief Economist at Google, advocates in
Varian (2014) the use of random forests in econometrics.

On the theoretical side, the story of random forests is less conclusive and, de-
spite their extensive use, little is known about the mathematical properties of
the method. The most celebrated theoretical result is that of Breiman (2001),
which offers an upper bound on the generalization error of forests in terms of
correlation and strength of the individual trees. This was followed by a tech-
nical note (Breiman, 2004), which focuses on a stylized version of the original
algorithm (see also Breiman, 2000a,b). A critical step was subsequently taken
by Lin and Jeon (2006), who highlighted an interesting connection between
random forests and a particular class of nearest neighbor predictors, further
developed by Biau and Devroye (2010). In recent years, various theoretical
studies have been performed (e.g., Meinshausen, 2006; Biau et al., 2008; Ish-
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waran and Kogalur, 2010; Biau, 2012; Genuer, 2012; Zhu et al., 2015), analyz-
ing more elaborate models and moving ever closer to the practical situation.
Recent attempts towards narrowing the gap between theory and practice in-
clude that of Denil et al. (2013), who prove the consistency of a particular
online forest, Wager (2014) and Mentch and Hooker (2015), who study the
asymptotic distribution of forests, and Scornet et al. (2015), who show that
Breiman’s (2001) forests are consistent in an additive regression framework.

The difficulty in properly analyzing random forests can be explained by the
black-box flavor of the method, which is indeed a subtle combination of dif-
ferent components. Among the forests’ essential ingredients, both bagging
(Breiman, 1996) and the Classification And Regression Trees (CART)-split
criterion (Breiman et al., 1984) play critical roles. Bagging (a contraction
of bootstrap-aggregating) is a general aggregation scheme, which generates
bootstrap samples from the original data set, constructs a predictor from each
sample, and decides by averaging. It is one of the most effective computa-
tionally intensive procedures to improve on unstable estimates, especially for
large, high-dimensional data sets, where finding a good model in one step is
impossible because of the complexity and scale of the problem (Bühlmann
and Yu, 2002; Kleiner et al., 2014; Wager et al., 2014). As for the CART-split
criterion, it originates from the influential CART program of Breiman et al.
(1984), and is used in the construction of the individual trees to choose the
best cuts perpendicular to the axes. At each node of each tree, the best cut is
selected by optimizing the CART-split criterion, based on the so-called Gini
impurity (for classification) or the prediction squared error (for regression).

However, while bagging and the CART-splitting scheme play key roles in the
random forest mechanism, both are difficult to analyze with rigorous math-
ematics, thereby explaining why theoretical studies have so far considered
simplified versions of the original procedure. This is often done by simply ig-
noring the bagging step and/or replacing the CART-split selection by a more
elementary cut protocol. As well as this, in Breiman’s (2001) forests, each
leaf (that is, a terminal node) of individual trees contains a small number of
observations, typically between 1 and 5.

The goal of this survey is to embark the reader on a guided tour of ran-
dom forests. We focus on the theory behind the algorithm, trying to give an
overview of major theoretical approaches while discussing their inherent pros
and cons. For a more methodological review covering applied aspects of ran-
dom forests, we refer to the surveys by Criminisi et al. (2011) and Boulesteix
et al. (2012). We start by gently introducing the mathematical context in Sec-
tion 2 and describe in full detail Breiman’s (2001) original algorithm. Section
3 focuses on the theory for a simplified forest model called purely random
forests, and emphasizes the connections between forests, nearest neighbor es-
timates and kernel methods. Section 4 provides some elements of theory about
resampling mechanisms, the splitting criterion and the mathematical forces at
work in Breiman’s approach. Section 5 is devoted to the theoretical aspects of
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associated variable selection procedures. Section 6 discusses various extensions
to random forests including online learning, survival analysis and clustering
problems. A short discussion follows in Section 7.

2 The random forest estimate

2.1 Basic principles

Let us start with a word of caution. The term “random forests” is a bit ambigu-
ous. For some authors, it is but a generic expression for aggregating random
decision trees, no matter how the trees are obtained. For others, it refers to
Breiman’s (2001) original algorithm. We essentially adopt the second point of
view in the present survey.

As mentioned above, the forest mechanism is versatile enough to deal with
both supervised classification and regression tasks. However, to keep things
simple, we focus in this introduction on regression analysis, and only briefly
survey the classification case. Our objective in this section is to provide a
concise but mathematically precise presentation of the algorithm for building a
random forest. The general framework is nonparametric regression estimation,
in which an input random vector X ∈ X ⊂ Rp is observed, and the goal is
to predict the square integrable random response Y ∈ R by estimating the
regression function m(x) = E[Y |X = x]. With this aim in mind, we assume
we are given a training sample Dn = ((X1, Y1), . . . , (Xn, Yn)) of independent
random variables distributed as the independent prototype pair (X, Y ). The
goal is to use the data set Dn to construct an estimate mn : X → R of the
function m. In this respect, we say that the regression function estimate mn

is (mean squared error) consistent if E[mn(X)−m(X)]2 → 0 as n → ∞ (the
expectation is evaluated over X and the sample Dn).

A random forest is a predictor consisting of a collection of M randomized
regression trees. For the j-th tree in the family, the predicted value at the
query point x is denoted by mn(x;Θj ,Dn), where Θ1, . . . , ΘM are indepen-
dent random variables, distributed the same as a generic random variable Θ
and independent of Dn. In practice, the variable Θ is used to resample the
training set prior to the growing of individual trees and to select the succes-
sive directions for splitting—more precise definitions will be given later. In
mathematical terms, the j-th tree estimate takes the form

mn(x;Θj ,Dn) =
∑

i∈D?
n(Θj)

1Xi∈An(x;Θj ,Dn)Yi

Nn(x;Θj ,Dn)
,

where D?n(Θj) is the set of data points selected prior to the tree construction,
An(x;Θj ,Dn) is the cell containing x, and Nn(x;Θj ,Dn) is the number of
(preselected) points that fall into An(x;Θj ,Dn).
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At this stage, we note that the trees are combined to form the (finite) forest
estimate

mM,n(x;Θ1, . . . , ΘM ,Dn) =
1

M

M∑
j=1

mn(x;Θj ,Dn). (1)

In the R package randomForest, the default value of M (the number of trees
in the forest) is ntree = 500. Since M may be chosen arbitrarily large (limited
only by available computing resources), it makes sense, from a modeling point
of view, to let M tends to infinity, and consider instead of (1) the (infinite)
forest estimate

m∞,n(x;Dn) = EΘ [mn(x;Θ,Dn)] .

In this definition, EΘ denotes the expectation with respect to the random
parameter Θ, conditional on Dn. In fact, the operation “M →∞” is justified
by the law of large numbers, which asserts that almost surely, conditional on
Dn,

lim
M→∞

mM,n(x;Θ1, . . . , ΘM ,Dn) = m∞,n(x;Dn)

(see for instance Breiman, 2001, and Scornet, 2015a, for more information on
this limit calculation). In the following, to lighten notation we will simply write
m∞,n(x) instead of m∞,n(x; Dn).

2.2 Algorithm

We now provide some insight on how the individual trees are constructed and
how randomness kicks in. In Breiman’s (2001) original forests, each node of a
single tree is associated with a hyperrectangular cell. The root of the tree is
X itself and, at each step of the tree construction, a node (or equivalently its
corresponding cell) is split in two parts. The terminal nodes (or leaves), taken
together, form a partition of X .

The algorithm works by growing M different (randomized) trees as follows.
Prior to the construction of each tree, an observations are drawn at random
with (or without) replacement from the original data set. These—and only
these—an observations (with possible repetitions) are taken into account in
the tree building. Then, at each cell of each tree, a split is performed by maxi-
mizing the CART-criterion (see below) over mtry directions chosen uniformly
at random among the p original ones. (The resulting subset of selected coordi-
nates is calledMtry.) Lastly, construction of individual trees is stopped when
each cell contains less than nodesize points. For any query point x ∈ X , each
regression tree predicts the average of the Yi (that were among the an points)
for which the corresponding Xi falls into the cell of x. We draw attention to
the fact that growing the tree and making the final estimation only depends
on the an preselected data points. Algorithm 1 describes in full detail how to
compute a forest’s prediction.
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Algorithm 1: Breiman’s random forest predicted value at x.

Input: Training set Dn, number of trees M > 0, an ∈ {1, . . . , n},
mtry ∈ {1, . . . , p}, nodesize ∈ {1, . . . , an}, and x ∈ X .

Output: Prediction of the random forest at x.
1 for j = 1, . . . ,M do
2 Select an points, with (or without) replacement, uniformly in Dn. In the

following steps, only these an observations are used.
3 Set P = (X ) the list containing the cell associated with the root of the

tree.
4 Set Pfinal = ∅ an empty list.
5 while P 6= ∅ do
6 Let A be the first element of P.
7 if A contains less than nodesize points or if all Xi ∈ A are equal

then
8 Remove the cell A from the list P.
9 Pfinal ← Concatenate(Pfinal, A).

10 else
11 Select uniformly, without replacement, a subsetMtry ⊂ {1, . . . , p}

of cardinality mtry.
12 Select the best split in A by optimizing the CART-split criterion

along the coordinates in Mtry (see text for details).
13 Cut the cell A according to the best split. Call AL and AR the

two resulting cells.
14 Remove the cell A from the list P.
15 P ← Concatenate(P, AL, AR).

16 end

17 end
18 Compute the predicted value mn(x;Θj ,Dn) at x equal to the average of

the Yi falling in the cell of x in partition Pfinal.
19 end
20 Compute the random forest estimate mM,n(x;Θ1, . . . , ΘM ,Dn) at the query

point x according to (1).

Algorithm 1 may seem a bit complicated at first sight, but the underlying
ideas are simple. We start by noticing that this algorithm has three important
parameters:

1. an ∈ {1, . . . , n}: the number of sampled data points in each tree;
2. mtry ∈ {1, . . . , p}: the number of possible directions for splitting at each

node of each tree;
3. nodesize ∈ {1, . . . , an}: the number of examples in each cell below which

the cell is not split.

By default, in the regression mode of the R package randomForest, the pa-
rameter mtry is set to dp/3e (d·e is the ceiling function), an is set to n, and
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nodesize is set to 5. The role and influence of these three parameters on the
accuracy of the method will be thoroughly discussed in the next section.

We still have to describe how the CART-split criterion operates. As for now,
we consider for the ease of understanding a tree with no subsampling, which
uses the entire and original data set Dn for its construction. Also, we let A
be a generic cell and denote by Nn(A) the number of data points falling in A.
A cut in A is a pair (j, z), where j is some value (dimension) from {1, . . . , p}
and z the position of the cut along the j-th coordinate, within the limits of
A. Let CA be the set of all such possible cuts in A. Then, with the notation

Xi = (X
(1)
i , . . . ,X

(p)
i ), for any (j, z) ∈ CA, the CART-split criterion takes the

form

Lreg,n(j, z) =
1

Nn(A)

n∑
i=1

(Yi − ȲA)21Xi∈A

− 1

Nn(A)

n∑
i=1

(Yi − ȲAL
1
X

(j)
i <z

− ȲAR
1
X

(j)
i ≥z

)21Xi∈A, (2)

where AL = {x ∈ A : x(j) < z}, AR = {x ∈ A : x(j) ≥ z}, and ȲA (resp., ȲAL
,

ȲAR
) is the average of the Yi such that Xi belongs to A (resp., AL, AR), with

the convention that the average is equal to 0 when no point Xi belongs to A
(resp., AL, AR). For each cell A, the best cut (j?n, z

?
n) is selected by maximizing

Lreg,n(j, z) over Mtry and CA; that is,

(j?n, z
?
n) ∈ arg max

j∈Mtry

(j,z)∈CA

Lreg,n(j, z).

(To remove some of the ties in the argmax, the best cut is always performed
in the middle of two consecutive data points.) Let us finally notice that the
above optimization program extends effortlessly to the resampling case, by
optimizing over the an preselected observations instead of the original data
set Dn.

Thus, at each cell of each tree, the algorithm chooses uniformly at random mtry

coordinates in {1, . . . , p}, evaluates criterion (2) over all possible cuts along
the directions in Mtry, and returns the best one. The quality measure (2) is
the criterion used in the influential CART algorithm of Breiman et al. (1984).
This criterion computes the (renormalized) difference between the empirical
variance in the node before and after a cut is performed. There are three
essential differences between CART and a tree of Breiman’s (2001) forest. First
of all, in Breiman’s forests, the criterion (2) is evaluated over a subset Mtry

of randomly selected coordinates, and not over the whole range {1, . . . , p}.
Besides, the individual trees are not pruned, and the final cells do not contain
more than nodesize observations (unless all data points in the cell have the
same Xi). At last, each tree is constructed on a subset of an examples picked
within the initial sample, not on the whole sample Dn; and only these an
observations are used to calculate the estimation. When an = n (and the
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resampling is done with replacement), the algorithm runs in bootstrap mode,
whereas an < n corresponds to subsampling (with or without replacement).

2.3 Supervised classification

For simplicity, we only consider here the binary classification problem, keeping
in mind that random forests are intrinsically capable of dealing with multi-
class problems (see, e.g., Dı́az-Uriarte and de Andrés, 2006). In this setting
(Devroye et al., 1996), the random response Y takes values in {0, 1} and, given
X, one has to guess the value of Y . A classifier, or classification rule, mn is a
Borel measurable function of X and Dn that attempts to estimate the label Y
from X and Dn. In this framework, one says that the classifier mn is consistent
if its probability of error

L(mn) = P[mn(X) 6= Y ] →
n→∞

L?,

where L? is the error of the optimal—but unknown—Bayes classifier:

m?(x) =

{
1 if P[Y = 1|X = x] > P[Y = 0|X = x]
0 otherwise.

In the classification context, the random forest classifier is obtained via a
majority vote among the classification trees, that is,

mM,n(x;Θ1, . . . , ΘM ,Dn) =

{
1 if 1

M

∑M
j=1mn(x;Θj ,Dn) > 1/2

0 otherwise.

If a leaf represents region A, then a randomized tree classifier takes the simple
form

mn(x;Θj ,Dn) =

{
1 if

∑
i∈D?

n(Θj)

1Xi∈A,Yi=1 >
∑

i∈D?
n(Θj)

1Xi∈A,Yi=0, x ∈ A

0 otherwise,

where D?n(Θj) contains the data points selected in the resampling step. That
is, in each leaf, a majority vote is taken over all (Xi, Yi) for which Xi is in
the same region. Ties are broken, by convention, in favor of class 0. Algorithm
1 can be easily adapted to do two-class classification without modifying the
CART-split criterion. To see this, take Y ∈ {0, 1} and consider a single tree
with no subsampling step. For any generic cell A, let p0,n(A) (resp., p1,n(A))
be the empirical probability, given a data point in a cell A, that it has label 0
(resp., label 1). By noticing that ȲA = p1,n(A) = 1−p0,n(A), the classification
CART-split criterion reads, for any (j, z) ∈ CA,

Lclass,n(j, z) = p0,n(A)p1,n(A)− Nn(AL)

Nn(A)
× p0,n(AL)p1,n(AL)

− Nn(AR)

Nn(A)
× p0,n(AR)p1,n(AR).
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This criterion is based on the so-called Gini impurity measure 2p0,n(A)p1,n(A)
(Breiman et al., 1984), which has the following simple interpretation. To clas-
sify a data point that falls in cell A, one uses the rule that assigns a point,
uniformly selected from {Xi ∈ A : (Xi, Yi) ∈ Dn}, to label ` with probability
p`,n(A), for j ∈ {0, 1}. The estimated probability that the item has actually
label ` is p`,n(A). Therefore the estimated error under this rule is the Gini
index 2p0,n(A)p1,n(A). Note however that the prediction strategy is different
in classification and regression: in the classification regime, each tree uses a
local majority vote, whereas in regression the prediction is achieved by a local
averaging.

When dealing with classification problems, it is usually recommended to set
nodesize = 1 and mtry =

√
p (see, e.g., Liaw and Wiener, 2002).

We draw attention to the fact that regression estimation may also have an
interest in the context of dichotomous and multicategory outcome variables
(in this case, it is often termed probability estimation). For example, estimating
outcome probabilities for individuals is important in many areas of medicine,
with applications to surgery, oncology, internal medicine, pathology, pediatrics,
and human genetics. We refer the interested reader to Malley et al. (2012) and
to the survey papers by Kruppa et al. (2014a) and Kruppa et al. (2014b).

2.4 Parameter tuning

Literature focusing on tuning the parameters M , mtry, nodesize and an is
unfortunately rare, with the notable exception of Dı́az-Uriarte and de Andrés
(2006), Bernard et al. (2008), and Genuer et al. (2010). According to Schwarz
et al. (2010), tuning the forest parameters may result in a computational
burden, in particular for big data sets, with hundreds and thousands of samples
and variables. To circumvent this issue, Schwarz et al. (2010) implement a fast
version of the original algorithm, which they name Random Jungle.

It is easy to see that the forest’s variance decreases as M grows. Thus, more
accurate predictions are likely to be obtained by choosing a large number of
trees. Interestingly, picking a large M does not lead to overfitting. In effect,
following an argument of Breiman (2001), we have

lim
n→∞

E[mM,n(X;Θ1, . . . , ΘM )−m(X)]2 = E[m∞,n(X)−m(X)]2.

However, the computational cost for inducing a forest increases linearly with
M , so a good choice results from a trade-off between computational complexity
(M should not be too large for the computations to finish in a reasonable
time) and accuracy (M must be large enough for predictions to be stable). In
this respect, Dı́az-Uriarte and de Andrés (2006) argue that the value of M is
irrelevant (provided that M is large enough) in a prediction problem involving
microarray data sets, where the aim is to classify patients according to their
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genetic profiles (typically, less than one hundred patients for several thousand
genes). For more details we refer the reader to Genuer et al. (2010), who offer
a thorough discussion on the choice of this parameter in various regression
problems. Another interesting and related approach is by Latinne et al. (2001),
who propose a simple procedure that determines a priori a minimum number
of tree estimates to combine in order to obtain a prediction accuracy level
similar to that of a larger forest. Their experimental results show that it is
possible to significantly limit the number of trees.

In the R package randomForest, the default value of the parameter nodesize
is 1 for classification and 5 for regression. These values are often reported to
be good choices (e.g., Dı́az-Uriarte and de Andrés, 2006), despite the fact that
this is not supported by solid theory. A simple algorithm to tune the parameter
nodesize in the classification setting is discussed in Kruppa et al. (2013).

The effect of mtry is thoroughly investigated in Dı́az-Uriarte and de Andrés
(2006), who show that this parameter has a little impact on the performance
of the method, though larger values may be associated with a reduction in the
predictive performance. On the other hand, Genuer et al. (2010) claim that the
default value of mtry is either optimal or too small. Therefore, a conservative
approach is to take mtry as large as possible (limited by available computing
resources) and set mtry = p (recall that p is the dimension of the Xi). A data-
driven choice of mtry is implemented in the algorithm Forest-RK of Bernard
et al. (2008).

Let us finally notice that even if there is no theoretical guarantee to support the
default values of the parameters, they are nevertheless easy to tune without
requiring an independent validation set. Indeed, the procedure accuracy is
estimated internally, during the run, as follows. Since each tree is constructed
using a different bootstrap sample from the original data, about one-third
of the observations are left out of the bootstrap sample and not used in the
construction of the j-th tree. In this way, for each tree, a test set—disjoint from
the training set—is obtained, and averaging over all these left-out data points
and over all trees is known as the out-of-bag error estimate. Thus, the out-of-
bag error, computed on the observations set aside by the resampling prior to
the tree building, offers a simple way to adjust the parameters without the
need of a validation set. (e.g., Kruppa et al., 2013).

3 Simplified models and local averaging estimates

3.1 Simplified models

Despite their widespread use, a gap remains between the theoretical under-
standing of random forests and their practical performance. This algorithm,
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which relies on complex data-dependent mechanisms, is difficult to analyze
and its basic mathematical properties are still not well understood.

As observed by Denil et al. (2014), this state of affairs has led to polarization
between theoretical and empirical contributions to the literature. Empirically
focused papers describe elaborate extensions to the basic random forest frame-
work but come with no clear guarantees. In contrast, most theoretical papers
focus on simplifications or stylized versions of the standard algorithm, where
the mathematical analysis is more tractable.

A basic framework to assess the theoretical properties of forests involves mod-
els in which partitions do not depend on the training set Dn. This family of
simplified models is often called purely random forests, for which X = [0, 1]d.
A widespread example is the centered forest, whose principle is as follows: (i)
there is no resampling step; (ii) at each node of each individual tree, a coor-
dinate is uniformly chosen in {1, . . . , p}; and (iii) a split is performed at the
center of the cell along the selected coordinate. The operations (ii)-(iii) are
recursively repeated k times, where k ∈ N is a parameter of the algorithm.
The procedure stops when a full binary tree with k levels is reached, so that
each tree ends up with exactly 2k leaves. The final estimation at the query
point x is achieved by averaging the Yi corresponding to the Xi in the cell of
x. The parameter k acts as a smoothing parameter that controls the size of
the terminal cells (see Figure 1 for an example in two dimensions). It should
be chosen large enough in order to detect local changes in the distribution,
but not too much to guarantee an effective averaging process in the leaves. In
uniform random forests, a variant of centered forests, cuts are performed uni-
formly at random over the range of the selected coordinate, not at the center.
Modulo some minor modifications, their analysis is similar.

5,56,2
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6,8 5,7

5,7

4,9
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6,0

5,8
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Fig. 1 A centered tree at level 2.
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The centered forest rule was first formally analyzed by Breiman (2004), and
then later by Biau et al. (2008) and Scornet (2015a), who proved that the
method is consistent (both for classification and regression) provided k → ∞
and n/2k → ∞. The proof relies on a general consistency result for random
trees stated in Devroye et al. (1996, Chapter 6). If X is uniformly distributed
in X = [0, 1]p, then there are on average about n/2k data points per terminal
node. In particular, the choice k ≈ log n corresponds to obtaining a small
number of examples in the leaves, in accordance with Breiman’s (2001) idea
that the individual trees should not be pruned. Unfortunately, this choice of k
does not satisfy the condition n/2k →∞, so something is lost in the analysis.
Moreover, the bagging step is absent, and forest consistency is obtained as a
by-product of tree consistency. Overall, this model does not demonstrate the
benefit of using forests in place of individual trees and is too simple to explain
the mathematical forces driving Breiman’s forests.

The rates of convergence of centered forests are discussed in Breiman (2004)
and Biau (2012). In their approach, the covariates X(j) are independent and
the target regression function m(x) = E[Y |X = x], which is originally a func-
tion of x = (x(1), . . . , x(p)), is assumed to depend only on a nonempty subset
S (for Strong) of the p features. Thus, letting XS = (X(j) : j ∈ S), we have

m(x) = E[Y |XS = xS ].

The variables of the remaining set {1, . . . , p}\S have no influence on the func-
tion m and can be safely removed. The ambient dimension p can be large,
much larger than the sample size n, but we believe that the representation is
sparse, i.e., that a potentially small number of arguments of m are active— the
ones with indices matching the set S. Letting |S| be the cardinality of S, the
value |S| characterizes the sparsity of the model: the smaller |S|, the sparser m.
In this dimension-reduction scenario, Breiman (2004) and Biau (2012) proved
that if the probability pj,n of splitting along the j-th direction tends to 1/S
and m satisfies a Lipschitz-type smoothness condition, then

E [m∞,n(X)−m(X)]
2

= O
(
n

−0.75
|S| log 2+0.75

)
.

This equality shows that the rate of convergence of m∞,n to m depends only
on the number |S| of strong variables, not on the dimension p. This rate is
strictly faster than the usual rate n−2/(p+2) as soon as |S| ≤ b0.54pc (b·c is
the floor function). In effect, the intrinsic dimension of the regression problem
is |S|, not p, and we see that the random forest estimate adapts itself to the
sparse framework. Of course, this is achieved by assuming that the procedure
succeeds in selecting the informative variables for splitting, which is indeed a
strong assumption.

An alternative model for pure forests, called purely uniform random forests
(PURF) is discussed in Genuer (2012). For p = 1, a PURF is obtained by
drawing k random variables uniformly on [0, 1], and subsequently dividing
[0, 1] into random sub-intervals. (Note that as such, the PURF can only be
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defined for p = 1.). Although this construction is not exactly recursive, it is
equivalent to growing a decision tree by deciding at each level which node to
split with a probability equal to its length. Genuer (2012) proves that PURF
are consistent and, under a Lipschitz assumption, that the estimate satisfies

E[m∞,n(X)−m(X)]2 = O
(
n−2/3

)
.

This rate is minimax over the class of Lipschitz functions (Stone, 1980, 1982).

It is often acknowledged that random forests reduce the estimation error of a
single tree, while maintaining the same approximation error. In this respect,
Biau (2012) argues that the estimation error of centered forests tends to zero
(at the slow rate 1/ log n) even if each tree is fully grown (i.e., k ≈ log n).
This result is a consequence of the tree-averaging process, since the estimation
error of an individual fully grown tree does not tend to zero. Unfortunately, the
choice k ≈ log n is too large to ensure consistency of the corresponding forest,
whose approximation error remains constant. Similarly, Genuer (2012) shows
that the estimation error of PURF is reduced by a factor of 0.75 compared to
the estimation error of individual trees. The most recent attempt to assess the
gain of forests in terms of estimation and approximation errors is by Arlot and
Genuer (2014), who claim that the rate of the approximation error of certain
models is faster than that of the individual trees.

3.2 Forests, neighbors and kernels

Let us consider a sequence of independent and identically distributed random
variables X1, . . . ,Xn. In random geometry, an observation Xi is said to be a
layered nearest neighbor (LNN) of a point x (from X1, . . . ,Xn) if the hyper-
rectangle defined by x and Xi contains no other data points (Barndorff-Nielsen
and Sobel, 1966; Bai et al., 2005; see also Devroye et al., 1996, Chapter 11,
Problem 6). As illustrated in Figure 2, the number of LNN of x is typically
larger than one and depends on the number and configuration of the sample
points.

Surprisingly, the LNN concept is intimately connected to random forests that
ignore the resampling step. Indeed, if exactly one point is left in the leaves
and if there is no resampling, then no matter what splitting strategy is used,
the forest estimate at x is a weighted average of the Yi whose corresponding
Xi are LNN of x. In other words,

m∞,n(x) =

n∑
i=1

Wni(x)Yi, (3)

where the weights (Wn1, . . . ,Wnn) are nonnegative functions of the sample
Dn that satisfy Wni(x) = 0 if Xi is not a LNN of x and

∑n
i=1Wni = 1.

This important connection was first pointed out by Lin and Jeon (2006), who
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Fig. 2 The layered nearest neighbors (LNN) of a point x in dimension p = 2.

proved that if X is uniformly distributed on [0, 1]p then, provided tree growing
is independent of Y1, . . . , Yn (such simplified models are sometimes called non-
adaptive), we have

E [m∞,n(X)−m(X)]
2

= O

(
1

nmax(log n)p−1

)
,

where nmax is the maximal number of points in the terminal cells (Biau and
Devroye, 2010, extended this inequality to the case where X has a density on
[0, 1]p). Unfortunately, the exact values of the weight vector (Wn1, . . . ,Wnn)
attached to the original random forest algorithm are unknown, and a general
theory of forests in the LNN framework is still undeveloped.

It remains however that equation (3) opens the way to the analysis of random
forests via a local averaging approach, i.e., via the average of those Yi for which
Xi is “close” to x (Györfi et al., 2002). Indeed, observe starting from (1), that
for a finite forest with M trees and without resampling, we have

mM,n(x;Θ1, . . . , ΘM ) =
1

M

M∑
j=1

(
n∑
i=1

Yi1Xi∈An(x;Θj)

Nn(x;Θj)

)
,

where An(x;Θj) is the cell containing x and Nn(x;Θj) =
∑n
i=1 1Xi∈An(x;Θj)

is the number of data points falling in An(x;Θj). Thus,

mM,n(x;Θ1, . . . , ΘM ) =

n∑
i=1

Wni(x)Yi,
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where the weights Wni(x) are defined by

Wni(x) =
1

M

M∑
j=1

1Xi∈An(x;Θj)

Nn(x;Θj)
.

It is easy to see that the Wni are nonnegative and sum to one if the cell
containing x is not empty. Thus, the contribution of observations falling into
cells with a high density of data points is smaller than the contribution of
observations belonging to less-populated cells. This remark is especially true
when the forests are built independently of the data set—for example, PURF—
since, in this case, the number of examples in each cell is not controlled. Next,
if we let M tend to infinity, then the estimate m∞,n may be written (up to
some negligible terms)

m∞,n(x) ≈
∑n
i=1 YiKn(Xi,x)∑n
j=1Kn(Xj ,x)

, (4)

where
Kn(x, z) = PΘ [z ∈ An(x, Θ)] .

The function Kn(·, ·) is called the kernel and characterizes the shape of the
“cells” of the infinite random forest. The quantity Kn(x, z) is nothing but the
probability that x and z are connected (i.e., they fall in the same cell) in a
random tree. Therefore, the kernel Kn can be seen as a proximity measure
between two points in the forest. Hence, any forest has its own metric Kn, but
unfortunately the one associated with the CART-splitting strategy is strongly
data-dependent and therefore complicated to work with.

It should be noted that Kn does not necessarily belong to the family of
Nadaraya-Watson-type kernels (Nadaraya, 1964; Watson, 1964), which sat-
isfy a translation-invariant homogeneous property of the form Kh(x, z) =
1
hK((x − z)/h) for some smoothing parameter h > 0. The analysis of esti-
mates of the form (4) is, in general, more complicated, depending of the type
of forest under investigation. For example, Scornet (2015b) proved that for a
centered forest defined on [0, 1]p with parameter k, we have

Kn,k(x, z) =
∑

k1,...,kp∑p
j=1 kj=k

k!

k1! . . . kp!

(
1

p

)k p∏
j=1

1d2kjxje=d2kj zje.

As an illustration, Figure 3 shows the graphical representation for k = 1, 2
and 5 of the function fk defined by

fk : [0, 1]× [0, 1] → [0, 1]
z = (z1, z2) 7→ Kn,k

(
( 1

2 ,
1
2 ), z

)
.

The connection between forests and kernel estimates is mentioned in Breiman
(2000a) and developed in detail in Geurts et al. (2006). The most recent ad-
vances in this direction are by Arlot and Genuer (2014), who show that a
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Fig. 3 Representations of f1, f2 and f5 in [0, 1]2.

simplified forest model can be written as a kernel estimate, and provide its
rates of convergence. On the practical side, Davies and Ghahramani (2014)
plug a specific (random forest-based) kernel—seen as a prior distribution over
the piecewise constant functions—into a standard Gaussian process algorithm,
and empirically demonstrate that it outperforms the same algorithm ran with
linear and radial basis kernels. Besides, forest-based kernels can be used as
the input for a large variety of existing kernel-type methods such as Kernel
Principal Component Analysis and Support Vector Machines.

4 Theory for Breiman’s forests

This section deals with Breiman’s (2001) original algorithm. Since the con-
struction of Breiman’s forests depends on the whole sample Dn, a mathemat-
ical analysis of the entire algorithm is difficult. To move forward, the individ-
ual mechanisms at work in the procedure have been investigated separately,
namely the resampling step and the splitting scheme.
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4.1 The resampling mechanism

The resampling step in Breiman’s (2001) original algorithm is performed by
choosing n times from n points with replacement to compute the individual
tree estimates. This procedure, which traces back to the work of Efron (1982)
(see also Politis et al., 1999), is called the bootstrap in the statistical literature.
The idea of generating many bootstrap samples and averaging predictors is
called bagging (bootstrap-aggregating). It was suggested by Breiman (1996)
as a simple way to improve the performance of weak or unstable learners. Al-
though one of the great advantages of the bootstrap is its simplicity, the theory
turns out to be complex. In effect, the distribution of the bootstrap sample D?n
is different from that of the original one Dn, as the following example shows.
Assume that X has a density, and note that whenever the data points are sam-
pled with replacement then, with positive probability, at least one observation
from the original sample is selected more than once. Therefore, with positive
probability, there exist two identical data points in D?n, and the distribution
of D?n cannot be absolutely continuous.

The role of the bootstrap in random forests is still poorly understood and, to
date, most analyses are doomed to replace the bootstrap by a subsampling
scheme, assuming that each tree is grown with an < n examples randomly
chosen without replacement from the initial sample (Mentch and Hooker, 2015;
Wager, 2014; Scornet et al., 2015). Most of the time, the subsampling rate
an/n is assumed to tend to zero at some prescribed rate—an assumption that
excludes de facto the bootstrap regime. In this respect, the analysis of so-called
median random forests by Scornet (2015a) provides some insight as to the role
and importance of subsampling.

A median forest resembles a centered forest. Once the splitting direction is
chosen, the cut is performed at the empirical median of the Xi in the cell. In
addition, the construction does not stop at level k but continues until each cell
contains exactly one observation. Since the number of cases left in the leaves
does not grow with n, each tree of a median forest is in general inconsistent
(see Györfi et al., 2002, Problem 4.3). However, Scornet (2015a) shows that
if an/n → 0, then the median forest is consistent, despite the fact that the
individual trees are not. The assumption an/n → 0 guarantees that every
single observation pair (Xi, Yi) is used in the j-th tree’s construction with a
probability that becomes small as n grows. It also forces the query point x to
be disconnected from (Xi, Yi) in a large proportion of trees. Indeed, if this were
not the case, then the predicted value at x would be overly influenced by the
single pair (Xi, Yi), which would make the ensemble inconsistent. In fact, the
estimation error of the median forest estimate is small as soon as the maximum
probability of connection between the query point and all observations is small.
Thus, the assumption an/n → 0 is but a convenient way to control these
probabilities, by ensuring that partitions are dissimilar enough.
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Biau and Devroye (2010) noticed that Breiman’s bagging principle has a sim-
ple application in the context of nearest neighbor methods. Recall that the
1-nearest neighbor (1-NN) regression estimate sets rn(x) = Y(1)(x), where
Y(1)(x) corresponds to the feature vector X(1)(x) whose Euclidean distance to
x is minimal among all X1, . . . ,Xn. (Ties are broken in favor of smallest in-
dices.) It is clearly not, in general, a consistent estimate (Devroye et al., 1996,
Chapter 5). However, by subbagging, one may turn the 1-NN estimate into a
consistent one, provided that the size of subsamples is sufficiently small. We
proceed as follows, via a randomized basic regression estimate ran in which
1 ≤ an < n is a parameter. The elementary predictor ran is the 1-NN rule for
a random subsample of size an drawn with (or without) replacement from Dn.
We apply subbagging, that is, we repeat the random subsampling an infinite
number of times and take the average of the individual outcomes. Thus, the
subbagged regression estimate r?n is defined by

r?n(x) = E? [ran(x)] ,

where E? denotes expectation with respect to the resampling distribution, con-
ditional on the data set Dn. Biau and Devroye (2010) proved that the estimate
r?n is universally (i.e., without conditions on the distribution of (X, Y )) mean
squared consistent, provided an → ∞ and an/n → 0. The proof relies on the
observation that r?n is in fact a local averaging estimate (Stone, 1977) with
weights

Wni(x) = P[Xi is the 1-NN of x in a random selection of size an].

The connection between bagging and nearest neighbor estimation is further
explored by Biau et al. (2010), who prove that the subbagged estimate r?n
achieves optimal rate of convergence over Lipschitz smoothness classes, inde-
pendently from the fact that resampling is done with or without replacement.

4.2 Decision splits

The coordinate-split process of the random forest algorithm is not easy to
grasp, essentially because it uses both the Xi and Yi variables to make its
decision. Building upon the ideas of Bühlmann and Yu (2002), Banerjee and
McKeague (2007) establish a limit law for the split location in the context of
a regression model of the form Y = m(X)+ε, where X is real-valued and ε an
independent Gaussian noise. In essence, their result is as follows. Assume for
now that the distribution of (X, Y ) is known, and denote by d? the (optimal)
split that maximizes the theoretical CART-criterion at a given node. In this
framework, the regression estimate restricted to the left (resp., right) child of
the cell takes the form

β?`,n = E[Y |X ≤ d?]
(

resp., β?r,n = E[Y |X > d?]
)
.
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When the distribution of (X, Y ) is unknown, so are β?` , β?r and d?, and these
quantities are estimated by their natural empirical counterparts:

(β̂`,n, β̂r,n, d̂n) ∈ arg min
β`,βr,d

n∑
i=1

[
Yi − β`1Xi≤d − βr1Xi>d

]2
.

Assuming that the model satisfies some regularity assumptions (in particular,
X has a density f , and both f and m are continuously differentiable), Banerjee
and McKeague (2007) prove that

n1/3

 β̂`,n − β?`
β̂r,n − β?r
d̂n − d?

 D→

 c1
c2
1

 arg max
t

(aW (t)− bt2), (5)

where D denotes convergence in distribution, and W is a standard two-sided
Brownian motion process on the real line. Both a and b are positive constants
that depend upon the model parameters and the unknown quantities β?` , β?r
and d?. The limiting distribution in (5) allows one to construct confidence in-
tervals for the position of CART-splits. Interestingly, Banerjee and McKeague
(2007) refer to the study of Qian et al. (2003) on the effects of phosphorus
pollution in the Everglades, which uses split points in a novel way. There, the
authors identify threshold levels of phosphorus concentration that are associ-
ated with declines in the abundance of certain species. In their approach, split
points are not just a means to build trees and forests, but can also provide
important information on the structure of the underlying distribution.

A further analysis of the behavior of forest splits is performed by Ishwaran
(2013), who argues that the so-called End-Cut Preference (ECP) of the CART-
splitting procedure (that is, the fact that splits along non-informative variables
are likely to be near the edges of the cell—see Breiman et al., 1984) can be seen
as a desirable property. Given the randomization mechanism at work in forests,
there is indeed a positive probability that none of the preselected variables at
a node are informative. When this happens, and if the cut is performed, say,
at the center of a side of the cell (assuming that X = [0, 1]d), then the sample
size of the two resulting cells is drastically reduced by a factor of two—this
is an undesirable property, which may be harmful for the prediction task.
Thus, Ishwaran (2013) stresses that the ECP property ensures that a split
along a noisy variable is performed near the edge, thus maximizing the tree
node sample size and making it possible for the tree to recover from the split
downstream. Ishwaran (2013) claims that this property can be of benefit even
when considering a split on an informative variable, if the corresponding region
of space contains little signal.

It is shown in Scornet et al. (2015) that random forests asymptotically perform,
with high probability, splits along the S informative variables (in the sense of
Section 3.1). Denote by jn,1(X), . . . , jn,k(X) the first k cut directions used to
construct the cell of X, with the convention that jn,q(X) = ∞ if the cell has
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been cut strictly less than q times. Assuming some regularity conditions on
the regression model, and considering a modification of Breiman’s forests in
which all directions are preselected for splitting, Scornet et al. (2015) prove
that, with probability 1− ξ, for all n large enough and all 1 ≤ q ≤ k,

jn,q(X) ∈ {1, . . . , S}.

This result offers an interesting perspective on why random forests nicely adapt
to the sparsity setting. Indeed, it shows that the algorithm selects splits mostly
along the S informative variables, so that everything happens as if data were
projected onto the vector space spanned by these variables.

There exists a variety of random forest variants based on the CART-criterion.
For example, the Extra-Tree algorithm of Geurts et al. (2006) consists in ran-
domly selecting a set of split points and then choosing the split that maximizes
the CART-criterion. This algorithm has similar accuracy performance while
being more computationally efficient. In the PERT (Perfect Ensemble Random
Trees) approach of Cutler and Zhao (2001), one builds perfect-fit classification
trees with random split selection. While individual trees clearly overfit, the
authors claim that the whole procedure is eventually consistent since all clas-
sifiers are believed to be almost uncorrelated. As a variant of the original
algorithm, Breiman (2001) considered splitting along linear combinations of
features (this procedure has been implemented by Truong, 2009, in the pack-
age obliquetree of the statistical computing environment R). As noticed by
Menze et al. (2011), the feature space separation by orthogonal hyperplanes
in random forests results in box-like decision surfaces, which may be advanta-
geous for some data but suboptimal for other, particularly for collinear data
with correlated features .

With respect to the tree building process, selecting uniformly at each cell a
set of features for splitting is simple and convenient, but such procedures in-
evitably select irrelevant variables. Therefore, several authors have proposed
modified versions of the algorithm that incorporate a data-driven weighing of
variables. For example, Kyrillidis and Zouzias (2014) study the effectiveness
of non-uniform randomized feature selection in classification tree, and experi-
mentally show that such an approach may be more effective compared to naive
uniform feature selection. Enriched Random Forests, designed by Amaratunga
et al. (2008) choose at each node the eligible subsets by weighted random
sampling with the weights tilted in favor of informative features. Similarly,
the Reinforcement Learning Trees (RLT) of Zhu et al. (2015) build at each
node a random forest to determine the variable that brings the greatest future
improvement in later splits, rather than choosing the one with largest marginal
effect from the immediate split. Splits in random forests are known to be biased
toward covariates with many possible splits (Breiman et al., 1984; Segal, 1988)
or with missing values (Kim and Loh, 2001). Hothorn et al. (2006) propose a
two-step procedure to correct this situation by first selecting the splitting vari-
able and then the position of the cut along the chosen variable. The predictive
performance of the resulting trees is empirically shown to be as good as the
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performance of the exhaustive search procedure. We also refer the reader to
Ziegler and König (2014), who review the different splitting strategies.

Choosing weights can also be done via regularization. Deng and Runger (2012)
propose a Regularized Random Forest (RRF), which penalizes selecting a new
feature for splitting when its gain is similar to the features used in previous
splits. Deng and Runger (2013) suggest a Guided RRF (GRRF), in which the
importance scores from an ordinary random forest are used to guide the feature
selection process in RRF. Lastly, a Garrote-style convex penalty, proposed by
Meinshausen (2009), selects functional groups of nodes in trees, yielding to
parcimonious estimates. We also mention the work of Konukoglu and Ganz
(2014) who address the problem of controlling the false positive rate of random
forests and present a principled way to determine thresholds for the selection
of relevant features without any additional computational load.

4.3 Consistency, asymptotic normality, and more

All in all, little has been proven mathematically for the original procedure
of Breiman. A seminal result by Breiman (2001) shows that the error of the
forest is small as soon as the predictive power of each tree is good and the
correlation between the tree errors is low. More precisely, independently of the
type of forest, one has

EX,Y [Y −m∞,n(X)]2 ≤ ρ̄EΘ,X,Y [Y −mn(X;Θ)]2,

where

ρ̄ =
EΘ,Θ′ [ρ(Θ,Θ′)g(Θ)g(Θ′)]

EΘ[g(Θ)]2
,

with Θ and Θ′ independent and identically distributed,

ρ(Θ,Θ′) = CorrX,Y
[
Y −mn(X;Θ), Y −mn(X;Θ′)

]
,

and g(Θ) =
√
EX,Y [Y −mn(X;Θ)]2. Similarly, Friedman et al. (2009) decom-

pose the variance of the forest as a product of the correlation between trees
and the variance of a single tree. Thus, for all x,

Var[m∞,n(x)] = ρ(x)σ(x),

where ρ(x) = Corr[mn(x;Θ),mn(x;Θ′)] and σ(x) = Var[mn(x;Θ)].

A link between the error of the finite and infinite forests is established in Scor-
net (2015a), who shows, provided some regularity assumptions are satisfied,
that

0 ≤ E[mM,n(X;Θ1, . . . , ΘM )−m(X)]2 − E[m∞,n(X)−m(X)]2

≤ 8

M
×
(
‖m‖2∞ + σ2(1 + 4 log n)

)
.
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This inequality provides an interesting solution for choosing the number of
trees, by making the error of the finite forest arbitrary close to that of the
infinite one.

Consistency and asymptotic normality of the whole algorithm were recently
proved, replacing bootstrap by subsampling and simplifying the splitting step.
So, Wager (2014) shows the asymptotic normality of Breiman’s infinite forests,
assuming that (i) cuts are spread along all the p directions and do not sepa-
rate a small fraction of the data set; and (ii) two different data set are used
to respectively build the tree and estimate the value within a leaf. He also es-
tablishes that the infinitesimal jackknife (Efron, 1979) consistently estimates
the forest variance.

Mentch and Hooker (2015) prove a similar result for finite forests, which mainly
relies on the assumption that the prediction of the forests does not much vary
when the label of one point in the training set is slightly modified. These
authors show that whenever Mn (the number of trees) is allowed to vary with
n, and when an = o(

√
n) and limn→∞ n/Mn = 0, then, for a fixed x,

√
n
(
mM,n(x;Θ1, . . . , ΘM )− E[mM,n(x;Θ1, . . . , ΘM )]

)
√
a2
nζ1,an

D→ N,

where N is a standard normal random variable,

ζ1,an = Cov
[
mn(X1,X2, . . . ,Xan ;Θ),mn(X1,X

′
2, . . . ,X

′
an ;Θ′)

]
,

X′i an independent copy of Xi and Θ′ an independent copy of Θ. It is worth
noting that both Mentch and Hooker (2015) and Wager et al. (2014) provide
corrections for estimating the forest variance ζ1,an .

Scornet et al. (2015) proved a consistency result in the context of additive
regression models for the pruned version of Breiman’s forest. Unfortunately,
the consistency of the unpruned procedure comes at the price of a conjecture
regarding the behavior of the CART algorithm that is difficult to verify.

We close this section with a negative but interesting result due to Biau et al.
(2008). In this example, the total number k of cuts is fixed and mtry = 1.
Furthermore, each tree is built by minimizing the true probability of error
at each node. Consider the joint distribution of (X, Y ) sketched in Figure
4 and let m(x) = E[Y |X = x]. The variable X has a uniform distribution
on [0, 1]2 ∪ [1, 2]2 ∪ [2, 3]2 and Y is a function of X—that is, m(x) ∈ {0, 1}
and L? = 0—defined as follows. The lower left square [0, 1] × [0, 1] is divided
into countably infinitely many vertical strips in which the strips with m(x) =
0 and m(x) = 1 alternate. The upper right square [2, 3] × [2, 3] is divided
similarly into horizontal strips. The middle rectangle [1, 2] × [1, 2] is a 2 × 2
checkerboard. It is easy to see that no matter what the sequence of random
selection of split directions is and no matter for how long each tree is grown,
no tree will ever cut the middle rectangle and therefore the probability of
error of the corresponding random forest classifier is at least 1/6. This example
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Fig. 4 An example of a distribution for which greedy random forests are inconsistent. The
distribution of X is uniform on the union of the three large squares. White areas represent
the set where m(x) = 0 and grey where m(x) = 1.

illustrates that consistency of greedily grown random forests is a delicate issue.
We note however that if Breiman’s (2001) original algorithm is used in this
example (that is, each cell contains exactly one data point) then one obtains
a consistent classification rule. We also note that the regression function m is
not Lipschitz—a smoothness assumption on which many results on random
forests rely.

5 Variable importance

5.1 Variable importance measures

Random forests can be used to rank the importance of variables in regression
or classification problems via two measures of significance. The first, called
Mean Decrease Impurity (MDI; see Breiman, 2003a), is based on the total
decrease in node impurity from splitting on the variable, averaged over all
trees. The second, referred to as Mean Decrease Accuracy (MDA), first defined
by Breiman (2001), stems from the idea that if the variable is not important,
then rearranging its values should not degrade prediction accuracy.
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Set X = (X(1), . . . , X(p)). For a forest resulting from the aggregation of M
trees, the MDI of the variable X(j) is defined by

M̂DI(X(j)) =
1

M

M∑
`=1

∑
t∈T`
j?n,t=j

pn,tLreg,n(j?n,t, z
?
n,t),

where pn,t is the fraction of observations falling in the node t, {T`}1≤`≤M
the collection of trees in the forest, and (j?n,t, z

?
n,t) the split that maximizes

the empirical criterion (2) in node t. Note that the same formula holds for
classification random forests by replacing the criterion Lreg,n by its classifica-
tion version Lclass,n. Thus, the MDI of X(j) computes the weighted decrease
of impurity corresponding to splits along the variable X(j) and averages this
quantity over all trees.

The MDA relies on a different principle and uses the out-of-bag error estimate
(see Section 2.4). To measure the importance of the j-th feature, we randomly
permute the values of variable X(j) in the out-of-bag observations and put
these examples down the tree. The MDA of X(j) is obtained by averaging the
difference in out-of-bag error estimation before and after the permutation over
all trees. In mathematical terms, consider a variable X(j) and denote by D`,n
the out-of-bag data set of the `-th tree and Dj`,n the same data set where the

values of X(j) have been randomly permuted. Recall that mn(·;Θ`) stands for
the `-th tree estimate. Then, by definition,

M̂DA(X(j)) =
1

M

M∑
`=1

[
Rn
[
mn(·;Θ`),Dj`,n

]
−Rn

[
mn(·;Θ`),D`,n

]]
, (6)

where Rn is defined for D = D`,n or D = Dj`,n by

Rn
[
mn(·;Θ`),D

]
=

1

|D|
∑

i:(Xi,Yi)∈D

(Yi −mn(Xi;Θ`))
2. (7)

It is easy to see that the population version of M̂DA(X(j)) is

MDA?(X(j)) = E
[
Y −mn(X′j ;Θ)

]2 − E[Y −mn(X;Θ)
]2
,

where X′j = (X(1), . . . , X ′(j), . . . , X(p)) and X ′(j) is an independent copy of

X(j). For classification purposes, the MDA still satisfies (6) and (7) since Yi ∈
{0, 1} (so, Rn(mn(·;Θ),D) is also the proportion of points that are correctly
classified by mn(·;Θ) in D).
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5.2 Theoretical results

In the context of a pair of categorical variables (X, Y ), where X takes finitely
many values in, say, X1 × · · · × Xd, Louppe et al. (2013) consider an infinite
ensemble of totally randomized and fully developed trees. At each cell, the
`-th tree is grown by selecting a variable X(j) uniformly among the features
that have not been used in the parent nodes, and by subsequently dividing
the cell into |Xj | children (so the number of children equals the number of
modalities of the selected variable). In this framework, it can be shown that
the population version of MDI(X(j)) computed with the whole forest satisfies

MDI?(X(j)) =

p−1∑
k=0

1(
k
p

)
(p− k)

∑
B∈Pk(V −j)

I(X(j);Y |B),

where V −j = {1, . . . , j − 1, j + 1, . . . , p}, Pk(V −j) the set of subsets of V −j

of cardinality k, and I(X(j);Y |B) the conditional mutual information of X(j)

and Y given the variables in B. In addition,

p∑
j=1

MDI?(X(j)) = I(X(1), . . . , X(p);Y ).

These results show that the information I(X(1), . . . , X(p);Y ) is the sum of
the importances of each variable, which can itself be made explicit using the
information values I(X(j);Y |B) between each variable X(j) and the output
Y , conditional on variable subsets B of different sizes.

Louppe et al. (2013) define a variable X(j) as irrelevant with respect to B ⊂
V = X1 × · · · × Xp whenever I(X(j);Y |B) = 0. Thus, X(j) is irrelevant with
respect to V if and only if MDI?(X(j)) = 0. It is easy to see that if an additional
irrelevant variable X(p+1) is added to the list of variables, then, for any j, the
variable importance MDI?(X(j)) computed with a single tree does not change
if the tree is built with the new collection of variables V ∪ {X(p+1)}. In other
words, building a tree with an additional irrelevant variable does not alter the
importances of the other variables in an infinite sample setting.

The most notable results regarding MDA? are due to Ishwaran (2007), who
studies a slight modification of the criterion replacing permutation by feature
noising. To add noise to a variable X(j), one considers a new observation X,
take X down the tree and stop when a split is made according to the variable
X(j). Then the right or left child node is selected with probability 1/2, and
this procedure is repeated for each subsequent node (whether it is performed
along the variable X(j) or not). The variable importance MDA?(X(j)) is still
computed by comparing the error of the forest with that of the “noisy” forest.
Assuming that the forest is consistent and that the regression function is piece-
wise constant, Ishwaran (2007) gives the asymptotic behavior of MDA?(X(j))
when the sample size tends to infinity. This behavior is intimately related to
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the set of subtrees (of the initial regression tree) whose roots are split along
the coordinate X(j).

Let us lastly mention the approach of Gregorutti et al. (2013), who compute
the MDA criterion for several distributions of (X, Y ). For example, consider
a model of the form

Y = m(X) + ε,

where (X, ε) is a Gaussian random vector, and assume that the correlation
matrix C satisfies C = [Cov(X(j), X(k))]1≤j,k≤p = (1 − c)Ip + c11> (the
symbol > denotes transposition, 1 = (1, . . . , 1)>, and c is a constant in (0, 1)).
Assume, in addition, that Cov(X(j), Y ) = τ0 for all j ∈ {1, . . . , p}. Then, for
all j,

MDA?(X(j)) = 2

(
τ0

1− c+ pc

)2

.

Thus, in the Gaussian setting, the variable importance decreases as the inverse
of the square of p when the number of correlated variables p increases.

5.3 Related works

The empirical properties of the MDA criterion have been extensively explored
and compared in the statistical computing literature. Indeed, Archer and
Kimes (2008), Strobl et al. (2008), Nicodemus and Malley (2009), Auret and
Aldrich (2011), and Toloşi and Lengauer (2011) stress the negative effect of cor-
related variables on MDA performance. In this respect, Genuer et al. (2010)
noticed that MDA is less able to detect the most relevant variables when
the number of correlated features increases. Similarly, the empirical study of
Archer and Kimes (2008) points out that both MDA and MDI behave poorly
when correlation increases—these results have been experimentally confirmed
by Auret and Aldrich (2011) and Toloşi and Lengauer (2011). An argument
of Strobl et al. (2008) to justify the bias of MDA in the presence of correlated
variables is that the algorithm evaluates the marginal importance of the vari-
ables instead of taking into account their effect conditional on each other. A
way to circumvent this issue is to combine random forests and the Recursive
Feature Elimination algorithm of Guyon et al. (2002), as in Gregorutti et al.
(2013). Detecting relevant features can also be achieved via hypothesis test-
ing (Mentch and Hooker, 2015)—a principle that may be used to detect more
complex structures of the regression function, like for instance its additivity
(Mentch and Hooker, 2014).

6 Extensions

Weighted forests. In Breiman’s (2001) forests, the final prediction is the av-
erage of the individual tree outcomes. A natural way to improve the method
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is to incorporate tree-level weights to emphasize more accurate trees in pre-
diction (Winham et al., 2013). A closely related idea, proposed by Bernard
et al. (2012), is to guide tree building—via resampling of the training set and
other ad hoc randomization procedures—so that each tree will complement as
much as possible the existing trees in the ensemble. The resulting Dynamic
Random Forest (DRF) shows significant improvement in terms of accuracy on
20 real-based data sets compared to the standard, static, algorithm.

Online forests. In its original version, random forests is an offline algorithm,
which is given the whole data set from the beginning and required to out-
put an answer. In contrast, online algorithms do not require that the entire
training set is accessible at once. These models are appropriate for streaming
settings, where training data is generated over time and must be incorporated
into the model as quickly as possible. Random forests have been extended to
the online framework in several ways (Saffari et al., 2009; Denil et al., 2013;
Lakshminarayanan et al., 2014). In Lakshminarayanan et al. (2014), so-called
Mondrian forests are grown in an online fashion and achieve competitive pre-
dictive performance comparable with other online random forests while being
faster. When building online forests, a major difficulty is to decide when the
amount of data is sufficient to cut a cell. Exploring this idea, Yi et al. (2012)
propose Information Forests, whose construction consists in deferring classi-
fication until a measure of classification confidence is sufficiently high, and
in fact break down the data so as to maximize this measure. An interesting
theory related to these greedy trees can be found in Biau and Devroye (2013).

Survival forests. Survival analysis attempts to deal with analysis of time
duration until one or more events happen. Most often, survival analysis is
also concerned with incomplete data, and particularly right-censored data, in
fields such as clinical trials. In this context, parametric approaches such as
proportional hazards are commonly used, but fail to model nonlinear effects.
Random forests have been extended to the survival context by Ishwaran et al.
(2008), who prove consistency of Random Survival Forests (RSF) algorithm
assuming that all variables are categorical. Yang et al. (2010) showed that
by incorporating kernel functions into RSF, their algorithm KIRSF achieves
better results in many situations. Ishwaran et al. (2011) review the use of the
minimal depth, which measures the predictive quality of variables in survival
trees.

Ranking forests. Clémençon et al. (2013) have extended random forests to
deal with ranking problems and propose an algorithm called Ranking Forests
based on the ranking trees of Clémençon and Vayatis (2009). Their approach
relies on nonparametric scoring and ROC curve optimization in the sense of
the AUC criterion.

Clustering forests. Yan et al. (2013) present a new clustering ensemble
method called Cluster Forests (CF) in the context of unsupervised classifica-
tion. CF randomly probes a high-dimensional data cloud to obtain good local
clusterings, then aggregates via spectral clustering to obtain cluster assign-
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ments for the whole data set. The search for good local clusterings is guided
by a cluster quality measure, and CF progressively improves each local clus-
tering in a fashion that resembles tree growth in random forests.

Quantile forests. Meinshausen (2006) shows that random forests provide
information about the full conditional distribution of the response variable,
and thus can be used for quantile estimation.

Missing data. One of the strengths of random forests is that they can handle
missing data. The procedure, explained in Breiman (2003b), takes advantage
of the so-called proximity matrix, which measures the proximity between pairs
of observations in the forest, to estimate missing values. This measure is the
empirical counterpart of the kernels defined in Section 3.2. Data imputation
based on random forests has further been explored by Rieger et al. (2010),
Crookston and Finley (2008), and extended to unsupervised classification by
Ishioka (2013).

Single class data. One-class classification is a binary classification task for
which only one class of samples is available for learning. Désir et al. (2013)
study the One Class Random Forests algorithm, which is designed to solve
this particular problem. Geremia et al. (2013) have introduced a supervised
learning algorithm called Spatially Adaptive Random Forests to deal with se-
mantic image segmentation applied to medical imaging protocols. Lastly, in
the context of multi-label classification, Joly et al. (2014) adapt the idea of ran-
dom projections applied to the output space to enhance tree-based ensemble
methods by improving accuracy while significantly reducing the computational
burden.

Unbalanced data set. Random forests can naturally be adapted to fit the
unbalanced data framework by down-sampling the majority class and growing
each tree on a more balanced data set (Chen et al., 2004; Kuhn and Johnson,
2013). An interesting application in which unbalanced data sets are involved is
by Fink et al. (2010), who explore the continent-wide inter-annual migrations
of common North American birds. They use random forests for which each
tree is trained and allowed to predict on a particular (random) region in space
and time.

7 Conclusion and perspectives

The authors trust that this review paper has provided an overview of some of
the recent literature on random forests and offered insights into how new and
emerging fields are impacting the method. As statistical applications become
increasingly sophisticated, massive and complex data sets require today the
development of algorithms that ensure global competitiveness, achieving both
computational efficiency and safe with high-dimension models and huge num-
ber of samples. It is our belief that forests and their basic principles (“divide
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and conquer”, resampling, aggregation, random search of the feature space)
offer simple but fundamental ideas that may leverage new state-of-the-art al-
gorithms.

It remains however that the present results are insufficient to explain in full
generality the remarkable behavior of random forests. The authors’ intuition
is that tree aggregation models are able to estimate patterns that are more
complex than classical ones—patterns that cannot be simply characterized
by standard sparsity or smoothness conditions. These patterns, which are be-
yond the reach of classical methods, are still to be discovered, quantified, and
mathematically described.

It is sometimes alluded to that random forests have the flavor of deep net-
work architectures (e.g., Bengio, 2009), insofar as ensemble of trees allow to
discriminate between a very large number of regions. Indeed, the identity of
the leaf node with which a data point is associated for each tree forms a tu-
ple that can represent a considerable quantity of possible patterns, because
the total intersections of the leaf regions can be exponential in the number of
trees. This point of view, largely unexamined, could be one of the reasons for
the success of forests on large-scale data. As a matter of fact, the connection
between random forests and neural networks is largely unexamined (Welbl,
2014).

Another critical issue is how to choose tuning parameters that are optimal
in a certain sense, especially the size an of the preliminary resampling. By
default, the algorithm runs in bootstrap mode (i.e., an = n points selected
with replacement) and although this seems to give excellent results, there is to
date no theory to support this choice. Furthermore, although random forests
are fully grown in most applications, the impact of tree depth on the statistical
performance of the algorithm is still an open question.
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