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1. Proof of Lemma 1.

TECHNICAL LEMMA 1. Assume that (H1) is satisfied and that L* = 0

for all cuts in some given cell A. Then the regression function m is constant
on A.

ProOF OoF TECHNICAL LEMMA 1. We start by proving the result in di-
mension p = 1. Letting A = [a,b] (0 < a < b < 1), and recalling that
Y = m(X) + ¢, one has

L*(1,2) =V[Y|X €A -Pla <X <z|XecAV[Y]a <X <]
CP<X<b|XeAV[Y|z< X<

-~ (/b m“)dt)Q e U, o) 2

8 (/b m(”dtf |

Let C = ffm(t)dt and M(z) = [ m(t)dt. Simple calculations show that

L*(1,2) = (Z_a)l<b_z) <M(z) - Cz:z>2 .
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2 E. SCORNET, G. BIAU, J.-P. VERT

Therefore, since L* = 0 on C4 by assumption, we obtain

zZ—a

b—a’

M(z)=C

This proves that M(z) is linear in z, and that m is therefore constant on
[a, b].

Let us now examine the general multivariate case, where A = H?:l laj,bj] C
[0,1]P. From the univariate analysis, we know that, for all 1 < j < p, there
exists a constant C; such that

b1 bp
/ / d:(}l d$j_1dxj+1 .. .dxp = Cj .

Since m is additive this implies that, for all j and all x;,

by b,
mj(xj) = Cj — / / ng xo)day ... dejidjpq ... dap,

Pot#]

which does not depend upon x;. This shows that m is constant on A. O

Proof of Lemma 1. Take £ > 0 and fix x € [0,1]. Let 6 be a real-
ization of the random variable ©. Since m is uniformly continuous, the re-
sult is clear if diam(Aj(x,0)) tends to zero as k tends to infinity. Thus,
in the sequel, it is assumed that diam(Aj(x,#)) does not tend to zero.
In that case, since (Af(x,0))r is a decreasing sequence of compact sets,

there exist ax(x,60) = (a&)(x, 0),..., (p)(x 0)) € [0,1]" and b (x,0) =
bW (x,0),...,bP(x,0)) € [0, 1] such that

ﬂ A% (x,0) H[ V) (x,0),bY) (x,0)]

7=1
EA% (x,0).

Since diam(Aj(x,0)) does not tend to zero, there exists an index j’ such
that ago)(x 0) < by, )(x 6) (i.e., the cell A% (x,6) is not reduced to one
point). Let A%(x,6) = bila m(x 0), b( )(x )] be the cell containing x
at level k. If the crlterlon L* is 1dent1cally zero for all cuts in A% (x,6)
then m is constant on A% (x,6) according to Lemma 1. This implies that
A(m, A%, (x,0)) = 0. Thus, in that case, since m is uniformly continuous,

lim A(m, Aj(x,0)) = A(m, AL (x,0)) =

k—o0
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TECHNICAL RESULTS 3

Let us now show by contradiction that L* is almost surely necessarily null
on the cuts of A% (x,6). In the rest of the proof, for all k£ € IN*, we let L}
be the criterion L* used in the cell A% (x,6), that is

Li(d) = V[Y[X € AL (x,0)]
—P[XY) < 2| X € A5(x,0)] V[Y|XY) < 2, X € A%(x,0)]
—P[XU) > 2| X € AL(x,0)] V[Y|XY) > 2, X € Af(x,0)],

foralld = (j,2) € C At (x,0)- I L% is not identically zero, then there exists a
cut doo(x,0) in Cax_(x,) such that L*(dw(x,0)) = ¢ > 0. Fix £ > 0. By the
uniform continuity of m, there exists d; > 0 such that

sup |m(w) — m(w')] <E€.

[w—w’|[oc <61

Since A7 (x,0) | AL (x,0), there exists ko such that, for all & > ko,
(1) max([lag(x,0) — ax(x,0)llo, [Ibr(x,0) — boo(x, 0)[|oc) < 1.

Observe that, for all k € IN*, V[Y|X € A} (x,0)] < V[Y[X € Aj(x,0)].
Thus,

(2) Ly := sup Li(d) <¢.
dECAk(x,G)
d(l)eMtry
From inequality (1), we deduce that
[Elm(X)[X € A7(x,0)] — Em(X)X € 4% (x,0)]| < &

Consequently, there exists a constant C' > 0 such that, for all k& > kg and
all cuts d € Cax_(x,0)

(3) |Li(d) — L5, (d)] < C€.

Let ky > ko be the first level after kg at which the direction d') (x,0) is
amongst the m,,, selected coordinates. Almost surely, k1 < co. Thus, by the
definition of d(x,0) and inequality (3),

¢ — C& < L5 (doo(x,0)) — CE < Li(doo(x,0)),
which implies that ¢ — C¢% < L}. Hence, using inequality (2), we have
c—C& < Lj <,

which is absurd, since ¢ > 0 is fixed and £ is arbitrarily small. Thus, by
Lemma 1, m is constant on A% (x,#). This implies that A(m, A (x,0)) = 0
as k — oo.
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4 E. SCORNET, G. BIAU, J.-P. VERT

2. Proof of Lemma 2. We start by proving Lemma 2 in the case k = 1,
i.e., when the first cut is performed at the root of a tree. Since in that case
Ly 1(x,-) does not depend on x, we simply write Ly, 1(-) instead of L, 1(x, -).

PROOF OF LEMMA 2 IN THE CASE k = 1. Fix «,p > 0. Observe that if
two cuts dj, dg satisfy ||d; — da||oo < 1, then the cut directions are the same,
ie., dgl) = dQI). Using this fact and symmetry arguments, we just need to
prove Lemma 2 when the cuts are performed along the first dimension. In
other words, we only need to prove that

(4) lim P| sup |Lpi(1,21) — Lpi(1,22)] > | < p/p.

n—oo ‘x1712|§5
Preliminary results. Letting Z; = max;<i<y |€;|, simple calculations
show that

P[Z;>t=1—exp <nln(1—21P[51 Zt])).

The last probability can be upper bounded by using the following standard
inequality on Gaussian tail:

Pleg > < ——e _
&1 = _'tV@Z; XP 202 .

Consequently, there exists a constant C, > 0 and N; € IN* such that, with
probability 1 — p, for all n > Ny,

(5) max |g;| < Cp/logn.

1<i<n

Besides, by simple calculations on Gaussian tail, for all n € IN*, we have

> < g e a’n
| > a xp | ——= | .
- ~ ayn P 202

Since there are, at most, n? sets of the form {i : X; € [an, b,]} for 0 < a, <
b, <1, we deduce from the last inequality and the union bound, that there
exists No € IN* such that, with probability 1 — p, for all n > Ny and all
0 < ay, < by, < 1 satisfying Ny, ([an, bn] x [0,1]P71) > /n,

n

< o

1
(©) NPV
Nn([an, bn] X [0’ 1]p ) :X;E€[an,bn)
x[0,1]P~ 1
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TECHNICAL RESULTS 5

By the Glivenko-Cantelli theorem, there exists N3 € IN* such that, with
probability 1 — p, for all 0 < a < b <1, and all n > N3,

(7) (b—a—6*)n < Ny(la,b] x [0,1)P71) < (b —a + 6*)n.

Throughout the proof, we assume to be on the event where assertions (5)-
(7) hold, which occurs with probability 1 — 3p, for all n > N, where N =
maX(Nl, NQ, Ng).

Take x1,x9 € [0,1] such that |x; — z2| < ¢ and assume, without loss of
generality, that 1 < xo. In the remainder of the proof, we will need the
following quantities (see Figure 1 for an illustration in dimension two):

Ay s =10,V6] x [0,1)P
Aps=I1- Vo,1] x [0,1]P~1
Ac s = V8,1 = V6] x [0,1]771.

Similarly, we define

Apa =1[0,z1] x [0, )71
Ay = [r1,1] x [0, 1]
Aps =[0,29] x [0,1]P71
Aro = [z2,1] x [0,1]P71
Ac = [z1,29] x [0,1)P71

Recall that, for any cell A, Y, is the mean of the Y;’s falling in A and
Ny, (A) is the number of data points in A. To prove (4), five cases are to be
considered, depending upon the positions of x; and zs. We repeatedly use
the decomposition

Lpi(1,21) — Lpi(1,20) = J1 + Jo + J3,

where
1 \ 2 1 N/ 2
Jl:; Z (Y;_YAL,l) T (Yi_YAL,z) )
X <y XM <ay
1 _ 1 _
Jo = n Z (Vi — YAR,1)2 T h Z (Vi — YAL,2)27
i:XEl)e[Il,.TQ] i:XEl)E[I17x2]
1 \/ 2 1 \/ 2
and J3 = - Z (Yi—Yap,)" — - Z (Yi = Yag,)"™
i:XEl)Zazg i:XEDExQ
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6 E. SCORNET, G. BIAU, J.-P. VERT

Apo Apro
1 1 1
B L Ac,\/S N
ALy Lo Ap Vs
Ac!
0 S T1_ 22 1 -0 '1
Ara AR

Ficure 1. Illustration of the notation in dimension p = 2.

First case. Assume that z1,292 € A, 5. Since Nn(Ap2) > Np(A, \/g) >
v/n for all n > N, we have, according to inequalities (6),

Va,ol <lmlloe +a and  [Yag,| < [Imfle + o
Therefore

Y Y 1 Ya,,+Ya
| J2| = 2|Ya,, — Yau,| % - > (yZ _ %

i:XEl)E[xth]

s4(\m||oo+a>((”m”°°*“)N"(AC)+jl S mx)

n

i:XEl)E[xl,xg]

)

i:XEDE[ml,mg]

imsart-aos ver. 2014/10/16 file: supplementary_file.tex date: February 6, 2015



TECHNICAL RESULTS 7

< 4([lmfleo + ) ((5 +8)([mllsc + @) + [Imlloo (8 + &%)

i:XEl)E[:pl,xg]

If N, (Ac) > +/n, we obtain

;' 3 Si‘SNn(lAC)’ 3 si‘ga (according to (6))

i:Xgl)G[wl,IBQ} i:XEl)E[Il,IQ]

or, if N,,(A¢) < v/n, we have

i T

< Cpv/logn (
B n

according to (5)).

i:Xgl)E[an,zg} \/>
Thus, for all n large enough,
®) ) s4<Hmuoo+a>(<5+52><2umum+a>+a).

With respect to Ji, observe that

_ _ 1 1
Yo, , =Yy, | =|——-— Y, - ——— Y;
| L1 L*2| Ny (A1) %: ! Ny (Ar2) %: !
i:Xi <x1 ’i:Xl- <x2
Sty L YW o ¢
T | Na(ALa) 45 " Na(ALp) m ’
i:Xi <z1 Z':Xi <z1
+ ! Yy
Nn(AL,2) ) !
X, €[rr,22]
N,(AL1) 1
<|1-— : X X Y;
- Nn(AL,2) Nn(AL,l) g ‘
i:Xi <1
T IR
Ny (AL 2) ‘I

T:ZXl(-l)e[Iﬂl,fL'Q]

Since Ny (ArL2) — Np(AL1) < n(8 + 62), we obtain

1

No(Ap1) _ n(6+6%) _ §+62
— I < < 4V,
Nn(AL,2) o Nn(AL,Q) - \/g— (52 o
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8 E. SCORNET, G. BIAU, J.-P. VERT

for all § small enough, which implies that

_ _ 4\/5
Y, -Y < o Y.
Vass ~ Yool € | 2
zXZ <1
Nn(ArLa) 1
+ : X Y,
Ny (Ap2) ~ No(Apa) (1)2 i
X, €[z1,22]
Nn (A1)
§4\/5 m + « +n7 m 6"‘@
5(”ﬂ@HooV4§-%(1)
Thus,
1 _
’J1|: Z (Y = Ya,,)? o Z (Y; = Ya,,)?
i X§1>< i!XZ(-l)<,1,’1
Y % 2 Ya,, +Ya
| T 2 (Y_2>‘
i:X§1)<m1
52‘524L2 —-524LJ|2
9) < 25([[mlloc V0 + )2,

The term J3 can be bounded with the same arguments.
Finally, by (8) and (9), for all n > N, and all § small enough, we conclude
that

La(L1) — Lo(L,22)] < A(Im]loc +a><<a+62><2um||oo o) +a)

+25(|mloc V3 + @)’
<a.

Second case. Assume that z1,22 € A} 5 With the same arguments as
above, one proves that

1] < max (408 + %) (Imllos + @)%, )
[Jal < max(4(lmlloc + @) (20]m]loc +20), ),
| T < 25([|mloc Vs + ).
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TECHNICAL RESULTS 9

Consequently, for all n large enough,
|Ln(1,21) — Lp(1,22)| = J1 + J2 + J3 < 3.

The other cases {z1,22 € A \/g}, {z1,22 € A, \/SXAC \/5}, and {z1,x9 €
Aq 5 X Ap 5} can be treated in the same way. Details are omitted. O

PROOF OF LEMMA 2. We proceed similarly as in the proof of the case
k = 1. Here, we establish the result for £ = 2 and p = 2 only. Extensions
are easy and left to the reader.

Preliminary results. Fix p > 0. At first, it should be noted that there
exists N1 € IN* such that, with probability 1 — p, for all n > Ny and all
A, = [aq(ml), bg)] X [ag), bg)] C [0,1)? satisfying N, (A,) > /1, we have

1
(10) ‘ gil < a,
NTL(ATZ) l)(zZeAn z
and
1
(11) e <67,
N (An) i)ge:An Z
where 52 is a positive constant, depending only on p. Inequality (11) is a

straightforward consequence of the following inequality (see, e.g., Laurent
and Massart, 2000), which is valid for all n € IN*:

P [XQ(n) > 5n] < exp(—n).

Throughout the proof, we assume to be on the event where assertions (5),
(7), (10)-(11) hold, which occurs with probability 1 — 3p, for all n large
enough. We also assume that d; = (1,z1) and da = (2,z2) (see Figure 2).
The other cases can be treated similarly.

Main argument. Let d] = (1,2)) and d, = (2, 2},) be such that |z, —z| <
§ and |zg — ab| < 6. Then the CART-split criterion Ly, o writes

1

Ly(dy,d2) = No(AnD) > (¥i- YAR,1)2HX§1)>I1
1)
1 _
T No(Amy) > (Y- YAH,Q)Q]IX(UMI
" Bl z:X(.z)>x2 '
1
N. (A ) Z (Y; YAB 2) ]lX(1)>:L‘1
n\/AAR1 i:X(2)§x2
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10 E. SCORNET, G. BIAU, J.-P. VERT

-l AR’]- -
1 , ~

|

|

i AH,Q }],2

i

: T

|

T2

I

1

i

Apo Ap,

|

|

|

|

I
0 T ) A/R’1 1

FIGURE 2. An example of cells in dimension p = 2.

Clearly,
Ln(dludQ) - Ln( /17dl2) = Ln(dhd?) - Ln(dllde) + Ln(dllad2) - Ln( ll’d/2)-

We have (Figure 2):

1 _
! _ E : - 2
1R >T2

1 _
— Y, — Yy 1
AT D X£”>xa]
X >
+ : Y (Vi Yau,)1
Nn(AR,l) (2) Z Ao x>
i:XZ. <z
! (V; =Yy )1 ]
i 1 A/ X(1)> /
N’I’L(AR’I) XEQ)SZQ (3
E A + Bj.
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TECHNICAL RESULTS 11

The term A; can be rewritten as Ay = Ay 1 + A1 2 + Ay 3, where

1

% 2
A= g Do i Yau) e,
T x(2)
X, >x
1 \/ 2
T No(dny) > V=Y Plia
1) @)
:X," >xo
1 _
Ajg=——— Y, — Yy )1
o e T T i
X7 >xg
1 Y 2
© Na(4AL ) Z (Vi =Y, ,) ]1X<.1>>m’1’
nPVERL . (2) ¢
z:Xi >x9
1 _

d Ai3=—+—— Y —Ya,,)*1 .
WIS T N AR ; (e = Y Tt o
z:Xi >xo

Easy calculations show that
No(Ays) _
Ay = (Yo  —Ya,,)?
1,1 Nn(AR’l)( AH,Q AH,Q) )
which implies, with the same arguments as in the proof for £ = 1, that

A11 — 0 as n — oo. With respect to A1 2 and A; 3, we write

- 1)
2(6% 4 4||m||%, + oﬂ)‘g).
Thus, A1 — 0 and A;3 — 0 as n — 0o. Collecting bounds, we conclude
that A7 — 0. One proves with similar arguments that By — 0 and, conse-
quently, that Ly (d},d2) — L, (d},d,) — 0. O

1
max(Aj 2, A1 3) < maX«%%’

3. Proof of Lemma 3. We prove by induction that, for all k, with
probability 1 — p, for all £ > 0 and all n large enough,

Call this property Hy. Fix k > 1 and assume that Hj_; is true. For all
dj—1 € Ap_1(X), let

dk,n(dk_l) € argmin L, (X, d;_q, dk),
dy,
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12 E. SCORNET, G. BIAU, J.-P. VERT

and

dZ(dk—l) € arg min L*(X, dip_1q, dk),
dg,

where the minimum is evaluated, as usual, over {dy € Cax,dy_y) d,(cl) €
My }. Fix p > 0. In the rest of the proof, we assume © to be fixed and we
omit the dependence on O.

Preliminary result. We momentarily consider x € [0, 1]%. Note that, for
all dkfl,

Lo(%,dg_1,dpn(dp_1)) — L*(%,dp_1, dpp(di_1))
< Ln(%,dj_1, dppn(di_1)) — L*(x, dg_1, di(dg_1))
(by definition of dj(dg_1))
< Ln(x, dg—1, di(dik—1)) — L™ (x, di—1, di.(dp—1))
(by definition of dy,,(dj_1)).
Thus,

L (%, dg1,dpn(dp_1)) = L*(x, dg_1, di(dg_1))
L, (x, dk—l,dk,n(dk—ﬁ) — L*(x, dk—l,dk,n(dk—ﬁ) ,

Ln(x, i1, di(dy-1)) = L7(x, g1, di (g 1))
< sup|Ly(x, dg—1,dx) — L*(x,dg—1,dk)| .

k

gmax(

Moreover,
|L*(x,dg_1, dp.n(dp_1)) — L*(x,dp_1, df(dg_1))]
<|L*(x, dg—1, dpen(dg_1)) — Lo (%, di_1, di o (di_1))]

| Lo (%, dg1, din (di—1)) — L*(x, g1, d(dg_1))]
< QSup |Ln(X7 dk—hdk‘) - L*(Xv dk—hdk‘)‘

d
(12) = 2sup|Ln(X7 dk) _L*(X)dk)|‘
d
Let fli(x) = {dy : dy_1 € Ai_l(x)}. So, taking the supremum on both
sides of (12) leads to
sup  |L*(x, dj—1, dpn(di—1)) — L*(%, di—r, di(dg—1))|
dj_1€A;_, (x)

(13) <2 sup |LTL(X7 dk) - L*(X> dk)|
dkeji(x)
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TECHNICAL RESULTS 13

By Lemma 3, for all £ > 0, one can find § > 0 such that, for all n large
enough,

(14) P| sup sup |Ln(x,dg) — Ln(x, dﬁg)] <€ >1-p.
x€[0,1]4 [[dg—d} [loo <6
dy,dj e AS (x)

Now, let G be a regular grid of [0,1]% whose grid step equal to £/2. Note
that, for all x € G, ﬂi(x) is compact. Thus, for all x € G, there exists
a finite subset Cs5x = {c¢jx : 1 < j < p} such that, for all di € fli(x),
doo(dk,Csx) < 9. Set & > 0. Observe that, since the subset UxegCsx is
finite, one has, for all n large enough,

(15) sup sup |Lp(x,¢jx) — L*(x,¢jx)| < ¢,
x€G Cj7x€C5}x

Hence, for all n large enough,
sup sup |Lp,(x,dg) — L*(x,dg)| < sup sup <|Ln(x, di) — Ln(x,¢jx)|
x€eg dkeﬂi(x) x€eg dkEAi (x)

Ll 50 = L0500 127G c3) — L)),

where ¢ x satisfies ||¢jx — di|/cc < 6. Using inequalities (14) and (15), with
probability 1 — p, we obtain, for all n large enough,

sup  sup  |Ln(x,dg) — L*(x,dg)| < 3¢
X€0 q;,e Af (x)

Finally, by inequality (13), with probability 1 — p, for all n large enough,

(16)
sup ~ sup |L*(x, dp—1, dg o (di—1)) — L*(x,dp—1, di(di—1))| < 6¢"
xX€G q;,_jedl | (x)

Hereafter, to simplify, we assume that, for any given (k — 1)-tuple of
theoretical cuts, there is only one theoretical cut at level k, and leave the
general case as an easy adaptation. Thus, we can define unambiguously

di(dg—1) = argdmin L*(dy_1,dg).
k

imsart-aos ver. 2014/10/16 file: supplementary_file.tex date: February 6, 2015



14 E. SCORNET, G. BIAU, J.-P. VERT

Fix £” > 0. From inequality (16), by evoking the equicontinuity of L, and
the compactness of U = {(x,dy_1) : x € G,dp_1 € Ai_l(x)}, we deduce
that, with probability 1 — p, for all n large enough,

(17) sup  dog (dhn(di1). df(de-1)) < €.
(x,dg—1)€U

Besides,

(18)

P [(Xv ak—l,n(X)) € Z/{] = E[IP [(X, ak—l,n(X)) S U|Dn“ >1- 2k_1£-

In the rest of the proof, we consider & < p/2¢~1, which, by inequalities (17)
and (18), leads to

IP[ sup doo (dk,n(dk:—l)? dz(dk‘—l)> < 5”7 (Xa &k—l,n(X)) € u] >1- 29-
(X,dk_l)eu

This implies, with probability 1 — 2p, for all n large enough,

(19) oo (A1), di(deo10)) <€
Main argument. Now, using triangle inequality,

oo (i (Qi-1,0)s A7) < doo (i (Qi-1,0), 04 (d-1.0))
(20) + doo (A1), AL ).

Thus, we just have to show that doo(dZ(élk_l,n),A;) — 0 in probability
as n — oo, and the proof will be complete. To avoid confusion, we let
{d}*, : i € I} be the set of best first (k — 1)-th theoretical cuts (which

can be either countable or not). With this notation, dZ(dZ’il) is the k-th

theoretical cuts given that the (k— 1) previous ones are dZ’il. For simplicity,
let

L¥*(x,dy) = Li(x,d}" |, dy) and  L*(x,dy) = Li(x, dg_1.0, d)-
As before,

d;(d;’il) € argmin L'*(x,d},) and df(dy_1,) € argmin L*(x, dy).
dg d

Clearly, the result will be proved if we establish that,

in£ doo(df(dg_1,n),d5(d}",)) = 0, in probability, asn — occ.
1€
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TECHNICAL RESULTS 15

Note that, for all x € G, fli(x) is compact. Thus, for all x € G, there exists
a finite subset C'sx = {c;»’X :1 < j < p} such that, for all di, doo(dg,C'5x) <
d. Hence, with probability 1 — p, for all n large enough,

|L¥(x,di) — L (x, di)| < [L¥(x, di) — L*(x, ) )|
+ ’L*( X, jX) L X,C] x)’
+ L (x, o) = L2 (%, dy)|
<2¢ + |L*( LZ*(X,CJ’ )|

(by the continuity of Lj)).

X, ) =

Therefore, as in inequality (13), with probability 1 — p, for all 7 and all n
large enough,

L9 o, df (@1 ) =L (e, (A7) | < 250p Lo, ) — L2 (3, )
<4¢ +2mJaX!L( i) = L (%, ¢l
Taking the infimum over all i, we obtain
inf [ L (x, di (dg—1.0))— L (x, di (d}1))] < 4¢°
(21) +21nfmjax\L*( , ]X) L’*( X, Jx)\
Introduce w, the modulus of continuity of Lj:
w(x,0) = sup |Li(x,d) — Li(x,d)|.

[d—d’[loc <6

Observe that, since Lj(x,-) is uniformly continuous, w(d) — 0 as § — 0.
Hence, for all n large enough,

inf max |L*(x, ¢}) — L (x, ¢

i

lnfmjaX‘Lk(X dk 1,n, jx) L*(X dzzh ]x)‘

< infw(x, [[dx-1n — di )

(22) <¢,

since, by assumption Hy_1, inf; ||(§lk_1’n—d2’i1 lloo = 0. Therefore, combining
(21) and (22), with probability 1 — p, for all n large enough,

irilfyLiv*(X,d;(ak,Ln)) Lo*(X, di(dy" )| < 6¢.
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Finally, by Technical Lemma 2 below, with probability 1 — p, for all n large
enough,

(23) inf doc (df (di-1.0), di (d})) < €.

Plugging inequality (23) and (19) into (20), we conclude that, with proba-
bility 1 — 3p, for all n large enough,

doo (dk,n(ak—l,n)a AZ) < 25,/7
which proves Hy. Property H; can be proved in the same way.

TECHNICAL LEMMA 2.  For all §,p > 0, there exists £ > 0 such that, if,
with probability 1 — p,

inf | L% (X, df (dy1.0)) — (X, di(d} )] < &
then, with probability 1 — p,
(24) inf doo (df (d—1,n), di(d}" ) < 6.

Proor OF TECHNICAL LEMMA 2. Fix p > 0. Note that, for all 6 > 0,
there exists £ > 0 such that,

inf inf inf Lk dyt di(dy)) — Li(x dyt )| > €
x€[0,1]4 7 yidoo (y,di(d}" ) >0

To see this, assume that one can find § > 0 such that, for all £ > 0, there
exist ig, ye, X¢ satisfying

*’ié

| i (xe, 5, di(d)29) — Li(xe, 75 ye) | < &,

with doo (e, d5(d}™)) > 6. Recall that {d" : i € N}, {dx(d}")) : i € N}
are compact . Then, letting &, = 1/p, we can extract three sequences dZ’ipl —
d;_1, d;(d;’ipl) — dj, and Y¢,, — Y asp— oo such that

(25) Li(d—1,dy) = Li(di—1,9),

and doo(y, dg) > d. Since we assume that given the (k—1)-th first cuts dy_1,
there is only one best cut d, equation (25) implies that y = dj, which is
absurd.
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Now, to conclude the proof, fix § > 0 and assume that, with probability
r inf d (A (A7), df (A4 1.)) > 0
Thus, with probability 1 — p,
inf |L(X, di(dgo1.0)) — L (X, di(d})|
= inf |} (X, di ) di(di-10)) = LEX 4y )|

> inf inf inf ]L};(x,dZ’il,y)—Lz(x,dZ’il,dZ)\
x€[0,1]% 7 dog (y,di(d)’ ) >0

> ¢,

which, by contraposition, concludes the proof. O

PROOF OF PROPOSITION 1. Fix £ € IN* and p,& > 0. According to
Lemma 3, with probability 1 — p, for all n large enough, there exists a
sequence of theoretical first £ cuts dj (X, ©) such that

(26) doo (di (X> ®)> ak,n (Xa 6)) < f

This implies that, with probability 1 — p, for all n large enough and all
1 < j < k, the j-th empirical cut dj,n(X, ©) is performed along the same
coordinate as dj(X, ©).

Now, for any cell A, since the regression function is not constant on A, one
can find a theoretical cut d% on A such that L*(d%) > 0. Thus, the cut d% is
made along an informative variable, in the sense that it is performed along
one of the first .S variables. Consequently, for all X,© and for all 1 < j <k,
each theoretical cut dj(X,©) is made along one of the first S coordinates.
The proof is then a consequence of inequality (26). O
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