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1. Proof of Lemma 1.

Technical Lemma 1. Assume that (H1) is satisfied and that L? ≡ 0
for all cuts in some given cell A. Then the regression function m is constant
on A.

Proof of Technical Lemma 1. We start by proving the result in di-
mension p = 1. Letting A = [a, b] (0 ≤ a < b ≤ 1), and recalling that
Y = m(X) + ε, one has

L?(1, z) = V [Y |X ∈ A]− P [a ≤ X ≤ z |X ∈ A]V [Y |a ≤ X ≤ z]
− P [z ≤ X ≤ b |X ∈ A]V [Y |z < X ≤ b]

= − 1

(b− a)2

(∫ b

a
m(t)dt

)2

+
1

(b− a)(z − a)

(∫ z

a
m(t)dt

)2

+
1

(b− a)(b− z)

(∫ b

z
m(t)dt

)2

.

Let C =
∫ b
a m(t)dt and M(z) =

∫ z
a m(t)dt. Simple calculations show that

L?(1, z) =
1

(z − a)(b− z)

(
M(z)− C z − a

b− a

)2

.
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2 E. SCORNET, G. BIAU, J.-P. VERT

Therefore, since L? ≡ 0 on CA by assumption, we obtain

M(z) = C
z − a
b− a

.

This proves that M(z) is linear in z, and that m is therefore constant on
[a, b].

Let us now examine the general multivariate case, whereA = Πp
j=1[aj , bj ] ⊂

[0, 1]p. From the univariate analysis, we know that, for all 1 ≤ j ≤ p, there
exists a constant Cj such that∫ b1

a1

. . .

∫ bp

ap

m(x)dx1 . . . dxj−1dxj+1 . . . dxp = Cj .

Since m is additive this implies that, for all j and all xj ,

mj(xj) = Cj −
∫ b1

a1

. . .

∫ bp

ap

∑
`6=j

m`(x`)dx1 . . . dxj−1dxj+1 . . . dxp ,

which does not depend upon xi. This shows that m is constant on A.

Proof of Lemma 1. Take ξ > 0 and fix x ∈ [0, 1]p. Let θ be a real-
ization of the random variable Θ. Since m is uniformly continuous, the re-
sult is clear if diam(A?k(x, θ)) tends to zero as k tends to infinity. Thus,
in the sequel, it is assumed that diam(A?k(x, θ)) does not tend to zero.
In that case, since (A?k(x, θ))k is a decreasing sequence of compact sets,

there exist a∞(x, θ) = (a
(1)
∞ (x, θ), . . . ,a

(p)
∞ (x, θ)) ∈ [0, 1]p and b∞(x, θ) =

(b
(1)
∞ (x, θ), . . . ,b

(p)
∞ (x, θ)) ∈ [0, 1]p such that

∞⋂
k=1

A?k(x, θ) =

p∏
j=1

[a(j)
∞ (x, θ),b(j)

∞ (x, θ)]

def
= A?∞(x, θ).

Since diam(A?k(x, θ)) does not tend to zero, there exists an index j′ such

that a
(j′)
∞ (x, θ) < b

(j′)
∞ (x, θ) (i.e., the cell A?∞(x, θ) is not reduced to one

point). Let A?k(x, θ)
def
=
∏p
j=1[a

(j)
k (x, θ),b

(j)
k (x, θ)] be the cell containing x

at level k. If the criterion L? is identically zero for all cuts in A?∞(x, θ)
then m is constant on A?∞(x, θ) according to Lemma 1. This implies that
∆(m,A?∞(x, θ)) = 0. Thus, in that case, since m is uniformly continuous,

lim
k→∞

∆(m,A?k(x, θ)) = ∆(m,A?∞(x, θ)) = 0.
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Let us now show by contradiction that L? is almost surely necessarily null
on the cuts of A?∞(x, θ). In the rest of the proof, for all k ∈ N?, we let L?k
be the criterion L? used in the cell A?k(x, θ), that is

L?k(d) = V[Y |X ∈ A?k(x, θ)]
− P[X(j) < z |X ∈ A?k(x, θ)] V[Y |X(j) < z,X ∈ A?k(x, θ)]
− P[X(j) ≥ z |X ∈ A?k(x, θ)] V[Y |X(j) ≥ z,X ∈ A?k(x, θ)],

for all d = (j, z) ∈ CA?k(x,θ). If L?∞ is not identically zero, then there exists a
cut d∞(x, θ) in CA?∞(x,θ) such that L?(d∞(x, θ)) = c > 0. Fix ξ > 0. By the
uniform continuity of m, there exists δ1 > 0 such that

sup
‖w−w′‖∞≤δ1

|m(w)−m(w′)| ≤ ξ .

Since A?k(x, θ) ↓ A?∞(x, θ), there exists k0 such that, for all k ≥ k0,

max (‖ak(x, θ)− a∞(x, θ)‖∞, ‖bk(x, θ)− b∞(x, θ)‖∞) ≤ δ1 .(1)

Observe that, for all k ∈ N?, V[Y |X ∈ A?k+1(x, θ)] < V[Y |X ∈ A?k(x, θ)].
Thus,

(2) L?k := sup
d∈CAk(x,θ)
d(1)∈Mtry

L?k(d) ≤ ξ .

From inequality (1), we deduce that∣∣E[m(X)|X ∈ A?k(x, θ)]− E[m(X)|X ∈ A?∞(x, θ)]
∣∣ ≤ ξ.

Consequently, there exists a constant C > 0 such that, for all k ≥ k0 and
all cuts d ∈ CA?∞(x,θ),

|L?k(d)− L?∞(d)| ≤ Cξ2.(3)

Let k1 ≥ k0 be the first level after k0 at which the direction d
(1)
∞ (x, θ) is

amongst the mtry selected coordinates. Almost surely, k1 <∞. Thus, by the
definition of d∞(x, θ) and inequality (3),

c− Cξ2 ≤ L?∞(d∞(x, θ))− Cξ2 ≤ L?k(d∞(x, θ)),

which implies that c− Cξ2 ≤ L?k. Hence, using inequality (2), we have

c− Cξ2 ≤ L?k ≤ ξ,

which is absurd, since c > 0 is fixed and ξ is arbitrarily small. Thus, by
Lemma 1, m is constant on A?∞(x, θ). This implies that ∆(m,A?k(x,Θ))→ 0
as k →∞.
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2. Proof of Lemma 2. We start by proving Lemma 2 in the case k = 1,
i.e., when the first cut is performed at the root of a tree. Since in that case
Ln,1(x, ·) does not depend on x, we simply write Ln,1(·) instead of Ln,1(x, ·).

Proof of Lemma 2 in the case k = 1. Fix α, ρ > 0. Observe that if
two cuts d1, d2 satisfy ‖d1− d2‖∞ < 1, then the cut directions are the same,

i.e., d
(1)
1 = d

(1)
2 . Using this fact and symmetry arguments, we just need to

prove Lemma 2 when the cuts are performed along the first dimension. In
other words, we only need to prove that

lim
n→∞

P

[
sup

|x1−x2|≤δ
|Ln,1(1, x1)− Ln,1(1, x2)| > α

]
≤ ρ/p.(4)

Preliminary results. Letting Zi = max1≤i≤n |εi|, simple calculations
show that

P [Zi ≥ t] = 1− exp

(
n ln

(
1− 2P [ε1 ≥ t]

))
.

The last probability can be upper bounded by using the following standard
inequality on Gaussian tail:

P [ε1 ≥ t] ≤
σ

t
√

2π
exp

(
− t2

2σ2

)
.

Consequently, there exists a constant Cρ > 0 and N1 ∈ N? such that, with
probability 1− ρ, for all n > N1,

max
1≤i≤n

|εi| ≤ Cρ
√

log n .(5)

Besides, by simple calculations on Gaussian tail, for all n ∈ N?, we have

P

[∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣ ≥ α
]
≤ σ

α
√
n

exp

(
−α

2n

2σ2

)
.

Since there are, at most, n2 sets of the form {i : Xi ∈ [an, bn]} for 0 ≤ an <
bn ≤ 1, we deduce from the last inequality and the union bound, that there
exists N2 ∈ N? such that, with probability 1 − ρ, for all n > N2 and all
0 ≤ an < bn ≤ 1 satisfying Nn([an, bn]× [0, 1]p−1) >

√
n,∣∣∣ 1

Nn([an, bn]× [0, 1]p−1)

∑
i:Xi∈[an,bn]
×[0,1]p−1

εi

∣∣∣ ≤ α.(6)
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By the Glivenko-Cantelli theorem, there exists N3 ∈ N? such that, with
probability 1− ρ, for all 0 ≤ a < b ≤ 1, and all n > N3,

(b− a− δ2)n ≤ Nn([a, b]× [0, 1]p−1) ≤ (b− a+ δ2)n.(7)

Throughout the proof, we assume to be on the event where assertions (5)-
(7) hold, which occurs with probability 1 − 3ρ, for all n > N , where N =
max(N1, N2, N3).

Take x1, x2 ∈ [0, 1] such that |x1 − x2| ≤ δ and assume, without loss of
generality, that x1 < x2. In the remainder of the proof, we will need the
following quantities (see Figure 1 for an illustration in dimension two):

AL,
√
δ = [0,

√
δ]× [0, 1]p−1

AR,
√
δ = [1−

√
δ, 1]× [0, 1]p−1

AC,
√
δ = [

√
δ, 1−

√
δ]× [0, 1]p−1.

Similarly, we define 
AL,1 = [0, x1]× [0, 1]p−1

AR,1 = [x1, 1]× [0, 1]p−1

AL,2 = [0, x2]× [0, 1]p−1

AR,2 = [x2, 1]× [0, 1]p−1

AC = [x1, x2]× [0, 1]p−1.

Recall that, for any cell A, ȲA is the mean of the Yi’s falling in A and
Nn(A) is the number of data points in A. To prove (4), five cases are to be
considered, depending upon the positions of x1 and x2. We repeatedly use
the decomposition

Ln,1(1, x1)− Ln,1(1, x2) = J1 + J2 + J3,

where

J1 =
1

n

∑
i:X

(1)
i <x1

(Yi − ȲAL,1)2 − 1

n

∑
i:X

(1)
i <x1

(Yi − ȲAL,2)2,

J2 =
1

n

∑
i:X

(1)
i ∈[x1,x2]

(Yi − ȲAR,1)2 − 1

n

∑
i:X

(1)
i ∈[x1,x2]

(Yi − ȲAL,2)2,

and J3 =
1

n

∑
i:X

(1)
i ≥x2

(Yi − ȲAR,1)2 − 1

n

∑
i:X

(1)
i ≥x2

(Yi − ȲAR,2)2.
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6 E. SCORNET, G. BIAU, J.-P. VERT

Figure 1. Illustration of the notation in dimension p = 2.

First case. Assume that x1, x2 ∈ AC,√δ. Since Nn(AL,2) > Nn(AL,
√
δ) >√

n for all n > N , we have, according to inequalities (6),

|ȲAL,2 | ≤ ‖m‖∞ + α and |ȲAR,1 | ≤ ‖m‖∞ + α.

Therefore

|J2| = 2
∣∣ȲAL,2 − ȲAR,1∣∣× 1

n

∣∣∣∣ ∑
i:X

(1)
i ∈[x1,x2]

(
Yi −

ȲAL,2 + ȲAR,1
2

)∣∣∣∣
≤ 4(‖m‖∞ + α)

(
(‖m‖∞ + α)Nn(AC)

n
+

1

n

∣∣∣∣ ∑
i:X

(1)
i ∈[x1,x2]

m(Xi)

∣∣∣∣
+

1

n

∣∣∣∣ ∑
i:X

(1)
i ∈[x1,x2]

εi

∣∣∣∣
)
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≤ 4(‖m‖∞ + α)

(
(δ + δ2)(‖m‖∞ + α) + ‖m‖∞(δ + δ2)

+
1

n

∣∣∣∣ ∑
i:X

(1)
i ∈[x1,x2]

εi

∣∣∣∣
)
.

If Nn(AC) ≥
√
n, we obtain

1

n

∣∣∣∣ ∑
i:X

(1)
i ∈[x1,x2]

εi

∣∣∣∣ ≤ 1

Nn(AC)

∣∣∣∣ ∑
i:X

(1)
i ∈[x1,x2]

εi

∣∣∣∣ ≤ α (
according to (6)

)
or, if Nn(AC) <

√
n, we have

1

n

∣∣∣∣ ∑
i:X

(1)
i ∈[x1,x2]

εi

∣∣∣∣ ≤ Cρ
√

log n√
n

(
according to (5)

)
.

Thus, for all n large enough,

|J2| ≤ 4(‖m‖∞ + α)

(
(δ + δ2)(2‖m‖∞ + α) + α

)
.(8)

With respect to J1, observe that

|ȲAL,1 − ȲAL,2 | =

∣∣∣∣∣ 1

Nn(AL,1)

∑
i:X

(1)
i <x1

Yi −
1

Nn(AL,2)

∑
i:X

(1)
i <x2

Yi

∣∣∣∣∣
≤

∣∣∣∣∣ 1

Nn(AL,1)

∑
i:X

(1)
i <x1

Yi −
1

Nn(AL,2)

∑
i:X

(1)
i <x1

Yi

∣∣∣∣∣
+

∣∣∣∣∣ 1

Nn(AL,2)

∑
i:X

(1)
i ∈[x1,x2]

Yi

∣∣∣∣∣
≤

∣∣∣∣∣1− Nn(AL,1)

Nn(AL,2)

∣∣∣∣∣× 1

Nn(AL,1)
×

∣∣∣∣∣ ∑
i:X

(1)
i <x1

Yi

∣∣∣∣∣
+

1

Nn(AL,2)

∣∣∣∣∣ ∑
i:X

(1)
i ∈[x1,x2]

Yi

∣∣∣∣∣.
Since Nn(AL,2)−Nn(AL,1) ≤ n(δ + δ2), we obtain

1−
Nn(AL,1)

Nn(AL,2)
≤ n(δ + δ2)

Nn(AL,2)
≤ δ + δ2

√
δ − δ2

≤ 4
√
δ,
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8 E. SCORNET, G. BIAU, J.-P. VERT

for all δ small enough, which implies that

|ȲAL,1 − ȲAL,2 | ≤
4
√
δ

Nn(AL,1)

∣∣∣∣∣ ∑
i:X

(1)
i <x1

Yi

∣∣∣∣∣
+
Nn(AL,1)

Nn(AL,2)
× 1

Nn(AL,1)

∣∣∣∣∣ ∑
i:X

(1)
i ∈[x1,x2]

Yi

∣∣∣∣∣
≤ 4
√
δ(‖m‖∞ + α) +

Nn(AL,1)

Nn(AL,2)
(‖m‖∞δ + α)

≤ 5(‖m‖∞
√
δ + α).

Thus,

|J1| =

∣∣∣∣∣ 1n ∑
i:X

(1)
i <x1

(Yi − ȲAL,1)2 − 1

n

∑
i:X

(1)
i <x1

(Yi − ȲAL,2)2

∣∣∣∣∣
=

∣∣∣∣∣(ȲAL,2 − ȲAL,1)× 2

n

∑
i:X

(1)
i <x1

(
Yi −

ȲAL,1 + ȲAL,2
2

)∣∣∣∣∣
≤ |ȲAL,2 − ȲAL,1 |

2

≤ 25(‖m‖∞
√
δ + α)2.(9)

The term J3 can be bounded with the same arguments.
Finally, by (8) and (9), for all n > N , and all δ small enough, we conclude

that

|Ln(1, x1)− Ln(1, x2)| ≤ 4(‖m‖∞ + α)

(
(δ + δ2)(2‖m‖∞ + α) + α

)
+ 25(‖m‖∞

√
δ + α)2

≤ α.

Second case. Assume that x1, x2 ∈ AL,√δ. With the same arguments as
above, one proves that

|J1| ≤ max
(

4(
√
δ + δ2)(‖m‖∞ + α)2, α

)
,

|J2| ≤ max(4(‖m‖∞ + α)(2δ‖m‖∞ + 2α), α),

|J3| ≤ 25(‖m‖∞
√
δ + α)2.

imsart-aos ver. 2014/10/16 file: supplementary_file.tex date: February 6, 2015



TECHNICAL RESULTS 9

Consequently, for all n large enough,

|Ln(1, x1)− Ln(1, x2)| = J1 + J2 + J3 ≤ 3α.

The other cases {x1, x2 ∈ AR,√δ}, {x1, x2 ∈ AL,√δ×AC,√δ}, and {x1, x2 ∈
AC,
√
δ ×AR,√δ} can be treated in the same way. Details are omitted.

Proof of Lemma 2. We proceed similarly as in the proof of the case
k = 1. Here, we establish the result for k = 2 and p = 2 only. Extensions
are easy and left to the reader.

Preliminary results. Fix ρ > 0. At first, it should be noted that there
exists N1 ∈ N? such that, with probability 1 − ρ, for all n > N0 and all

An = [a
(1)
n , b

(1)
n ]× [a

(2)
n , b

(2)
n ] ⊂ [0, 1]2 satisfying Nn(An) >

√
n, we have∣∣∣ 1

Nn(An)

∑
i:Xi∈An

εi

∣∣∣ ≤ α,(10)

and

1

Nn(An)

∑
i:Xi∈An

ε2
i ≤ σ̃2,(11)

where σ̃2 is a positive constant, depending only on ρ. Inequality (11) is a
straightforward consequence of the following inequality (see, e.g., Laurent
and Massart, 2000), which is valid for all n ∈ N?:

P
[
χ2(n) ≥ 5n

]
≤ exp(−n).

Throughout the proof, we assume to be on the event where assertions (5),
(7), (10)-(11) hold, which occurs with probability 1 − 3ρ, for all n large
enough. We also assume that d1 = (1, x1) and d2 = (2, x2) (see Figure 2).
The other cases can be treated similarly.

Main argument. Let d′1 = (1, x′1) and d′2 = (2, x′2) be such that |x1−x′1| <
δ and |x2 − x′2| < δ. Then the CART-split criterion Ln,2 writes

Ln(d1, d2) =
1

Nn(AR,1)

∑
i

(Yi − ȲAR,1)21
X

(1)
i >x1

− 1

Nn(AR,1)

∑
i:X

(2)
i >x2

(Yi − ȲAH,2)21
X

(1)
i >x1

− 1

Nn(AR,1)

∑
i:X

(2)
i ≤x2

(Yi − ȲAB,2)21
X

(1)
i >x1

.
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Figure 2. An example of cells in dimension p = 2.

Clearly,

Ln(d1, d2)− Ln(d′1, d
′
2) = Ln(d1, d2)− Ln(d′1, d2) + Ln(d′1, d2)− Ln(d′1, d

′
2).

We have (Figure 2):

Ln(d1, d2)− Ln(d′1, d2) =

[
1

Nn(AR,1)

∑
i:X

(2)
i >x2

(Yi − ȲAH,2)21
X

(1)
i >x1

− 1

Nn(A′R,1)

∑
i:X

(2)
i >x2

(Yi − ȲA′H,2)21
X

(1)
i >x′1

]

+

[
1

Nn(AR,1)

∑
i:X

(2)
i ≤x2

(Yi − ȲAB,2)21
X

(1)
i >x1

− 1

Nn(A′R,1)

∑
i:X

(2)
i ≤x2

(Yi − ȲA′B,2)21
X

(1)
i >x′1

]
def
= A1 +B1.
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The term A1 can be rewritten as A1 = A1,1 +A1,2 +A1,3, where

A1,1 =
1

Nn(AR,1)

∑
i:X

(2)
i >x2

(Yi − ȲAH,2)21
X

(1)
i >x′1

− 1

Nn(AR,1)

∑
i:X

(2)
i >x2

(Yi − ȲA′H,2)21
X

(1)
i >x′1

,

A1,2 =
1

Nn(AR,1)

∑
i:X

(2)
i >x2

(Yi − ȲA′H,2)21
X

(1)
i >x′1

− 1

Nn(A′R,1)

∑
i:X

(2)
i >x2

(Yi − ȲA′H,2)21
X

(1)
i >x′1

,

and A1,3 =
1

Nn(AR,1)

∑
i:X

(2)
i >x2

(Yi − ȲAH,2)21
X

(1)
i ∈[x1,x′1]

.

Easy calculations show that

A1,1 =
Nn(A′H,2)

Nn(AR,1)
(ȲA′H,2 − ȲAH,2)2,

which implies, with the same arguments as in the proof for k = 1, that
A1,1 → 0 as n→∞. With respect to A1,2 and A1,3, we write

max(A1,2, A1,3) ≤ max(Cρ
log n√
n
, 2(σ̃2 + 4‖m‖2∞ + α2)

√
δ

ξ
).

Thus, A1,2 → 0 and A1,3 → 0 as n → ∞. Collecting bounds, we conclude
that A1 → 0. One proves with similar arguments that B1 → 0 and, conse-
quently, that Ln(d′1, d2)− Ln(d′1, d

′
2)→ 0.

3. Proof of Lemma 3. We prove by induction that, for all k, with
probability 1− ρ, for all ξ > 0 and all n large enough,

d∞(d̂k,n(X,Θ),A?k(X,Θ)) ≤ ξ.

Call this property Hk. Fix k > 1 and assume that Hk−1 is true. For all
dk−1 ∈ Ak−1(X), let

d̂k,n(dk−1) ∈ arg min
dk

Ln(X,dk−1, dk),
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12 E. SCORNET, G. BIAU, J.-P. VERT

and

d?k(dk−1) ∈ arg min
dk

L?(X,dk−1, dk),

where the minimum is evaluated, as usual, over {dk ∈ CA(X,dk−1) : d
(1)
k ∈

Mtry}. Fix ρ > 0. In the rest of the proof, we assume Θ to be fixed and we
omit the dependence on Θ.

Preliminary result. We momentarily consider x ∈ [0, 1]d. Note that, for
all dk−1,

Ln(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d̂k,n(dk−1))

≤ Ln(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d
?
k(dk−1))

(by definition of d?k(dk−1))

≤ Ln(x,dk−1, d
?
k(dk−1))− L?(x,dk−1, d

?
k(dk−1))

(by definition of d̂k,n(dk−1)).

Thus,∣∣∣Ln(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d
?
k(dk−1))

∣∣∣
≤ max

( ∣∣∣Ln(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d̂k,n(dk−1))
∣∣∣ ,∣∣∣Ln(x,dk−1, d

?
k(dk−1))− L?(x,dk−1, d

?
k(dk−1))

∣∣∣)
≤ sup

dk

|Ln(x,dk−1, dk)− L?(x,dk−1, dk)| .

Moreover,

|L?(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d
?
k(dk−1))|

≤ |L?(x,dk−1, d̂k,n(dk−1))− Ln(x,dk−1, d̂k,n(dk−1))|
+ |Ln(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d

?
k(dk−1))|

≤ 2 sup
dk

|Ln(x,dk−1, dk)− L?(x,dk−1, dk)|

= 2 sup
dk

|Ln(x,dk)− L?(x,dk)|.(12)

Let Āξk(x) = {dk : dk−1 ∈ Aξk−1(x)}. So, taking the supremum on both
sides of (12) leads to

sup
dk−1∈Aξk−1(x)

|L?(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d
?
k(dk−1))|

≤ 2 sup
dk∈Āξk(x)

|Ln(x,dk)− L?(x,dk)|.(13)
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By Lemma 3, for all ξ′ > 0, one can find δ > 0 such that, for all n large
enough,

P

[
sup

x∈[0,1]d
sup

‖dk−d′k‖∞≤δ
dk,d

′
k∈Ā

ξ
k(x)

|Ln(x,dk)− Ln(x,d′k)| ≤ ξ′
]
≥ 1− ρ.(14)

Now, let G be a regular grid of [0, 1]d whose grid step equal to ξ/2. Note

that, for all x ∈ G, Āξk(x) is compact. Thus, for all x ∈ G, there exists

a finite subset Cδ,x = {cj,x : 1 ≤ j ≤ p} such that, for all dk ∈ Āξk(x),
d∞(dk, Cδ,x) ≤ δ. Set ξ′ > 0. Observe that, since the subset ∪x∈GCδ,x is
finite, one has, for all n large enough,

sup
x∈G

sup
cj,x∈Cδ,x

|Ln(x, cj,x)− L?(x, cj,x)| ≤ ξ′.(15)

Hence, for all n large enough,

sup
x∈G

sup
dk∈Āξk(x)

|Ln(x,dk)− L?(x,dk)| ≤ sup
x∈G

sup
dk∈Āξk(x)

(
|Ln(x,dk)− Ln(x, cj,x)|

+ |Ln(x, cj,x)− L?(x, cj,x)|+ |L?(x, cj,x)− L?(x,dk)|
)
,

where cj,x satisfies ‖cj,x − dk‖∞ ≤ δ. Using inequalities (14) and (15), with
probability 1− ρ, we obtain, for all n large enough,

sup
x∈G

sup
dk∈Āξk(x)

|Ln(x,dk)− L?(x,dk)| ≤ 3ξ′.

Finally, by inequality (13), with probability 1− ρ, for all n large enough,

sup
x∈G

sup
dk−1∈Aξk−1(x)

|L?(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d
?
k(dk−1))| ≤ 6ξ′.

(16)

Hereafter, to simplify, we assume that, for any given (k − 1)-tuple of
theoretical cuts, there is only one theoretical cut at level k, and leave the
general case as an easy adaptation. Thus, we can define unambiguously

d?k(dk−1) = arg min
dk

L?(dk−1, dk).
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14 E. SCORNET, G. BIAU, J.-P. VERT

Fix ξ′′ > 0. From inequality (16), by evoking the equicontinuity of Ln and

the compactness of U = {(x,dk−1) : x ∈ G,dk−1 ∈ Aξk−1(x)}, we deduce
that, with probability 1− ρ, for all n large enough,

sup
(x,dk−1)∈U

d∞

(
d̂k,n(dk−1), d?k(dk−1)

)
≤ ξ′′.(17)

Besides,

P
[
(X, d̂k−1,n(X)) ∈ U

]
= E

[
P
[
(X, d̂k−1,n(X)) ∈ U|Dn

]]
≥ 1− 2k−1ξ.

(18)

In the rest of the proof, we consider ξ ≤ ρ/2k−1, which, by inequalities (17)
and (18), leads to

P
[

sup
(x,dk−1)∈U

d∞

(
d̂k,n(dk−1), d?k(dk−1)

)
≤ ξ′′, (X, d̂k−1,n(X)) ∈ U

]
≥ 1− 2ρ.

This implies, with probability 1− 2ρ, for all n large enough,

d∞

(
d̂k,n(d̂k−1,n), d?k(d̂k−1,n)

)
≤ ξ′′.(19)

Main argument. Now, using triangle inequality,

d∞

(
d̂k,n(d̂k−1,n),A?k

)
≤ d∞

(
d̂k,n(d̂k−1,n), d?k(d̂k−1,n)

)
+ d∞

(
d?k(d̂k−1,n),A?k

)
.(20)

Thus, we just have to show that d∞(d?k(d̂k−1,n),A?k) → 0 in probability
as n → ∞, and the proof will be complete. To avoid confusion, we let
{d?,ik−1 : i ∈ I} be the set of best first (k − 1)-th theoretical cuts (which

can be either countable or not). With this notation, d?k(d
?,i
k−1) is the k-th

theoretical cuts given that the (k−1) previous ones are d?,ik−1. For simplicity,
let

Li,?(x, dk) = L?k(x,d
?,i
k−1, dk) and L̂?(x, dk) = L?k(x, d̂k−1,n, dk).

As before,

d?k(d
?,i
k−1) ∈ arg min

dk

Li,?(x, dk) and d?k(d̂k−1,n) ∈ arg min
dk

L̂?(x, dk).

Clearly, the result will be proved if we establish that,

inf
i∈I

d∞(d?k(d̂k−1,n), d?k(d
?,i
k−1))→ 0, in probability, as n→∞.
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Note that, for all x ∈ G, Āξk(x) is compact. Thus, for all x ∈ G, there exists
a finite subset C′δ,x = {c′j,x : 1 ≤ j ≤ p} such that, for all dk, d∞(dk, C′δ,x) ≤
δ. Hence, with probability 1− ρ, for all n large enough,

|L̂?(x, dk)− Li,?(x, dk)| ≤ |L̂?(x, dk)− L̂?(x, c′j,x)|
+ |L̂?(x, c′j,x)− Li,?(x, c′j,x)|
+ |Li,?(x, c′j,x)− Li,?(x, dk)|

≤ 2ξ′ + |L̂?(x, c′j,x)− Li,?(x, c′j,x)|
(by the continuity of L?k).

Therefore, as in inequality (13), with probability 1 − ρ, for all i and all n
large enough,

|Li,?(x, d?k(d̂k−1,n))−Li,?(x, d?k(d
?,i
k−1))| ≤ 2 sup

dk

|L̂?(x, dk)− Li,?(x, dk)|

≤ 4ξ′ + 2 max
j
|L̂?(x, c′j,x)− Li,?(x, c′j,x)|.

Taking the infimum over all i, we obtain

inf
i
|Li,?(x, d?k(d̂k−1,n))−Li,?(x, d?k(d

?,i
k−1))| ≤ 4ξ′

+ 2 inf
i

max
j
|L̂?(x, c′j,x)− Li,?(x, c′j,x)|.(21)

Introduce ω, the modulus of continuity of L?k:

ω(x, δ) = sup
‖d−d′‖∞≤δ

|L?k(x,d)− L?k(x,d′)|.

Observe that, since L?k(x, ·) is uniformly continuous, ω(δ) → 0 as δ → 0.
Hence, for all n large enough,

inf
i

max
j
|L̂?(x, c′j,x)− Li,?(x, c′j,x)|

= inf
i

max
j
|L?k(x, d̂k−1,n, c

′
j,x)− L?k(x,d

?,i
k−1, c

′
j,x)|

≤ inf
i
ω(x, ‖d̂k−1,n − d?,ik−1‖∞)

≤ ξ′,(22)

since, by assumptionHk−1, infi ‖d̂k−1,n−d?,ik−1‖∞ → 0. Therefore, combining
(21) and (22), with probability 1− ρ, for all n large enough,

inf
i
|Li,?(X, d?k(d̂k−1,n))− Li,?(X, d?k(d

?,i
k−1))| ≤ 6ξ.
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Finally, by Technical Lemma 2 below, with probability 1− ρ, for all n large
enough,

inf
i
d∞(d?k(d̂k−1,n), d?k(d

?,i
k−1)) ≤ ξ′′.(23)

Plugging inequality (23) and (19) into (20), we conclude that, with proba-
bility 1− 3ρ, for all n large enough,

d∞

(
d̂k,n(d̂k−1,n),A?k

)
≤ 2ξ′′,

which proves Hk. Property H1 can be proved in the same way.

Technical Lemma 2. For all δ, ρ > 0, there exists ξ > 0 such that, if,
with probability 1− ρ,

inf
i
|Li,?(X, d?k(d̂k−1,n))− Li,?(X, d?k(d

?,i
k−1))| ≤ ξ,

then, with probability 1− ρ,

inf
i
d∞(d?k(d̂k−1,n), d?k(d

?,i
k−1)) ≤ δ.(24)

Proof of Technical Lemma 2. Fix ρ > 0. Note that, for all δ > 0,
there exists ξ > 0 such that,

inf
x∈[0,1]d

inf
i

inf
y:d∞(y,d?k(d?,ik−1))≥δ

|L?k(x,d
?,i
k−1, d

?
k(d

?,i
k−1))− L?k(x,d

?,i
k−1, y)| ≥ ξ.

To see this, assume that one can find δ > 0 such that, for all ξ > 0, there
exist iξ, yξ,xξ satisfying

|L?k(xξ,d
?,iξ
k−1, d

?
k(d

?,iξ
k−1))− L?k(xξ,d

?,iξ
k−1, yξ)| ≤ ξ,

with d∞(yξ, d
?
k(d

?,iξ
k−1)) ≥ δ. Recall that {d?,ik−1 : i ∈ N}, {d?k(d

?,i
k−1) : i ∈ N}

are compact. Then, letting ξp = 1/p, we can extract three sequences d
?,ip
k−1 →

dk−1, d?k(d
?,ip
k−1)→ dk and yξip → y as p→∞ such that

L?k(dk−1, dk) = L?k(dk−1, y),(25)

and d∞(y, dk) ≥ δ. Since we assume that given the (k−1)-th first cuts dk−1,
there is only one best cut dk, equation (25) implies that y = dk, which is
absurd.

imsart-aos ver. 2014/10/16 file: supplementary_file.tex date: February 6, 2015



TECHNICAL RESULTS 17

Now, to conclude the proof, fix δ > 0 and assume that, with probability
1− ρ,

inf
i
d∞(d?k(d

?,i
k−1), d?k(d̂k−1,n)) ≥ δ.

Thus, with probability 1− ρ,

inf
i
|Li,?(X, d?k(d̂k−1,n))− Li,?(X, d?k(d

?,i
k−1))|

= inf
i
|L?k(X,d

?,i
k−1, d

?
k(d̂k−1,n))− L?k(X,d

?,i
k−1, d

?
k)|

≥ inf
x∈[0,1]d

inf
i

inf
d∞(y,d?k(d?,ik−1))≥δ

|L?k(x,d
?,i
k−1, y)− L?k(x,d

?,i
k−1, d

?
k)|

≥ ξ,

which, by contraposition, concludes the proof.

Proof of Proposition 1. Fix k ∈ N? and ρ, ξ > 0. According to
Lemma 3, with probability 1 − ρ, for all n large enough, there exists a
sequence of theoretical first k cuts d?k(X,Θ) such that

d∞(d?k(X,Θ), d̂k,n(X,Θ)) ≤ ξ.(26)

This implies that, with probability 1 − ρ, for all n large enough and all
1 ≤ j ≤ k, the j-th empirical cut d̂j,n(X,Θ) is performed along the same
coordinate as d?j (X,Θ).

Now, for any cell A, since the regression function is not constant on A, one
can find a theoretical cut d?A on A such that L?(d?A) > 0. Thus, the cut d?A is
made along an informative variable, in the sense that it is performed along
one of the first S variables. Consequently, for all X,Θ and for all 1 ≤ j ≤ k,
each theoretical cut d?j (X,Θ) is made along one of the first S coordinates.
The proof is then a consequence of inequality (26).
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