# SUPPLEMENTARY MATERIALS FOR: CONSISTENCY OF RANDOM FORESTS 

By Erwan Scornet

Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France AND

By Gérard Biau
Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
AND
By Jean-Philippe Vert
MINES ParisTech, PSL-Research University, CBIO-Centre for
Computational Biology, F-77300, Fontainebleau, France
E Institut Curie, Paris, F-75248, France
\& U900, INSERM, Paris, F-75248, France

## 1. Proof of Lemma 1.

Technical Lemma 1. Assume that (H1) is satisfied and that $L^{\star} \equiv 0$ for all cuts in some given cell $A$. Then the regression function $m$ is constant on $A$.

Proof of Technical Lemma 1. We start by proving the result in dimension $p=1$. Letting $A=[a, b](0 \leq a<b \leq 1)$, and recalling that $Y=m(\mathbf{X})+\varepsilon$, one has

$$
\begin{aligned}
L^{\star}(1, z)= & \mathbb{V}[Y \mid \mathbf{X} \in A]-\mathbb{P}[a \leq \mathbf{X} \leq z \mid \mathbf{X} \in A] \mathbb{V}[Y \mid a \leq \mathbf{X} \leq z] \\
& -\mathbb{P}[z \leq \mathbf{X} \leq b \mid \mathbf{X} \in A] \mathbb{V}[Y \mid z<\mathbf{X} \leq b] \\
= & -\frac{1}{(b-a)^{2}}\left(\int_{a}^{b} m(t) \mathrm{d} t\right)^{2}+\frac{1}{(b-a)(z-a)}\left(\int_{a}^{z} m(t) \mathrm{d} t\right)^{2} \\
& +\frac{1}{(b-a)(b-z)}\left(\int_{z}^{b} m(t) \mathrm{d} t\right)^{2} .
\end{aligned}
$$

Let $C=\int_{a}^{b} m(t) \mathrm{d} t$ and $M(z)=\int_{a}^{z} m(t) \mathrm{d} t$. Simple calculations show that

$$
L^{\star}(1, z)=\frac{1}{(z-a)(b-z)}\left(M(z)-C \frac{z-a}{b-a}\right)^{2} .
$$

Therefore, since $L^{\star} \equiv 0$ on $\mathcal{C}_{A}$ by assumption, we obtain

$$
M(z)=C \frac{z-a}{b-a}
$$

This proves that $M(z)$ is linear in $z$, and that $m$ is therefore constant on $[a, b]$.

Let us now examine the general multivariate case, where $A=\Pi_{j=1}^{p}\left[a_{j}, b_{j}\right] \subset$ $[0,1]^{p}$. From the univariate analysis, we know that, for all $1 \leq j \leq p$, there exists a constant $C_{j}$ such that

$$
\int_{a_{1}}^{b_{1}} \ldots \int_{a_{p}}^{b_{p}} m(\mathbf{x}) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{j-1} \mathrm{~d} x_{j+1} \ldots \mathrm{~d} x_{p}=C_{j}
$$

Since $m$ is additive this implies that, for all $j$ and all $x_{j}$,

$$
m_{j}\left(x_{j}\right)=C_{j}-\int_{a_{1}}^{b_{1}} \ldots \int_{a_{p}}^{b_{p}} \sum_{\ell \neq j} m_{\ell}\left(x_{\ell}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{j-1} \mathrm{~d} x_{j+1} \ldots \mathrm{~d} x_{p}
$$

which does not depend upon $x_{i}$. This shows that $m$ is constant on $A$.
Proof of Lemma 1. Take $\xi>0$ and fix $\mathbf{x} \in[0,1]^{p}$. Let $\theta$ be a realization of the random variable $\Theta$. Since $m$ is uniformly continuous, the result is clear if $\operatorname{diam}\left(A_{k}^{\star}(\mathbf{x}, \theta)\right)$ tends to zero as $k$ tends to infinity. Thus, in the sequel, it is assumed that $\operatorname{diam}\left(A_{k}^{\star}(\mathbf{x}, \theta)\right)$ does not tend to zero. In that case, since $\left(A_{k}^{\star}(\mathbf{x}, \theta)\right)_{k}$ is a decreasing sequence of compact sets, there exist $\mathbf{a}_{\infty}(\mathbf{x}, \theta)=\left(\mathbf{a}_{\infty}^{(1)}(\mathbf{x}, \theta), \ldots, \mathbf{a}_{\infty}^{(p)}(\mathbf{x}, \theta)\right) \in[0,1]^{p}$ and $\mathbf{b}_{\infty}(\mathbf{x}, \theta)=$ $\left(\mathbf{b}_{\infty}^{(1)}(\mathbf{x}, \theta), \ldots, \mathbf{b}_{\infty}^{(p)}(\mathbf{x}, \theta)\right) \in[0,1]^{p}$ such that

$$
\begin{aligned}
\bigcap_{k=1}^{\infty} A_{k}^{\star}(\mathbf{x}, \theta) & =\prod_{j=1}^{p}\left[\mathbf{a}_{\infty}^{(j)}(\mathbf{x}, \theta), \mathbf{b}_{\infty}^{(j)}(\mathbf{x}, \theta)\right] \\
& \stackrel{\text { def }}{=} A_{\infty}^{\star}(\mathbf{x}, \theta)
\end{aligned}
$$

Since $\operatorname{diam}\left(A_{k}^{\star}(\mathbf{x}, \theta)\right)$ does not tend to zero, there exists an index $j^{\prime}$ such that $\mathbf{a}_{\infty}^{\left(j^{\prime}\right)}(\mathbf{x}, \theta)<\mathbf{b}_{\infty}^{\left(j^{\prime}\right)}(\mathbf{x}, \theta)$ (i.e., the cell $A_{\infty}^{\star}(\mathbf{x}, \theta)$ is not reduced to one point). Let $A_{k}^{\star}(\mathbf{x}, \theta) \stackrel{\text { def }}{=} \prod_{j=1}^{p}\left[\mathbf{a}_{k}^{(j)}(\mathbf{x}, \theta), \mathbf{b}_{k}^{(j)}(\mathbf{x}, \theta)\right]$ be the cell containing $\mathbf{x}$ at level $k$. If the criterion $L^{\star}$ is identically zero for all cuts in $A_{\infty}^{\star}(\mathbf{x}, \theta)$ then $m$ is constant on $A_{\infty}^{\star}(\mathbf{x}, \theta)$ according to Lemma 1 . This implies that $\Delta\left(m, A_{\infty}^{\star}(\mathbf{x}, \theta)\right)=0$. Thus, in that case, since $m$ is uniformly continuous,

$$
\lim _{k \rightarrow \infty} \Delta\left(m, A_{k}^{\star}(\mathbf{x}, \theta)\right)=\Delta\left(m, A_{\infty}^{\star}(\mathbf{x}, \theta)\right)=0
$$

imsart-aos ver. 2014/10/16 file: supplementary_file.tex date: February 6, 2015

Let us now show by contradiction that $L^{\star}$ is almost surely necessarily null on the cuts of $A_{\infty}^{\star}(\mathbf{x}, \theta)$. In the rest of the proof, for all $k \in \mathbb{N}^{\star}$, we let $L_{k}^{\star}$ be the criterion $L^{\star}$ used in the cell $A_{k}^{\star}(\mathbf{x}, \theta)$, that is

$$
\begin{aligned}
L_{k}^{\star}(d)= & \mathbb{V}\left[Y \mid \mathbf{X} \in A_{k}^{\star}(\mathbf{x}, \theta)\right] \\
& -\mathbb{P}\left[\mathbf{X}^{(j)}<z \mid \mathbf{X} \in A_{k}^{\star}(\mathbf{x}, \theta)\right] \mathbb{V}\left[Y \mid \mathbf{X}^{(j)}<z, \mathbf{X} \in A_{k}^{\star}(\mathbf{x}, \theta)\right] \\
& -\mathbb{P}\left[\mathbf{X}^{(j)} \geq z \mid \mathbf{X} \in A_{k}^{\star}(\mathbf{x}, \theta)\right] \mathbb{V}\left[Y \mid \mathbf{X}^{(j)} \geq z, \mathbf{X} \in A_{k}^{\star}(\mathbf{x}, \theta)\right],
\end{aligned}
$$

for all $d=(j, z) \in \mathcal{C}_{A_{k}^{\star}(\mathbf{x}, \theta)}$. If $L_{\infty}^{\star}$ is not identically zero, then there exists a cut $d_{\infty}(\mathbf{x}, \theta)$ in $\mathcal{C}_{A_{\infty}^{\star}(\mathbf{x}, \theta)}$ such that $L^{\star}\left(d_{\infty}(\mathbf{x}, \theta)\right)=c>0$. Fix $\xi>0$. By the uniform continuity of $m$, there exists $\delta_{1}>0$ such that

$$
\sup _{\left\|\mathbf{w}-\mathbf{w}^{\prime}\right\|_{\infty} \leq \delta_{1}}\left|m(\mathbf{w})-m\left(\mathbf{w}^{\prime}\right)\right| \leq \xi
$$

Since $A_{k}^{\star}(\mathbf{x}, \theta) \downarrow A_{\infty}^{\star}(\mathbf{x}, \theta)$, there exists $k_{0}$ such that, for all $k \geq k_{0}$,

$$
\begin{equation*}
\max \left(\left\|\mathbf{a}_{k}(\mathbf{x}, \theta)-\mathbf{a}_{\infty}(\mathbf{x}, \theta)\right\|_{\infty},\left\|\mathbf{b}_{k}(\mathbf{x}, \theta)-\mathbf{b}_{\infty}(\mathbf{x}, \theta)\right\|_{\infty}\right) \leq \delta_{1} . \tag{1}
\end{equation*}
$$

Observe that, for all $k \in \mathbb{N}^{\star}, \mathbb{V}\left[Y \mid \mathbf{X} \in A_{k+1}^{\star}(\mathbf{x}, \theta)\right]<\mathbb{V}\left[Y \mid \mathbf{X} \in A_{k}^{\star}(\mathbf{x}, \theta)\right]$. Thus,

$$
\begin{equation*}
\underline{L}_{k}^{\star}:=\sup _{\substack{d \in \mathcal{C}_{A_{k}(\mathbf{x}, \theta)} \\ d^{(1)} \in \mathcal{M}_{\text {try }}}} L_{k}^{\star}(d) \leq \xi . \tag{2}
\end{equation*}
$$

From inequality (1), we deduce that

$$
\left|\mathbb{E}\left[m(\mathbf{X}) \mid \mathbf{X} \in A_{k}^{\star}(\mathbf{x}, \theta)\right]-\mathbb{E}\left[m(\mathbf{X}) \mid \mathbf{X} \in A_{\infty}^{\star}(\mathbf{x}, \theta)\right]\right| \leq \xi
$$

Consequently, there exists a constant $C>0$ such that, for all $k \geq k_{0}$ and all cuts $d \in \mathcal{C}_{A_{\infty}^{\star}(\mathbf{x}, \theta)}$,

$$
\begin{equation*}
\left|L_{k}^{\star}(d)-L_{\infty}^{\star}(d)\right| \leq C \xi^{2} . \tag{3}
\end{equation*}
$$

Let $k_{1} \geq k_{0}$ be the first level after $k_{0}$ at which the direction $d_{\infty}^{(1)}(\mathbf{x}, \theta)$ is amongst the $m_{\text {try }}$ selected coordinates. Almost surely, $k_{1}<\infty$. Thus, by the definition of $d_{\infty}(\mathbf{x}, \theta)$ and inequality (3),

$$
c-C \xi^{2} \leq L_{\infty}^{\star}\left(d_{\infty}(\mathbf{x}, \theta)\right)-C \xi^{2} \leq L_{k}^{\star}\left(d_{\infty}(\mathbf{x}, \theta)\right),
$$

which implies that $c-C \xi^{2} \leq \underline{L}_{k}^{\star}$. Hence, using inequality (2), we have

$$
c-C \xi^{2} \leq \underline{L}_{k}^{\star} \leq \xi,
$$

which is absurd, since $c>0$ is fixed and $\xi$ is arbitrarily small. Thus, by Lemma $1, m$ is constant on $A_{\infty}^{\star}(\mathbf{x}, \theta)$. This implies that $\Delta\left(m, A_{k}^{\star}(\mathbf{x}, \Theta)\right) \rightarrow 0$ as $k \rightarrow \infty$.
2. Proof of Lemma 2. We start by proving Lemma 2 in the case $k=1$, i.e., when the first cut is performed at the root of a tree. Since in that case $L_{n, 1}(\mathbf{x}, \cdot)$ does not depend on $\mathbf{x}$, we simply write $L_{n, 1}(\cdot)$ instead of $L_{n, 1}(\mathbf{x}, \cdot)$.

Proof of Lemma 2 in the case $k=1$. Fix $\alpha, \rho>0$. Observe that if two cuts $d_{1}, d_{2}$ satisfy $\left\|d_{1}-d_{2}\right\|_{\infty}<1$, then the cut directions are the same, i.e., $d_{1}^{(1)}=d_{2}^{(1)}$. Using this fact and symmetry arguments, we just need to prove Lemma 2 when the cuts are performed along the first dimension. In other words, we only need to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left[\sup _{\left|x_{1}-x_{2}\right| \leq \delta}\left|L_{n, 1}\left(1, x_{1}\right)-L_{n, 1}\left(1, x_{2}\right)\right|>\alpha\right] \leq \rho / p . \tag{4}
\end{equation*}
$$

Preliminary results. Letting $Z_{i}=\max _{1 \leq i \leq n}\left|\varepsilon_{i}\right|$, simple calculations show that

$$
\mathbb{P}\left[Z_{i} \geq t\right]=1-\exp \left(n \ln \left(1-2 \mathbb{P}\left[\varepsilon_{1} \geq t\right]\right)\right)
$$

The last probability can be upper bounded by using the following standard inequality on Gaussian tail:

$$
\mathbb{P}\left[\varepsilon_{1} \geq t\right] \leq \frac{\sigma}{t \sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
$$

Consequently, there exists a constant $C_{\rho}>0$ and $N_{1} \in \mathbb{N}^{\star}$ such that, with probability $1-\rho$, for all $n>N_{1}$,

$$
\begin{equation*}
\max _{1 \leq i \leq n}\left|\varepsilon_{i}\right| \leq C_{\rho} \sqrt{\log n} \tag{5}
\end{equation*}
$$

Besides, by simple calculations on Gaussian tail, for all $n \in \mathbb{N}^{\star}$, we have

$$
\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\right| \geq \alpha\right] \leq \frac{\sigma}{\alpha \sqrt{n}} \exp \left(-\frac{\alpha^{2} n}{2 \sigma^{2}}\right) .
$$

Since there are, at most, $n^{2}$ sets of the form $\left\{i: X_{i} \in\left[a_{n}, b_{n}\right]\right\}$ for $0 \leq a_{n}<$ $b_{n} \leq 1$, we deduce from the last inequality and the union bound, that there exists $N_{2} \in \mathbb{N}^{\star}$ such that, with probability $1-\rho$, for all $n>N_{2}$ and all $0 \leq a_{n}<b_{n} \leq 1$ satisfying $N_{n}\left(\left[a_{n}, b_{n}\right] \times[0,1]^{p-1}\right)>\sqrt{n}$,

$$
\begin{equation*}
\left|\frac{1}{N_{n}\left(\left[a_{n}, b_{n}\right] \times[0,1]^{p-1}\right)} \sum_{\substack{i: X_{i} \in\left[a_{n}, b_{n}\right] \\ \times[0,1]^{p-1}}} \varepsilon_{i}\right| \leq \alpha . \tag{6}
\end{equation*}
$$

imsart-aos ver. 2014/10/16 file: supplementary_file.tex date: February 6, 2015

By the Glivenko-Cantelli theorem, there exists $N_{3} \in \mathbb{N}^{\star}$ such that, with probability $1-\rho$, for all $0 \leq a<b \leq 1$, and all $n>N_{3}$,

$$
\begin{equation*}
\left(b-a-\delta^{2}\right) n \leq N_{n}\left([a, b] \times[0,1]^{p-1}\right) \leq\left(b-a+\delta^{2}\right) n . \tag{7}
\end{equation*}
$$

Throughout the proof, we assume to be on the event where assertions (5)(7) hold, which occurs with probability $1-3 \rho$, for all $n>N$, where $N=$ $\max \left(N_{1}, N_{2}, N_{3}\right)$.

Take $x_{1}, x_{2} \in[0,1]$ such that $\left|x_{1}-x_{2}\right| \leq \delta$ and assume, without loss of generality, that $x_{1}<x_{2}$. In the remainder of the proof, we will need the following quantities (see Figure 1 for an illustration in dimension two):

$$
\left\{\begin{array}{l}
A_{L, \sqrt{\delta}}=[0, \sqrt{\delta}] \times[0,1]^{p-1} \\
A_{R, \sqrt{\delta}}=[1-\sqrt{\delta}, 1] \times[0,1]^{p-1} \\
A_{C, \sqrt{\delta}}=[\sqrt{\delta}, 1-\sqrt{\delta}] \times[0,1]^{p-1} .
\end{array}\right.
$$

Similarly, we define

$$
\left\{\begin{aligned}
A_{L, 1} & =\left[0, x_{1}\right] \times[0,1]^{p-1} \\
A_{R, 1} & =\left[x_{1}, 1\right] \times[0,1]^{p-1} \\
A_{L, 2} & =\left[0, x_{2}\right] \times[0,1]^{p-1} \\
A_{R, 2} & =\left[x_{2}, 1\right] \times[0,1]^{p-1} \\
A_{C} & =\left[x_{1}, x_{2}\right] \times[0,1]^{p-1}
\end{aligned}\right.
$$

Recall that, for any cell $A, \bar{Y}_{A}$ is the mean of the $Y_{i}$ 's falling in $A$ and $N_{n}(A)$ is the number of data points in $A$. To prove (4), five cases are to be considered, depending upon the positions of $x_{1}$ and $x_{2}$. We repeatedly use the decomposition

$$
L_{n, 1}\left(1, x_{1}\right)-L_{n, 1}\left(1, x_{2}\right)=J_{1}+J_{2}+J_{3}
$$

where

$$
\begin{aligned}
J_{1} & =\frac{1}{n} \sum_{i: \mathbf{X}_{i}^{(1)}<x_{1}}\left(Y_{i}-\bar{Y}_{A_{L, 1}}\right)^{2}-\frac{1}{n} \sum_{i: \mathbf{X}_{i}^{(1)}<x_{1}}\left(Y_{i}-\bar{Y}_{A_{L, 2}}\right)^{2}, \\
J_{2} & =\frac{1}{n} \sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]}\left(Y_{i}-\bar{Y}_{A_{R, 1}}\right)^{2}-\frac{1}{n} \sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]}\left(Y_{i}-\bar{Y}_{A_{L, 2}}\right)^{2}, \\
\text { and } \quad J_{3} & =\frac{1}{n} \sum_{i: \mathbf{X}_{i}^{(1)} \geq x_{2}}\left(Y_{i}-\bar{Y}_{A_{R, 1}}\right)^{2}-\frac{1}{n} \sum_{i: \mathbf{X}_{i}^{(1)} \geq x_{2}}\left(Y_{i}-\bar{Y}_{A_{R, 2}}\right)^{2} .
\end{aligned}
$$



Figure 1. Illustration of the notation in dimension $p=2$.

First case. Assume that $x_{1}, x_{2} \in A_{C, \sqrt{\delta}}$. Since $N_{n}\left(A_{L, 2}\right)>N_{n}\left(A_{L, \sqrt{\delta}}\right)>$ $\sqrt{n}$ for all $n>N$, we have, according to inequalities (6),

$$
\left|\bar{Y}_{A_{L, 2}}\right| \leq\|m\|_{\infty}+\alpha \quad \text { and } \quad\left|\bar{Y}_{A_{R, 1}}\right| \leq\|m\|_{\infty}+\alpha .
$$

Therefore

$$
\begin{array}{r}
\left|J_{2}\right|=2\left|\bar{Y}_{A_{L, 2}}-\bar{Y}_{A_{R, 1}}\right| \times \frac{1}{n}\left|\sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]}\left(Y_{i}-\frac{\bar{Y}_{A_{L, 2}}+\bar{Y}_{A_{R, 1}}}{2}\right)\right| \\
\leq 4\left(\|m\|_{\infty}+\alpha\right)\left(\frac{\left(\|m\|_{\infty}+\alpha\right) N_{n}\left(A_{C}\right)}{n}+\frac{1}{n}\left|\sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]} m\left(\mathbf{X}_{i}\right)\right|\right. \\
\left.\quad+\frac{1}{n}\left|\sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]} \varepsilon_{i}\right|\right)
\end{array}
$$

$$
\begin{aligned}
& \leq 4\left(\|m\|_{\infty}+\alpha\right)\left(\left(\delta+\delta^{2}\right)\left(\|m\|_{\infty}+\alpha\right)+\|m\|_{\infty}\left(\delta+\delta^{2}\right)\right. \\
&+\frac{1}{n}\left.\sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]} \varepsilon_{i} \mid\right)
\end{aligned}
$$

If $N_{n}\left(A_{C}\right) \geq \sqrt{n}$, we obtain

$$
\frac{1}{n}\left|\sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]} \varepsilon_{i}\right| \leq \frac{1}{N_{n}\left(A_{C}\right)}\left|\sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]} \varepsilon_{i}\right| \leq \alpha \quad \text { (according to (6)) }
$$

or, if $N_{n}\left(A_{C}\right)<\sqrt{n}$, we have

$$
\frac{1}{n}\left|\sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]} \varepsilon_{i}\right| \leq \frac{C_{\rho} \sqrt{\log n}}{\sqrt{n}} \quad \text { (according to (5)). }
$$

Thus, for all $n$ large enough,

$$
\begin{equation*}
\left|J_{2}\right| \leq 4\left(\|m\|_{\infty}+\alpha\right)\left(\left(\delta+\delta^{2}\right)\left(2\|m\|_{\infty}+\alpha\right)+\alpha\right) \tag{8}
\end{equation*}
$$

With respect to $J_{1}$, observe that

$$
\begin{aligned}
\left|\bar{Y}_{A_{L, 1}}-\bar{Y}_{A_{L, 2}}\right|= & \left|\frac{1}{N_{n}\left(A_{L, 1}\right)} \sum_{i: \mathbf{X}_{i}^{(1)}<x_{1}} Y_{i}-\frac{1}{N_{n}\left(A_{L, 2}\right)} \sum_{i: \mathbf{X}_{i}^{(1)}<x_{2}} Y_{i}\right| \\
\leq & \left|\frac{1}{N_{n}\left(A_{L, 1}\right)} \sum_{i: \mathbf{X}_{i}^{(1)}<x_{1}} Y_{i}-\frac{1}{N_{n}\left(A_{L, 2}\right)} \sum_{i: \mathbf{X}_{i}^{(1)}<x_{1}} Y_{i}\right| \\
& +\left|\frac{1}{N_{n}\left(A_{L, 2}\right)} \sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]} Y_{i}\right| \\
\leq & \left|1-\frac{N_{n}\left(A_{L, 1}\right)}{N_{n}\left(A_{L, 2}\right)}\right| \times \frac{1}{N_{n}\left(A_{L, 1}\right)} \times\left|\sum_{i: \mathbf{X}_{i}^{(1)}<x_{1}} Y_{i}\right| \\
& +\frac{1}{N_{n}\left(A_{L, 2}\right)}\left|\sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]} Y_{i}\right| .
\end{aligned}
$$

Since $N_{n}\left(A_{L, 2}\right)-N_{n}\left(A_{L, 1}\right) \leq n\left(\delta+\delta^{2}\right)$, we obtain

$$
1-\frac{N_{n}\left(A_{L, 1}\right)}{N_{n}\left(A_{L, 2}\right)} \leq \frac{n\left(\delta+\delta^{2}\right)}{N_{n}\left(A_{L, 2}\right)} \leq \frac{\delta+\delta^{2}}{\sqrt{\delta}-\delta^{2}} \leq 4 \sqrt{\delta}
$$

for all $\delta$ small enough, which implies that

$$
\begin{aligned}
&\left|\bar{Y}_{A_{L, 1}}-\bar{Y}_{A_{L, 2}}\right| \leq \frac{4 \sqrt{\delta}}{N_{n}\left(A_{L, 1}\right)}\left|\sum_{i: \mathbf{X}_{i}^{(1)}<x_{1}} Y_{i}\right| \\
&+\frac{N_{n}\left(A_{L, 1}\right)}{N_{n}\left(A_{L, 2}\right)} \times \frac{1}{N_{n}\left(A_{L, 1}\right)}\left|\sum_{i: \mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{2}\right]} Y_{i}\right| \\
& \leq 4 \sqrt{\delta}\left(\|m\|_{\infty}+\alpha\right)+\frac{N_{n}\left(A_{L, 1}\right)}{N_{n}\left(A_{L, 2}\right)}\left(\|m\|_{\infty} \delta+\alpha\right) \\
& \leq 5\left(\|m\|_{\infty} \sqrt{\delta}+\alpha\right) .
\end{aligned}
$$

Thus,

$$
\begin{align*}
\left|J_{1}\right| & =\left|\frac{1}{n} \sum_{i: \mathbf{X}_{i}^{(1)}<x_{1}}\left(Y_{i}-\bar{Y}_{A_{L, 1}}\right)^{2}-\frac{1}{n} \sum_{i: \mathbf{X}_{i}^{(1)}<x_{1}}\left(Y_{i}-\bar{Y}_{A_{L, 2}}\right)^{2}\right| \\
& =\left|\left(\bar{Y}_{A_{L, 2}}-\bar{Y}_{A_{L, 1}}\right) \times \frac{2}{n} \sum_{i: \mathbf{X}_{i}^{(1)}<x_{1}}\left(Y_{i}-\frac{\bar{Y}_{A_{L, 1}}+\bar{Y}_{A_{L, 2}}}{2}\right)\right| \\
& \leq\left|\bar{Y}_{A_{L, 2}}-\bar{Y}_{A_{L, 1}}\right|^{2} \\
& \leq 25\left(\|m\|_{\infty} \sqrt{\delta}+\alpha\right)^{2} . \tag{9}
\end{align*}
$$

The term $J_{3}$ can be bounded with the same arguments.
Finally, by (8) and (9), for all $n>N$, and all $\delta$ small enough, we conclude that

$$
\begin{aligned}
\left|L_{n}\left(1, x_{1}\right)-L_{n}\left(1, x_{2}\right)\right| \leq & 4\left(\|m\|_{\infty}+\alpha\right)\left(\left(\delta+\delta^{2}\right)\left(2\|m\|_{\infty}+\alpha\right)+\alpha\right) \\
& +25\left(\|m\|_{\infty} \sqrt{\delta}+\alpha\right)^{2} \\
\leq & \alpha .
\end{aligned}
$$

Second case. Assume that $x_{1}, x_{2} \in A_{L, \sqrt{\delta}}$. With the same arguments as above, one proves that

$$
\begin{aligned}
& \left|J_{1}\right| \leq \max \left(4\left(\sqrt{\delta}+\delta^{2}\right)\left(\|m\|_{\infty}+\alpha\right)^{2}, \alpha\right), \\
& \left|J_{2}\right| \leq \max \left(4\left(\|m\|_{\infty}+\alpha\right)\left(2 \delta\|m\|_{\infty}+2 \alpha\right), \alpha\right), \\
& \left|J_{3}\right| \leq 25\left(\|m\|_{\infty} \sqrt{\delta}+\alpha\right)^{2} .
\end{aligned}
$$

Consequently, for all $n$ large enough,

$$
\left|L_{n}\left(1, x_{1}\right)-L_{n}\left(1, x_{2}\right)\right|=J_{1}+J_{2}+J_{3} \leq 3 \alpha .
$$

The other cases $\left\{x_{1}, x_{2} \in A_{R, \sqrt{\delta}}\right\},\left\{x_{1}, x_{2} \in A_{L, \sqrt{\delta}} \times A_{C, \sqrt{\delta}}\right\}$, and $\left\{x_{1}, x_{2} \in\right.$ $\left.A_{C, \sqrt{\delta}} \times A_{R, \sqrt{\delta}}\right\}$ can be treated in the same way. Details are omitted.

Proof of Lemma 2. We proceed similarly as in the proof of the case $k=1$. Here, we establish the result for $k=2$ and $p=2$ only. Extensions are easy and left to the reader.

Preliminary results. Fix $\rho>0$. At first, it should be noted that there exists $N_{1} \in \mathbb{N}^{\star}$ such that, with probability $1-\rho$, for all $n>N_{0}$ and all $A_{n}=\left[a_{n}^{(1)}, b_{n}^{(1)}\right] \times\left[a_{n}^{(2)}, b_{n}^{(2)}\right] \subset[0,1]^{2}$ satisfying $N_{n}\left(A_{n}\right)>\sqrt{n}$, we have

$$
\begin{equation*}
\left|\frac{1}{N_{n}\left(A_{n}\right)} \sum_{i: X_{i} \in A_{n}} \varepsilon_{i}\right| \leq \alpha, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{N_{n}\left(A_{n}\right)} \sum_{i: X_{i} \in A_{n}} \varepsilon_{i}^{2} \leq \tilde{\sigma}^{2}, \tag{11}
\end{equation*}
$$

where $\tilde{\sigma}^{2}$ is a positive constant, depending only on $\rho$. Inequality (11) is a straightforward consequence of the following inequality (see, e.g., Laurent and Massart, 2000), which is valid for all $n \in \mathbb{N}^{\star}$ :

$$
\mathbb{P}\left[\chi^{2}(n) \geq 5 n\right] \leq \exp (-n)
$$

Throughout the proof, we assume to be on the event where assertions (5), (7), (10)-(11) hold, which occurs with probability $1-3 \rho$, for all $n$ large enough. We also assume that $d_{1}=\left(1, x_{1}\right)$ and $d_{2}=\left(2, x_{2}\right)$ (see Figure 2). The other cases can be treated similarly.
Main argument. Let $d_{1}^{\prime}=\left(1, x_{1}^{\prime}\right)$ and $d_{2}^{\prime}=\left(2, x_{2}^{\prime}\right)$ be such that $\left|x_{1}-x_{1}^{\prime}\right|<$ $\delta$ and $\left|x_{2}-x_{2}^{\prime}\right|<\delta$. Then the CART-split criterion $L_{n, 2}$ writes

$$
\begin{aligned}
L_{n}\left(d_{1}, d_{2}\right)= & \frac{1}{N_{n}\left(A_{R, 1}\right)} \sum_{i}\left(Y_{i}-\bar{Y}_{A_{R, 1}}\right)^{2} \mathbb{1}_{\mathbf{X}_{i}^{(1)}>x_{1}} \\
& -\frac{1}{N_{n}\left(A_{R, 1}\right)} \sum_{i: \mathbf{X}_{i}^{(2)}>x_{2}}\left(Y_{i}-\bar{Y}_{A_{H, 2}}\right)^{2} \mathbb{1}_{\mathbf{x}_{i}^{(1)}>x_{1}} \\
& -\frac{1}{N_{n}\left(A_{R, 1}\right)} \sum_{i: \mathbf{X}_{i}^{(2)} \leq x_{2}}\left(Y_{i}-\bar{Y}_{A_{B, 2}}\right)^{2} \mathbb{1}_{\mathbf{x}_{i}^{(1)}>x_{1}} .
\end{aligned}
$$

imsart-aos ver. 2014/10/16 file: supplementary_file.tex date: February 6, 2015


Figure 2. An example of cells in dimension $p=2$.

Clearly,
$L_{n}\left(d_{1}, d_{2}\right)-L_{n}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)=L_{n}\left(d_{1}, d_{2}\right)-L_{n}\left(d_{1}^{\prime}, d_{2}\right)+L_{n}\left(d_{1}^{\prime}, d_{2}\right)-L_{n}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$.
We have (Figure 2):

$$
\begin{aligned}
& L_{n}\left(d_{1}, d_{2}\right)-L_{n}\left(d_{1}^{\prime}, d_{2}\right)= {\left[\frac{1}{N_{n}\left(A_{R, 1}\right)} \sum_{i: \mathbf{X}_{i}^{(2)}>x_{2}}\left(Y_{i}-\bar{Y}_{A_{H, 2}}\right)^{2} \mathbb{1}_{\mathbf{x}_{i}^{(1)}>x_{1}}\right.} \\
&\left.-\frac{1}{N_{n}\left(A_{R, 1}^{\prime}\right)} \sum_{i: \mathbf{X}_{i}^{(2)}>x_{2}}\left(Y_{i}-\bar{Y}_{A_{H, 2}^{\prime}}\right)^{2} \mathbb{1}_{\mathbf{X}_{i}^{(1)}>x_{1}^{\prime}}\right] \\
&+ {\left[\frac{1}{N_{n}\left(A_{R, 1}\right)} \sum_{i: \mathbf{X}_{i}^{(2)} \leq x_{2}}\left(Y_{i}-\bar{Y}_{A_{B, 2}}\right)^{2} \mathbb{1}_{\mathbf{X}_{i}^{(1)}>x_{1}}\right.} \\
&\left.-\frac{1}{N_{n}\left(A_{R, 1}^{\prime}\right)} \sum_{i: \mathbf{X}_{i}^{(2)} \leq x_{2}}\left(Y_{i}-\bar{Y}_{A_{B, 2}^{\prime}}\right)^{2} \mathbb{1}_{\mathbf{X}_{i}^{(1)}>x_{1}^{\prime}}\right] \\
& \stackrel{\text { def }}{=} A_{1}+B_{1} .
\end{aligned}
$$

The term $A_{1}$ can be rewritten as $A_{1}=A_{1,1}+A_{1,2}+A_{1,3}$, where

$$
\begin{aligned}
A_{1,1}= & \frac{1}{N_{n}\left(A_{R, 1}\right)} \sum_{i: \mathbf{X}_{i}^{(2)}>x_{2}}\left(Y_{i}-\bar{Y}_{A_{H, 2}}\right)^{2} \mathbb{1}_{\mathbf{X}_{i}^{(1)}>x_{1}^{\prime}} \\
& -\frac{1}{N_{n}\left(A_{R, 1}\right)} \sum_{i: \mathbf{X}_{i}^{(2)}>x_{2}}\left(Y_{i}-\bar{Y}_{A_{H, 2}^{\prime}}\right)^{2} \mathbb{1}_{\mathbf{X}_{i}^{(1)}>x_{1}^{\prime}} \\
A_{1,2}= & \frac{1}{N_{n}\left(A_{R, 1}\right)} \sum_{i: \mathbf{X}_{i}^{(2)}>x_{2}}\left(Y_{i}-\bar{Y}_{A_{H, 2}^{\prime}}\right)^{2} \mathbb{1}_{\mathbf{X}_{i}^{(1)}>x_{1}^{\prime}} \\
& -\frac{1}{N_{n}\left(A_{R, 1}^{\prime}\right)} \sum_{i: \mathbf{X}_{i}^{(2)}>x_{2}}\left(Y_{i}-\bar{Y}_{A_{H, 2}^{\prime}}\right)^{2} \mathbb{1}_{\mathbf{X}_{i}^{(1)}>x_{1}^{\prime}} \\
\text { and } \quad A_{1,3}= & \frac{1}{N_{n}\left(A_{R, 1}\right)} \sum_{i: \mathbf{X}_{i}^{(2)}>x_{2}}\left(Y_{i}-\bar{Y}_{A_{H, 2}}\right)^{2} \mathbb{1}_{\mathbf{X}_{i}^{(1)} \in\left[x_{1}, x_{1}^{\prime}\right]}
\end{aligned}
$$

Easy calculations show that

$$
A_{1,1}=\frac{N_{n}\left(A_{H, 2}^{\prime}\right)}{N_{n}\left(A_{R, 1}\right)}\left(\bar{Y}_{A_{H, 2}^{\prime}}-\bar{Y}_{A_{H, 2}}\right)^{2}
$$

which implies, with the same arguments as in the proof for $k=1$, that $A_{1,1} \rightarrow 0$ as $n \rightarrow \infty$. With respect to $A_{1,2}$ and $A_{1,3}$, we write

$$
\max \left(A_{1,2}, A_{1,3}\right) \leq \max \left(C_{\rho} \frac{\log n}{\sqrt{n}}, 2\left(\tilde{\sigma}^{2}+4\|m\|_{\infty}^{2}+\alpha^{2}\right) \frac{\sqrt{\delta}}{\xi}\right)
$$

Thus, $A_{1,2} \rightarrow 0$ and $A_{1,3} \rightarrow 0$ as $n \rightarrow \infty$. Collecting bounds, we conclude that $A_{1} \rightarrow 0$. One proves with similar arguments that $B_{1} \rightarrow 0$ and, consequently, that $L_{n}\left(d_{1}^{\prime}, d_{2}\right)-L_{n}\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \rightarrow 0$.
3. Proof of Lemma 3. We prove by induction that, for all $k$, with probability $1-\rho$, for all $\xi>0$ and all $n$ large enough,

$$
d_{\infty}\left(\hat{\mathbf{d}}_{k, n}(\mathbf{X}, \Theta), \mathcal{A}_{k}^{\star}(\mathbf{X}, \Theta)\right) \leq \xi
$$

Call this property $H_{k}$. Fix $k>1$ and assume that $H_{k-1}$ is true. For all $\mathbf{d}_{k-1} \in \mathcal{A}_{k-1}(\mathbf{X})$, let

$$
\hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right) \in \underset{d_{k}}{\arg \min } L_{n}\left(\mathbf{X}, \mathbf{d}_{k-1}, d_{k}\right)
$$

and

$$
d_{k}^{\star}\left(\mathbf{d}_{k-1}\right) \in \underset{d_{k}}{\arg \min } L^{\star}\left(\mathbf{X}, \mathbf{d}_{k-1}, d_{k}\right)
$$

where the minimum is evaluated, as usual, over $\left\{d_{k} \in \mathcal{C}_{A\left(\mathbf{X}, \mathbf{d}_{k-1}\right)}: d_{k}^{(1)} \in\right.$ $\left.\mathcal{M}_{\text {try }}\right\}$. Fix $\rho>0$. In the rest of the proof, we assume $\Theta$ to be fixed and we omit the dependence on $\Theta$.
Preliminary result. We momentarily consider $\mathbf{x} \in[0,1]^{d}$. Note that, for all $\mathbf{d}_{k-1}$,

$$
\begin{aligned}
& L_{n}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right) \\
& \quad \leq L_{n}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right) \\
& \quad\left(\text { by definition of } d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right) \\
& \quad \leq L_{n}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right) \\
& \quad\left(\text { by definition of } \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right)\right| \\
& \quad \leq \max \left(\left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)\right|\right. \\
& \left.\quad\left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right)\right|\right) \\
& \quad \leq \sup _{d_{k}}\left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}\right)\right|
\end{aligned}
$$

Moreover,

$$
\begin{align*}
& \left|L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right)\right| \\
& \quad \leq\left|L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)-L_{n}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)\right| \\
& \quad+\left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right)\right| \\
& \quad \leq 2 \sup _{d_{k}}\left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}\right)\right| \\
& \quad=2 \sup _{d_{k}}\left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k}\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k}\right)\right| . \tag{12}
\end{align*}
$$

Let $\overline{\mathcal{A}}_{k}^{\xi}(\mathbf{x})=\left\{\mathbf{d}_{k}: \mathbf{d}_{k-1} \in \mathcal{A}_{k-1}^{\xi}(\mathbf{x})\right\}$. So, taking the supremum on both sides of (12) leads to

$$
\begin{align*}
& \sup _{\mathbf{d}_{k-1} \in \mathcal{A}_{k-1}^{\xi}(\mathbf{x})}\left|L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right)\right| \\
& \leq 2 \sup _{\mathbf{d}_{k} \in \overline{\mathcal{A}}_{k}^{\xi}(\mathbf{x})}\left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k}\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k}\right)\right| . \tag{13}
\end{align*}
$$

By Lemma 3, for all $\xi^{\prime}>0$, one can find $\delta>0$ such that, for all $n$ large enough,

Now, let $\mathcal{G}$ be a regular grid of $[0,1]^{d}$ whose grid step equal to $\xi / 2$. Note that, for all $\mathrm{x} \in \mathcal{G}, \overline{\mathcal{A}}_{k}^{\xi}(\mathrm{x})$ is compact. Thus, for all $\mathrm{x} \in \mathcal{G}$, there exists a finite subset $\mathcal{C}_{\delta, \mathbf{x}}=\left\{c_{j, \mathbf{x}}: 1 \leq j \leq p\right\}$ such that, for all $\mathbf{d}_{k} \in \overline{\mathcal{A}}_{k}^{\xi}(\mathbf{x})$, $d_{\infty}\left(\mathbf{d}_{k}, \mathcal{C}_{\delta, \mathbf{x}}\right) \leq \delta$. Set $\xi^{\prime}>0$. Observe that, since the subset $\cup_{\mathbf{x} \in \mathcal{G}} \mathcal{C}_{\delta, \mathbf{x}}$ is finite, one has, for all $n$ large enough,

$$
\begin{equation*}
\sup _{\mathbf{x} \in \mathcal{G}} \sup _{c_{j, \mathbf{x}} \in \mathcal{C}_{\delta, \mathbf{x}}}\left|L_{n}\left(\mathbf{x}, c_{j, \mathbf{x}}\right)-L^{\star}\left(\mathbf{x}, c_{j, \mathbf{x}}\right)\right| \leq \xi^{\prime} \tag{15}
\end{equation*}
$$

Hence, for all $n$ large enough,

$$
\begin{aligned}
& \sup _{\mathbf{x} \in \mathcal{G}} \sup _{\mathbf{d}_{k} \in \overline{\mathcal{A}}_{k}^{\xi}(\mathbf{x})}\left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k}\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k}\right)\right| \leq \sup _{\mathbf{x} \in \mathcal{G}} \sup _{\mathbf{d}_{k} \in \overline{\mathcal{A}}_{k}^{\xi}(\mathbf{x})}\left(\left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k}\right)-L_{n}\left(\mathbf{x}, c_{j, \mathbf{x}}\right)\right|\right. \\
&\left.+\left|L_{n}\left(\mathbf{x}, c_{j, \mathbf{x}}\right)-L^{\star}\left(\mathbf{x}, c_{j, \mathbf{x}}\right)\right|+\left|L^{\star}\left(\mathbf{x}, c_{j, \mathbf{x}}\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k}\right)\right|\right)
\end{aligned}
$$

where $c_{j, \mathbf{x}}$ satisfies $\left\|c_{j, \mathbf{x}}-\mathbf{d}_{k}\right\|_{\infty} \leq \delta$. Using inequalities (14) and (15), with probability $1-\rho$, we obtain, for all $n$ large enough,

$$
\sup _{\mathbf{x} \in \mathcal{G}} \sup _{\mathbf{d}_{k} \in \overline{\mathcal{A}}_{k}^{\xi}(\mathbf{x})}\left|L_{n}\left(\mathbf{x}, \mathbf{d}_{k}\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k}\right)\right| \leq 3 \xi^{\prime}
$$

Finally, by inequality (13), with probability $1-\rho$, for all $n$ large enough,

$$
\begin{equation*}
\sup _{\mathbf{x} \in \mathcal{G}} \sup _{\mathbf{d}_{k-1} \in \mathcal{A}_{k-1}^{\xi}(\mathbf{x})}\left|L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, \hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right)\right)-L^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right)\right| \leq 6 \xi^{\prime} \tag{16}
\end{equation*}
$$

Hereafter, to simplify, we assume that, for any given $(k-1)$-tuple of theoretical cuts, there is only one theoretical cut at level $k$, and leave the general case as an easy adaptation. Thus, we can define unambiguously

$$
d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)=\underset{d_{k}}{\arg \min } L^{\star}\left(\mathbf{d}_{k-1}, d_{k}\right) .
$$

Fix $\xi^{\prime \prime}>0$. From inequality (16), by evoking the equicontinuity of $L_{n}$ and the compactness of $\mathcal{U}=\left\{\left(\mathbf{x}, \mathbf{d}_{k-1}\right): \mathbf{x} \in \mathcal{G}, \mathbf{d}_{k-1} \in \mathcal{A}_{k-1}^{\xi}(\mathbf{x})\right\}$, we deduce that, with probability $1-\rho$, for all $n$ large enough,

$$
\begin{equation*}
\sup _{\left(\mathbf{x}, \mathbf{d}_{k-1}\right) \in \mathcal{U}} d_{\infty}\left(\hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right), d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right) \leq \xi^{\prime \prime} \tag{17}
\end{equation*}
$$

Besides,

$$
\begin{equation*}
\mathbb{P}\left[\left(\mathbf{X}, \hat{\mathbf{d}}_{k-1, n}(\mathbf{X})\right) \in \mathcal{U}\right]=\mathbb{E}\left[\mathbb{P}\left[\left(\mathbf{X}, \hat{\mathbf{d}}_{k-1, n}(\mathbf{X})\right) \in \mathcal{U} \mid \mathcal{D}_{n}\right]\right] \geq 1-2^{k-1} \xi \tag{18}
\end{equation*}
$$

In the rest of the proof, we consider $\xi \leq \rho / 2^{k-1}$, which, by inequalities (17) and (18), leads to

$$
\mathbb{P}\left[\sup _{\left(\mathbf{x}, \mathbf{d}_{k-1}\right) \in \mathcal{U}} d_{\infty}\left(\hat{d}_{k, n}\left(\mathbf{d}_{k-1}\right), d_{k}^{\star}\left(\mathbf{d}_{k-1}\right)\right) \leq \xi^{\prime \prime},\left(\mathbf{X}, \hat{\mathbf{d}}_{k-1, n}(\mathbf{X})\right) \in \mathcal{U}\right] \geq 1-2 \rho .
$$

This implies, with probability $1-2 \rho$, for all $n$ large enough,

$$
\begin{equation*}
d_{\infty}\left(\hat{d}_{k, n}\left(\hat{\mathbf{d}}_{k-1, n}\right), d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right)\right) \leq \xi^{\prime \prime} . \tag{19}
\end{equation*}
$$

Main argument. Now, using triangle inequality,

$$
\begin{align*}
d_{\infty}\left(\hat{d}_{k, n}\left(\hat{\mathbf{d}}_{k-1, n}\right), \mathcal{A}_{k}^{\star}\right) \leq & d_{\infty}\left(\hat{d}_{k, n}\left(\hat{\mathbf{d}}_{k-1, n}\right), d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right)\right) \\
& +d_{\infty}\left(d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right), \mathcal{A}_{k}^{\star}\right) \tag{20}
\end{align*}
$$

Thus, we just have to show that $d_{\infty}\left(d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right), \mathcal{A}_{k}^{\star}\right) \rightarrow 0$ in probability as $n \rightarrow \infty$, and the proof will be complete. To avoid confusion, we let $\left\{\mathbf{d}_{k-1}^{\star, i}: i \in \mathcal{I}\right\}$ be the set of best first $(k-1)$-th theoretical cuts (which can be either countable or not). With this notation, $d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i}\right)$ is the $k$-th theoretical cuts given that the $(k-1)$ previous ones are $\mathbf{d}_{k-1}^{\star, i}$. For simplicity, let

$$
L^{i, \star}\left(\mathbf{x}, d_{k}\right)=L_{k}^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}^{\star, i}, d_{k}\right) \quad \text { and } \quad \hat{L}^{\star}\left(\mathbf{x}, d_{k}\right)=L_{k}^{\star}\left(\mathbf{x}, \hat{\mathbf{d}}_{k-1, n}, d_{k}\right)
$$

As before,

$$
d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i}\right) \in \underset{d_{k}}{\arg \min } L^{i, \star}\left(\mathbf{x}, d_{k}\right) \quad \text { and } \quad d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right) \in \underset{d_{k}}{\arg \min } \hat{L}^{\star}\left(\mathbf{x}, d_{k}\right)
$$

Clearly, the result will be proved if we establish that,

$$
\inf _{i \in \mathcal{I}} d_{\infty}\left(d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right), d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i}\right)\right) \rightarrow 0, \quad \text { in probability, } \quad \text { as } n \rightarrow \infty
$$

Note that, for all $\mathbf{x} \in \mathcal{G}, \overline{\mathcal{A}}_{k}^{\xi}(\mathbf{x})$ is compact. Thus, for all $\mathbf{x} \in \mathcal{G}$, there exists a finite subset $\mathcal{C}_{\delta, \mathbf{x}}^{\prime}=\left\{c_{j, \mathbf{x}}^{\prime}: 1 \leq j \leq p\right\}$ such that, for all $d_{k}, d_{\infty}\left(d_{k}, \mathcal{C}^{\prime}{ }_{\delta, \mathbf{x}}\right) \leq$ $\delta$. Hence, with probability $1-\rho$, for all $n$ large enough,

$$
\begin{aligned}
\left|\hat{L}^{\star}\left(\mathbf{x}, d_{k}\right)-L^{i, \star}\left(\mathbf{x}, d_{k}\right)\right| \leq & \left|\hat{L}^{\star}\left(\mathbf{x}, d_{k}\right)-\hat{L}^{\star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)\right| \\
& +\left|\hat{L}^{\star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)-L^{i, \star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)\right| \\
& +\left|L^{i, \star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)-L^{i, \star}\left(\mathbf{x}, d_{k}\right)\right| \\
\leq & 2 \xi^{\prime}+\left|\hat{L}^{\star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)-L^{i, \star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)\right|
\end{aligned}
$$

(by the continuity of $L_{k}^{\star}$ ).
Therefore, as in inequality (13), with probability $1-\rho$, for all $i$ and all $n$ large enough,

$$
\begin{array}{r}
\left|L^{i, \star}\left(\mathbf{x}, d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right)\right)-L^{i, \star}\left(\mathbf{x}, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i}\right)\right)\right| \leq 2 \sup _{d_{k}}\left|\hat{L}^{\star}\left(\mathbf{x}, d_{k}\right)-L^{i, \star}\left(\mathbf{x}, d_{k}\right)\right| \\
\leq 4 \xi^{\prime}+2 \max _{j}\left|\hat{L}^{\star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)-L^{i, \star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)\right| .
\end{array}
$$

Taking the infimum over all $i$, we obtain

$$
\begin{align*}
& \inf _{i}\left|L^{i, \star}\left(\mathbf{x}, d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right)\right)-L^{i, \star}\left(\mathbf{x}, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i}\right)\right)\right| \leq 4 \xi^{\prime} \\
&+2 \inf _{i} \max _{j}\left|\hat{L}^{\star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)-L^{i, \star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)\right| . \tag{21}
\end{align*}
$$

Introduce $\omega$, the modulus of continuity of $L_{k}^{\star}$ :

$$
\omega(\mathbf{x}, \delta)=\sup _{\left\|\mathbf{d}-\mathbf{d}^{\prime}\right\|_{\infty} \leq \delta}\left|L_{k}^{\star}(\mathbf{x}, \mathbf{d})-L_{k}^{\star}\left(\mathbf{x}, \mathbf{d}^{\prime}\right)\right| .
$$

Observe that, since $L_{k}^{\star}(\mathbf{x}, \cdot)$ is uniformly continuous, $\omega(\delta) \rightarrow 0$ as $\delta \rightarrow 0$. Hence, for all $n$ large enough,

$$
\begin{align*}
& \inf _{i} \max _{j}\left|\hat{L}^{\star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)-L^{i, \star}\left(\mathbf{x}, c_{j, \mathbf{x}}^{\prime}\right)\right| \\
& =\inf _{i} \max _{j}\left|L_{k}^{\star}\left(\mathbf{x}, \hat{\mathbf{d}}_{k-1, n}, c_{j, \mathbf{x}}^{\prime}\right)-L_{k}^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}^{\star, i}, c_{j, \mathbf{x}}^{\prime}\right)\right| \\
& \leq \inf _{i} \omega\left(\mathbf{x},\left\|\hat{\mathbf{d}}_{k-1, n}-\mathbf{d}_{k-1}^{\star i}\right\|_{\infty}\right) \\
& \leq \xi^{\prime} \tag{22}
\end{align*}
$$

since, by assumption $H_{k-1}, \inf _{i}\left\|\hat{\mathbf{d}}_{k-1, n}-\mathbf{d}_{k-1}^{\star, i}\right\|_{\infty} \rightarrow 0$. Therefore, combining (21) and (22), with probability $1-\rho$, for all $n$ large enough,

$$
\inf _{i}\left|L^{i, \star}\left(\mathbf{X}, d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right)\right)-L^{i, \star}\left(\mathbf{X}, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star i}\right)\right)\right| \leq 6 \xi .
$$

imsart-aos ver. 2014/10/16 file: supplementary_file.tex date: February 6, 2015

Finally, by Technical Lemma 2 below, with probability $1-\rho$, for all $n$ large enough,

$$
\begin{equation*}
\inf _{i} d_{\infty}\left(d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right), d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i}\right)\right) \leq \xi^{\prime \prime} \tag{23}
\end{equation*}
$$

Plugging inequality (23) and (19) into (20), we conclude that, with probability $1-3 \rho$, for all $n$ large enough,

$$
d_{\infty}\left(\hat{d}_{k, n}\left(\hat{\mathbf{d}}_{k-1, n}\right), \mathcal{A}_{k}^{\star}\right) \leq 2 \xi^{\prime \prime},
$$

which proves $H_{k}$. Property $H_{1}$ can be proved in the same way.
Technical Lemma 2. For all $\delta, \rho>0$, there exists $\xi>0$ such that, if, with probability $1-\rho$,

$$
\inf _{i}\left|L^{i, \star}\left(\mathbf{X}, d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right)\right)-L^{i, \star}\left(\mathbf{X}, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i}\right)\right)\right| \leq \xi,
$$

then, with probability $1-\rho$,

$$
\begin{equation*}
\inf _{i} d_{\infty}\left(d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right), d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star i}\right)\right) \leq \delta . \tag{24}
\end{equation*}
$$

Proof of Technical Lemma 2. Fix $\rho>0$. Note that, for all $\delta>0$, there exists $\xi>0$ such that,

$$
\inf _{\mathbf{x} \in[0,1]^{d}} \inf _{i} \inf _{y: d_{\infty}\left(y, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star i}\right)\right) \geq \delta}\left|L_{k}^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}^{\star, i}, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i}\right)\right)-L_{k}^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}^{\star, i}, y\right)\right| \geq \xi
$$

To see this, assume that one can find $\delta>0$ such that, for all $\xi>0$, there exist $i_{\xi}, y_{\xi}, \mathbf{x}_{\xi}$ satisfying

$$
\left|L_{k}^{\star}\left(\mathbf{x}_{\xi}, \mathbf{d}_{k-1}^{\star, i_{\xi}}, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i_{\xi}}\right)\right)-L_{k}^{\star}\left(\mathbf{x}_{\xi}, \mathbf{d}_{k-1}^{\star, i_{\xi}}, y_{\xi}\right)\right| \leq \xi
$$

with $d_{\infty}\left(y_{\xi}, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i \xi}\right)\right) \geq \delta$. Recall that $\left\{\mathbf{d}_{k-1}^{\star, i}: i \in \mathbb{N}\right\},\left\{d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i}\right): i \in \mathbb{N}\right\}$ are compact. Then, letting $\xi_{p}=1 / p$, we can extract three sequences $\mathbf{d}_{k-1}^{\star, i_{p}} \rightarrow$ $\mathbf{d}_{k-1}, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i_{p}}\right) \rightarrow d_{k}$ and $y_{\xi_{i_{p}}} \rightarrow y$ as $p \rightarrow \infty$ such that

$$
\begin{equation*}
L_{k}^{\star}\left(\mathbf{d}_{k-1}, d_{k}\right)=L_{k}^{\star}\left(\mathbf{d}_{k-1}, y\right), \tag{25}
\end{equation*}
$$

and $d_{\infty}\left(y, d_{k}\right) \geq \delta$. Since we assume that given the $(k-1)$-th first cuts $\mathbf{d}_{k-1}$, there is only one best cut $d_{k}$, equation (25) implies that $y=d_{k}$, which is absurd.

Now, to conclude the proof, fix $\delta>0$ and assume that, with probability $1-\rho$,

$$
\inf _{i} d_{\infty}\left(d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star, i}\right), d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right)\right) \geq \delta
$$

Thus, with probability $1-\rho$,

$$
\begin{aligned}
& \inf _{i}\left|L^{i, \star}\left(\mathbf{X}, d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right)\right)-L^{i, \star}\left(\mathbf{X}, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star i}\right)\right)\right| \\
& \quad=\inf _{i}\left|L_{k}^{\star}\left(\mathbf{X}, \mathbf{d}_{k-1}^{\star, i}, d_{k}^{\star}\left(\hat{\mathbf{d}}_{k-1, n}\right)\right)-L_{k}^{\star}\left(\mathbf{X}, \mathbf{d}_{k-1}^{\star, i}, d_{k}^{\star}\right)\right| \\
& \quad \geq \inf _{\mathbf{x} \in[0,1]^{d}} \inf _{i} \inf _{d_{\infty}\left(y, d_{k}^{\star}\left(\mathbf{d}_{k-1}^{\star i}\right)\right) \geq \delta}\left|L_{k}^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}^{\star, i}, y\right)-L_{k}^{\star}\left(\mathbf{x}, \mathbf{d}_{k-1}^{\star, i}, d_{k}^{\star}\right)\right| \\
& \quad \geq \xi
\end{aligned}
$$

which, by contraposition, concludes the proof.
Proof of Proposition 1. Fix $k \in \mathbb{N}^{\star}$ and $\rho, \xi>0$. According to Lemma 3, with probability $1-\rho$, for all $n$ large enough, there exists a sequence of theoretical first $k$ cuts $\mathbf{d}_{k}^{\star}(\mathbf{X}, \Theta)$ such that

$$
\begin{equation*}
d_{\infty}\left(\mathbf{d}_{k}^{\star}(\mathbf{X}, \Theta), \hat{\mathbf{d}}_{k, n}(\mathbf{X}, \Theta)\right) \leq \xi \tag{26}
\end{equation*}
$$

This implies that, with probability $1-\rho$, for all $n$ large enough and all $1 \leq j \leq k$, the $j$-th empirical cut $\hat{d}_{j, n}(\mathbf{X}, \Theta)$ is performed along the same coordinate as $d_{j}^{\star}(\mathbf{X}, \Theta)$.

Now, for any cell $A$, since the regression function is not constant on $A$, one can find a theoretical cut $d_{A}^{\star}$ on $A$ such that $L^{\star}\left(d_{A}^{\star}\right)>0$. Thus, the cut $d_{A}^{\star}$ is made along an informative variable, in the sense that it is performed along one of the first $S$ variables. Consequently, for all $\mathbf{X}, \Theta$ and for all $1 \leq j \leq k$, each theoretical cut $d_{j}^{\star}(\mathbf{X}, \Theta)$ is made along one of the first $S$ coordinates. The proof is then a consequence of inequality (26).

Acknowledgements. This work was supported by the European Research Council [SMAC-ERC-280032]. We greatly thank two referees for valuable comments and insightful suggestions.

## References.

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. The Annals of Statistics, 28:1302-1338, 2000.

E-MAIL: erwan.scornet@upmc.fr
E-MAIL: jean-philippe.vert@mines-paristech.fr

