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Avant-propos

Les forêts comptent parmi les éléments essentiels à la pérennité de la vie sur Terre. À ce titre,
il est donc primordial, sinon vital, de comprendre leur fonctionnement (mais aussi leurs doutes
et leurs peines, car les forêts sont aussi des êtres sensibles). Le hasard faisant bien les choses,
comprendre les mécanismes nécessaires au développement des forêts est précisément le sujet de
cette thèse. Après ces préliminaires quelque peu racoleurs, pénétrons dans l’univers obscur et
mystérieux des forêts aléatoires.

Les Mayas lisaient l’avenir dans les étoiles ; les scientifiques utilisent désormais les forêts aléa-
toires (les animaux sacrifiés, les os de poulet et les boules de cristal étant déjà pris). Même si les
événements récents ont donné tort aux Mayas (le monde étant toujours entier en 2015) et raison
aux scientifiques (disons plutôt qu’étant d’un naturel discret, ils n’ont jamais eu ostensiblement
tort), chacun de ces groupes cherche à devenir le référent mondial en matière de prédiction. À
bien regarder leurs productions, les Mayas sont largement distancés par les scientifiques : les
plus récentes publications des premiers remontent à quelques milliers d’années, contre seulement
quelques jours pour leurs concurrents directs. Certains savants ont donc essayé de porter le coup
de grâce aux Mayas en montrant, une bonne fois pour toute, que les astres ne pouvaient pas lut-
ter contre les forêts aléatoires. Force est de constater que, jusque là, la communauté scientifique
n’a pas réussi à susciter l’adhésion des foules à la sylviculture aléatoire.

Cette thèse tente de soutenir les scientifiques dans leur tâche. Nous ne nous étendrons pas
sur les raisons qui ont poussé l’auteur à prendre parti pour le groupe dominant : ces raisons
lui appartiennent, chacun a droit à son jardin secret. Mais son entreprise n’a pas été vaine ! Il
a prouvé au monde qu’une forêt régulièrement débroussaillée fournit des prédictions exactes ;
ce à quoi les Mayas lui ont répondu que le coût d’entretien d’une forêt était astronomique.
Prenant en compte la désinvolture des arboristes dans ses analyses, il a montré que, même sans
ces derniers, les prédictions des forêts sont toujours outrageusement précises. Pour cela, il faut
néanmoins que les arbres soient assez différents les uns des autres : aucun chercheur-paysagiste
digne de ce nom n’utilise des forêts composées uniquement de chênes, d’ifs ou de boulots. La
(bio)diversité, c’est la vie !

Les scientifiques pensaient ainsi avoir assis leur emprise sur le reste du monde. Cependant,
contre toute attente, les Mayas argumentèrent que cette thèse ne présentait aucun intérêt car
les résultats supposent que la fonction de régression est continue et prend ses valeurs dans un
compact borné de R. L’auteur dut donc retourner à ses recherches pour régler ce problème. Il
y travaille encore.
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1.1 Introduction

Afin d’exploiter des jeux de données dont la taille ne cesse de grandir, de nouveaux algorithmes
sont nécessaires. Les forêts aléatoires, créées par L. Breiman au début des années 2000 [Breiman,
2001] font partie des algorithmes qui restent efficaces (tant d’un point de vue computationnel que
prédictif) lorsqu’ils sont appliqués à des grands jeux de données. Leur construction repose sur
les travaux fondateurs de Amit and Geman [1997], Ho [1998] et Dietterich [2000a] et s’appuie
sur le principe de diviser pour régner : la forêt est composée de plusieurs arbres qui sont
chacun construits avec une partie du jeu de données. La prédiction de la forêt est alors obtenue
simplement en agrégeant les prédictions des arbres.

Le fait que les forêts puissent être employées pour résoudre un grand nombre de prob-
lèmes d’apprentissage a fortement contribué à leur popularité. De plus, elles ne dépendent que
d’un petit nombre de paramètres faciles à calibrer. Outre leur simplicité d’utilisation (voir
l’implémentation du package R, randomForest), les forêts sont également connues pour leur
précision et leur capacité à traiter des jeux de données composés de peu d’observations et de
nombreuses variables. Étant par ailleurs facilement parallélisables, elles font partie des méthodes
permettant de traiter de grands systèmes de données réelles.
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Les bons résultats des forêts dans divers domaines appliqués sont légion : dans l’environne-
ment [voir http://www.kaggle.com/c/dsg-hackathon et Prasad et al., 2006, Cutler et al.,
2007], en chimio-informatique [Svetnik et al., 2003], dans l’identification d’objets tridimension-
nels [Shotton et al., 2011], ou encore en bioinformatique [Díaz-Uriarte and de Andrés, 2006].
Abondant dans ce sens, H. Varian, économiste en chef de Google, prône leur utilisation en
économétrie dans Varian [2014]. J. Howard (Kaggle) et M. Bowles (Biomatica) vont même
jusqu’à affirmer dans Howard and Bowles [2012] que “ensembles of decision trees—often known
as “random forests”—have been the most successful general-purpose algorithm in modern times”.

Le florilège de résultats appliqués contraste avec le peu de résultats théoriques sur les forêts :
bien qu’utilisées très souvent dans toute une variété de domaines, leurs propriétés mathématiques
demeurent largement mal comprises. Parmi les résultats théoriques les plus célèbres figure celui
de Breiman [2001] qui consiste en une borne supérieure sur le risque quadratique des forêts.
Cette borne dépend à la fois de la corrélation entre les arbres et de la puissance prédictive de
chaque arbre. Ce résultat a été complété par une note technique de Breiman [2004] portant
sur une version simplifiée de l’algorithme original. Lin and Jeon [2006] ont ensuite établi un
lien entre les forêts et les estimateurs du type plus proche voisin, qui a été étudié plus en
détail par Biau and Devroye [2010]. Récemment, plusieurs articles théoriques [e.g., Biau et al.,
2008, Ishwaran and Kogalur, 2010, Biau, 2012, Genuer, 2012, Zhu et al., 2012] ont porté sur
des versions plus ou moins simplifiées des forêts de Breiman. Plus récemment encore, certains
auteurs se sont concentrées sur des forêts très proches de l’algorithme de Breiman [2001]. Denil
et al. [2013] ont prouvé le premier résultat de consistance pour les forêts en ligne. Mentch and
Hooker [2014a] et Wager [2014] ont étudié la distribution limite des forêts aléatoires, lorsque le
nombre d’observations et le nombre d’arbres tendent vers l’infini.

L’algorithme des forêts aléatoires est souvent considéré comme une véritable boîte noire qui
combine de manière complexe plusieurs mécanismes difficiles à appréhender. Parmi ces mé-
canismes, le bagging [Breiman, 1996] et le critère de coupure des arbres CART [Classification
And Regression Trees Breiman et al., 1984] ont un rôle essentiel. Le bagging (contraction de
bootstrap-aggregating) est un schéma d’agrégation qui permet de générer des échantillons boot-
strap à partir de l’échantillon initial, puis de construire un estimateur à partir de chaque échan-
tillon, pour enfin prédire en agrégeant les estimations de chacun des arbres. Cette procédure,
initialement proposée pour améliorer la robustesse des estimateurs instables, compte parmi les
plus efficaces en temps de calcul, particulièrement pour des grands jeux de données où la sélec-
tion d’un bon modèle prédictif est particulièrement difficile [Bühlmann and Yu, 2002, Kleiner
et al., 2012, Wager et al., 2013]. Le critère de coupure CART, quant à lui, provient du célèbre
algorithme de classification et de régression CART, et est utilisé dans la construction des ar-
bres pour sélectionner la meilleure coupure perpendiculaire aux axes. Ainsi, à chaque nœud de
chaque arbre, la meilleure coupure est choisie en maximisant le critère de coupure CART basé
sur l’indice de Gini (classification) ou sur l’erreur de prédiction quadratique (régression).

Bien que le bagging et le critère de coupure CART jouent un rôle central dans l’algorithme des
forêts aléatoires, ils demeurent tous deux difficiles à analyser. Cela explique pourquoi la majorité
des travaux théoriques ont eu pour principaux objets des versions simplifiées de l’algorithme
original, supprimant notamment l’étape de rééchantillonnage des données et/ou remplaçant le
critère de coupure CART et le critère d’arrêt (arrêt de l’algorithme lorsque chacune des feuilles
contient un faible nombre d’observations) par des procédures plus élémentaires. La plupart des
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auteurs se sont ainsi concentrés sur des modèles de forêts simplifiés qui ne prennent pas en compte
l’ensemble de ces mécanismes : bien souvent, ces modèles sont construits indépendamment des
données, ce qui crée un décalage entre les forêts étudiées en théorie et celles réellement utilisées.

Dans cette introduction, nous présentons le contexte théorique dans lequel s’inscrit cette
thèse. Dans la Section 2, nous introduisons les notations mathématiques ainsi que l’algorithme
des forêts aléatoires de Breiman [2001]. Nous présentons les premiers résultats théoriques sur les
modèles simplifiés de forêts dans la Section 3. Nous regroupons, dans la Section 4, les résultats
théoriques portant sur les forêts de Breiman. Enfin, les différentes contributions de la thèse sont
détaillées dans la Section 5.

1.2 Construction des forêts aléatoires

1.2.1 Notations

L’objectif de cette section est de présenter l’algorithme des forêts aléatoires ainsi que les nota-
tions mathématiques utilisées tout au long de la thèse. Le cadre général est celui de la régression
non paramétrique dans lequel le vecteur X = (X(1), . . . ,X(p)) des variables explicatives est à
valeurs dans [0, 1]p et le but est de prédire la variable aléatoire Y à valeurs dans R en es-
timant la fonction de régression m(x) = E[Y |X = x]. Pour ce faire, on suppose connu un
n-échantillon Dn = {(X1, Y1), . . . , (Xn, Yn)} de variables aléatoires indépendantes et identique-
ment distribuées, indépendantes et de même loi que le couple (X, Y ). Le but est alors d’utiliser
le jeu de données Dn pour construire un estimateur mn : [0, 1]p → R de la fonction de régression
m. Dans ce contexte, on dira qu’un estimateur mn est consistant si E[mn(X) −m(X)]2 → 0
lorsque n→ +∞ (l’espérance portant sur X et Dn).

Le terme forêt aléatoire désigne à la fois une collection deM arbres aléatoires et l’estimateur
associé à ces M arbres. Pour le j-ème arbre de la forêt, la valeur prédite en un nouveau
point x est notée mn(x; Θj ,Dn), où Θ1, . . . ,ΘM sont des variables aléatoires indépendantes,
distribuées selon la variable Θ, et indépendantes de Dn. Dans la pratique, cette variable est
utilisée pour rééchantillonnner le jeu de données Dn avant de construire chaque arbre, ainsi que
pour pré-sélectionner, dans chaque cellule, un ensemble de directions admissibles pour effectuer
la coupure. L’estimateur de la forêt aléatoire, qui résulte de l’agrégation des différents arbres,
est construit de la manière suivante :

mM,n(x; Θ1, . . . ,ΘM ,Dn) = 1
M

M∑
j=1

mn(x; Θj ,Dn). (1.1)

Puisque le nombre d’arbres M peut être choisi arbitrairement grand (si la puissance de calcul le
permet), on peut considérer que M tend vers l’infini, et ainsi remplacer l’estimateur des forêts
(1.1) par l’estimateur de la forêt infinie définie par

m∞,n(x;Dn) = EΘ [mn(x; Θ,Dn)] , (1.2)

où EΘ est l’espérance par rapport à Θ, conditionnellement à l’échantillon Dn. Dans la suite, pour
alléger les notations, on omettra souvent la dépendance en Dn (par exemplem∞,n(x) remplacera
m∞,n(x;Dn)).
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1.2.2 Algorithme

Nous présentons maintenant en détail le fonctionnement de l’algorithme. Les forêts aléatoires de
Breiman [2001] sont composées d’arbres dont les cellules sont des hyperrectangles dans [0, 1]p.
À chaque étape de l’algorithme, les cellules forment une partition de [0, 1]p. La racine de l’arbre
est [0, 1]p et les nœuds terminaux (aussi appelés feuilles) forment également une partition de
[0, 1]p. Si une feuille correspond à une région A ⊂ [0, 1]p alors l’arbre de régression prédit pour
un nouveau point x ∈ A la moyenne des Yi associées aux observations Xi appartenant à A. La
construction des forêts de Breiman est détaillée dans l’Algorithme 1.

L’Algorithme 1 peut sembler compliqué à première vue mais les idées sous-jacentes sont très
simples. Pour mieux l’appréhender, remarquons que cet algorithme comporte trois paramètres :

1. le nombre de directions pré-sélectionnées pour couper mtry ∈ {1, . . . , p};

2. le nombre d’observations utilisées pour construire chaque arbre an ∈ {1, . . . , n};

3. le nombre maximal d’observations dans chaque feuille nodesize ∈ {1, . . . , n}.

L’algorithme construit M arbres aléatoires de la manière suivante. Pour chaque arbre, an
observations sont sélectionnées avec remise parmi les n observations initiales. Chaque cellule
est ensuite coupée de manière à maximiser le critère de coupure (voir plus bas) jusqu’à ce que
toutes les feuilles de chaque arbre contiennent moins de nodesize observations.

Pour définir mathématiquement le critère de coupure, considérons une cellule A et notons
Nn(A) le nombre d’observations appartenant à A. Une coupure dans A est un couple (j, z), où
j ∈ {1, . . . , p} est la direction de la coupure et z est la position de la coupure selon la j-ème
coordonnée, dans les limites de A. Soit CA l’ensemble des coupures possibles dans A (i.e., qui
séparent effectivement A en deux cellules non vides). En notant Xi = (X(1)

i , . . . ,X(p)
i ), pour

tout (j, z) ∈ CA, le critère de coupure CART s’écrit

Ln(j, z) = 1
Nn(A)

n∑
i=1

(Yi − ȲA)21Xi∈A

− 1
Nn(A)

n∑
i=1

(Yi − ȲAL1X(j)
i <z

− ȲAR1X(j)
i ≥z

)21Xi∈A, (1.3)

où AL = {x ∈ A : x(j) < z}, AR = {x ∈ A : x(j) ≥ z}, et ȲA (resp., ȲAL , ȲAR) est la moyenne
des Yi appartenant à A (resp., AL, AR), avec la convention 0/0 = 0. Pour chaque cellule A, la
meilleure coupure (j?n, z?n) est celle maximisant Ln(j, z) sur l’ensembleMtry et CA, c’est-à-dire

(j?n, z?n) ∈ arg max
j∈Mtry
(j,z)∈CA

Ln(j, z).

Pour éliminer certains cas d’égalité dans l’argmax, la meilleure coupure est toujours effectuée
selon une des meilleures directions j?n et au milieu de deux points consécutifs.

En résumé, pour chaque cellule, l’algorithme choisit uniformément mtry coordonnées dans
{1, . . . , p}, évalue le critère (1.3) sur toutes les coupures possibles selon les mtry directions, et
sélectionne la meilleure. Le critère (1.3) est celui utilisé dans l’algorithme CART de Breiman
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Algorithm 1: Prédiction de la forêt de Breiman au point x.
Input: Échantillon d’apprentissage Dn, nombre d’arbres M ∈ N, mtry ∈ {1, . . . , p},

an ∈ {1, . . . , n}, et x ∈ [0, 1]p.
Output: Prédiction de la forêt aléatoire en x.

1 for j = 1, . . . ,M do
2 Tirer an points uniformément parmi Dn avec remise.
3 Soit P0 = {[0, 1]p} la partition associée à la racine de l’arbre.
4 Soit P` = ∅, pour tout 1 ≤ ` ≤ an.
5 Soit nnodes = 1 et level = 0.
6 while nnodes < an do
7 if Plevel = ∅ then
8 level = level + 1.
9 else

10 Soit A le premier élément de Plevel.
11 if A contient moins de nodesize points then
12 Plevel ← Plevel\{A}.
13 Plevel+1 ← Plevel+1 ∪ {A}.
14 else
15 Tirer un sous-ensembleMtry ⊂ {1, . . . , p} de cardinal mtry uniformément

et sans remise.
16 Choisir la meilleure coupure dans la cellule A qui maximise le critère de

coupure CART selon les coordonnées dansMtry (voir les détails
ci-dessous).

17 Couper A selon la coupure précédemment choisie. Soit AL et AR les deux
cellules filles.

18 Plevel ← Plevel\{A}.
19 Plevel+1 ← Plevel+1 ∪ {AL} ∪ {AR}.
20 nnodes = nnodes + 1.
21 end
22 end
23 end
24 Calculer la prédiction du j-ème arbre en x, notée mn(x; Θj ,Dn), égale à la moyenne

des Yi appartenant à la cellule contenant x de la partition Plevel ∪ Plevel+1.
25 end
26 Calculer la prédiction de la forêt aléatoire en x, mM,n(x; Θ1, . . . ,ΘM ,Dn), donnée par la

formule (1.1).

et al. [1984]. Il mesure la différence des variances dans les cellules avant et après coupure, à la
différence près qu’ici le critère est évalué sur un sous ensemble des p directions. D’autre part,
contrairement à l’algorithme CART original, les arbres ne sont pas élagués, et les feuilles ne
contiennent qu’un petit nombre de points, qui est systématiquement inférieur à nodesize. De
plus, chaque arbre est construit à partir d’un sous-échantillon des données de taille an.
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La littérature est peu prolixe sur la façon dont les performances des forêts sont influencées
par les paramètres de l’algorithme (M , mtry, an, nodesize). Cependant les paramètres par
défaut semblent en général de bons choix.

1.3 Modèles de forêts aléatoires

1.3.1 Forêts non adaptatives

Comme nous l’avons souligné dans l’introduction, les forêts de Breiman reposent sur des mécan-
ismes complexes et sont donc difficiles à analyser, notamment car leur construction dépend des
données.

Par conséquent, la littérature concernant les forêts est marquée par une profonde dichotomie.
Les articles appliqués décrivent des extensions parfois complexes des forêts aléatoires à divers
domaines (classement, estimation de quantiles, analyse de survie...). Leurs performances sont
bien souvent meilleures que celles des algorithmes classiquement utilisés dans les domaines con-
cernés mais aucune garantie théorique ne vient corroborer ces méthodes. À l’inverse, la plupart
des articles théoriques se concentrent sur des versions simplifiées de l’algorithme original pour
lesquelles l’analyse théorique semble plus aisée.

Les versions simplifiées ayant pour point commun d’être construites indépendamment des
données portent le nom de purely random forests. Parmi celles-ci, les forêts centrées ont été
largement étudiées et sont construites de la manière suivante:

1. il n’y a pas d’étape de rééchantillonnage;

2. dans chaque nœud de chaque arbre, une seule coordonnée est uniformément choisie parmi
{1, . . . , p};

3. la coupure est alors effectuée au centre de la cellule selon la coordonnée précédemment
choisie.

4. Les étapes 2 − 3 sont répétées de façon récursive k fois (k ∈ N est un paramètre de
l’algorithme), jusqu’à ce qu’un arbre complet binaire de niveau k soit obtenu (autrement
dit, chaque arbre contient 2k feuilles).

Le paramètre k est ainsi un paramètre de régularisation contrôlant le nombre de feuilles (voir
Figure 1.1 pour un exemple en dimension 2). Plus k est grand, plus les arbres de la forêts
seront développés, minimisant ainsi l’erreur d’approximation. À l’inverse, plus k est petit, plus
les cellules sont susceptibles de contenir un grand nombre de points, minimisant ainsi l’erreur
d’estimation. Les forêts uniformes sont un autre exemple de purely random forests. Elles sont
construites de la même manière que les forêts centrées hormis le fait qu’une fois la direction
de coupure sélectionnée, la position de coupure est choisie uniformément selon cette direction
(dans les limites de la cellule). Bien que leur construction diffère de celle des forêts centrées,
leur analyse n’en demeure pas moins largement similaire.

Les forêts centrées ont été formalisées par Biau [2012]. Dans cet article, l’auteur prouve que
ces estimateurs sont consistants si k → +∞ et n/2k → +∞. L’hypothèse k → +∞ permet
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Figure 1.1: Un arbre centré de niveau 2.

de contrôler l’erreur d’approximation de la forêt en assurant que les arbres sont assez dévelop-
pés. D’autre part, si X est uniformément distribué sur [0, 1]p, alors il y a n/2k observations en
moyenne dans chaque feuille. L’hypothèse n/2k → +∞ permet de contrôler l’erreur d’estimation
de la forêt en assurant que les feuilles contiennent un grand nombre d’observations. Par con-
séquent, les forêts centrées ne constituent pas un modèle adéquat des forêts de Breiman car les
feuilles de ces dernières ne contiennent qu’un petit nombre d’observations. De plus, la consis-
tance des forêts centrées résulte de la consistance des arbres qui les composent. En résumé, ce
modèle ne permet pas de mettre en lumière les avantages des forêts par rapport aux arbres de
régression : appréhender les mécanismes en œuvre dans les forêts de Breiman nécessite d’étudier
des modèles plus complexes.

Étant plus faciles à analyser que les forêts de Breiman, les purely random forests sont à
cet égard des modèles intéressants à étudier. En effet, la vitesse de convergence des forêts
centrées a été déterminée par Breiman [2004] et Biau [2012]. Dans leur approche, on se donne
un ensemble S ⊂ {1, . . . , p}. La fonction de régression m(X), qui est initialement une fonction
de X = (X(1), . . . ,X(p)) est supposée ne dépendre que des |S| (où |S| désigne le cardinal de S)
coordonnées de S. Les variables restantes, c’est-à-dire celles appartenant à l’ensemble {1, . . . , p}\
S, n’ont aucune influence sur la fonction de régression qui se réécrit alors

m(X) = E[Y |XS ],

où XS = (X(j) : j ∈ S). Breiman [2004] et Biau [2012] ont prouvé que si les arbres sont
construits en utilisant uniquement les variables importantes (i.e., celles appartenant à S) et si
m est lipschitzienne alors

E [mn(X)−m(X)]2 = O
(
n

−0.75
|S| log 2+0.75

)
. (1.4)

Ce résultat montre que la vitesse de convergence des forêts centrées ne dépend que du nombre de
variables importantes S et non de la dimension ambiante p. De plus, la vitesse de convergence des
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forêts centrées (1.4) est plus rapide que la vitesse minimax n−2/(p+2) dès lors que |S| ≤ b0.54pc.
Ce résultat, perturbant de prime abord, n’est pas absurde. En effet, la dimension intrinsèque du
problème est |S| et non p. La véritable vitesse minimax du problème est donc n−2/(|S|+2). Les
forêts sont donc capables de s’adapter à la dimension du problème (car leur vitesse est meilleure
que la vitesse n−2/(p+2)) mais ne dépassent pas la vitesse minimax correspondant au véritable
problème de régression. Ce phénomène peut s’avérer particulièrement utile lorsque le nombre
de variables importantes est beaucoup plus petit que le nombre total de variables (cadre de la
parcimonie en grande dimension). Ce résultat peut aussi permettre d’expliquer pourquoi les
forêts aléatoires ne sur-ajustent pas, même lorsque le nombre de variables est grand.

Un autre modèle de purely random forest est la Purely Uniform Random Forest (PURF)
étudiée par Genuer [2012]. Pour p = 1, une PURF est obtenue en sélectionnant k variables
aléatoires uniformes sur [0, 1] et en divisant [0, 1] en k + 1 sous-intervalles obtenus grâce à ses
variables. Bien que cette construction ne soit pas récursive, elle est équivalente à la construction
d’un arbre de décision dans lequel, à chaque étape, on choisit quelle cellule couper avec une
probabilité égale à sa taille. Genuer [2012] a montré que les PURF sont consistantes et que si
la fonction de régression est lipschitzienne, alors

E[mn(X)−m(X)]2 = O
(
n−2/3

)
,

ce qui correspond à la vitesse minimax sur la classe des fonction lipschitziennes [Stone, 1980,
1982]. Ce résultat est rassurant : les forêts sont capables dans ce contexte particulier d’être au
moins aussi performantes asymptotiquement que divers estimateurs plus classiques (estimateurs
à noyau par exemple).

Il est communément admis que l’action d’agréger des arbres permet de réduire l’erreur
d’estimation des arbres individuels tout en conservant une erreur d’approximation du même or-
dre de grandeur. Biau [2012] souligne que l’erreur d’estimation des forêts centrées tend vers zero
(à une faible vitesse 1/ logn) lorsque chaque arbre est complètement développé (i.e., k ≈ logn).
Cependant l’erreur d’estimation d’un arbre complètement développé ne tend pas vers 0. Le
processus d’agrégation d’arbres permet ainsi de réduire drastiquement l’erreur d’estimation.
Malheureusement le choix k ≈ logn est trop grand pour assurer la consistance de la forêt
centrée (l’erreur d’approximation étant alors constante). De la même manière, Genuer [2012]
souligne que l’erreur d’estimation des forêts PURF est multipliée par un facteur 0.75 par rap-
port à l’erreur d’estimation des arbres individuels. La tentative la plus récente pour étudier à
la fois l’erreur d’estimation et d’approximation d’une forêt provient d’Arlot and Genuer [2014],
qui mettent en évidence plusieurs modèles de forêts dont l’erreur d’approximation est plus faible
que l’erreur d’approximation des arbres individuels qui les constituent.

1.3.2 Plus proches voisins

Les forêts aléatoires peuvent également être rapprochées de certains algorithmes à moyennes
locales (méthode des plus proches voisins, estimateurs à noyaux). Pour établir plus précisément
ce lien, nous avons besoin de la notion de potentiel plus proche voisin. En géométrie aléatoire,
une observation Xi est appelée un potentiel plus proche voisin (PPPV) d’un point x (parmi
X1, . . . ,Xn) si l’hyperrectangle défini par x et Xi ne contient pas d’autres points (Barndorff-
Nielsen and Sobel, 1966, Bai et al., 2005; voir aussi Devroye et al., 1996, Chapitre 11, Problème
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6 ). Comme le montre la Figure 1.2, le nombre de PPPV de x est en général plus grand que 1
et dépend à la fois du nombre d’observations et de leur répartition. Il s’avère que le concept de

Figure 1.2: Potentiels plus proches voisins (PPPV) de x en dimension p = 2.

PPPV est intimement lié aux forêts aléatoires. En effet, si les feuilles de chaque arbre contiennent
exactement une observation, alors quelle que soit la stratégie de coupure utilisée, l’estimateur
des forêts aléatoires est une moyenne pondérée des Yi associés aux Xi étant des PPPV de x.
Mathématiquement, on a alors

m∞,n(x) =
n∑
i=1

Wni(x)Yi, (1.5)

où les poids (Wn1, . . . ,Wnn) sont des fonctions positives de l’échantillon Dn et satisfont la con-
trainte Wni(x) = 0 si Xi n’est pas un PPPV de x. Remarquant cette intéressante connexion
entre les forêts et les PPPV, Lin and Jeon [2006] ont établi que, si X est uniformément distribué
sur [0, 1]p et si les arbres sont construits indépendamment des valeurs Y1, . . . , Yn, alors

E [mn(X)−m(X)]2 = O
( 1
nmax(logn)p−1

)
,

où nmax est le nombre maximal de points dans les feuilles (Biau and Devroye, 2010 ont étendu
cette inégalité au cas où X admet une densité quelconque sur [0, 1]p). Malheureusement, les
valeurs exacts des poids Wn1, . . . ,Wnn de la forêt de Breiman sont inconnus, et il semble donc
difficile de réécrire l’estimateur (1.5) sous une forme plus explicite. Néanmoins, les poids Wni

sont reliés à la probabilité de connexion entre deux points x et z définie par

Kn(x, z) = PΘ [z ∈ An(x,Θ)] ,
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où An(x,Θ) est la cellule contenant x de l’arbre construit avec le paramètre Θ, et PΘ est la
probabilité par rapport à Θ, conditionnellement à l’échantillon Dn. Ce lien, étudié plus en
détail dans le Chapitre 4, nous permettra de donner une forme explicite approchée de certains
estimateurs des forêts aléatoires.

1.4 Résultats théoriques sur les forêts de Breiman
Rééchantillonnage L’étape de ré-échantillonnage dans l’algorithme de Breiman [2001] s’effe-
ctue en choisissant n observations parmi n avec remise pour construire chaque arbre. Cette
procédure, initialement proposée par Efron [1982] [voir également Politis et al., 1999], est appelée
bootstrap dans la littérature statistique. L’idée de générer de nombreux échantillons bootstrap
et d’agréger les estimateurs produits à partir de ces échantillon est appelée bagging. Cette
méthode fut suggérée par Breiman [1996] comme un moyen simple d’améliorer la précision
d’estimateurs instables ou peu performants. Bien qu’un des grands avantages du bootstrap
soit sa simplicité d’utilisation, la théorie le concernant s’avère plus compliquée. En effet, les
observations bootstrappées ont une distribution différente de celle l’échantillon initial.

Le rôle du bootstrap dans les forêts aléatoires demeure mal compris et, à ce jour, la plupart
des analyses remplacent le bootstrap par du sous-échantillonnage en supposant que chaque arbre
est construit avec an < n observations, sélectionnées aléatoirement parmi l’échantillon initial
[Wager, 2014, Mentch and Hooker, 2014a]. La plupart du temps, le taux de sous-échantillonnage
an/n est supposé tendre vers zero à une vitesse spécifique, une hypothèse qui exclut de fait le
cas du bootstrap où an = n.

Positions des coupures Le procédé de coupure n’est pas facile à appréhender dans la mesure
où il utilise à la fois les positions Xi et les valeurs Yi pour sélectionner la meilleure coupure.
A partir des idées développées par Bühlmann and Yu [2002], Banerjee and McKeague [2007]
ont établi la loi limite pour la position de la coupure optimale dans le cadre d’un modèle de
régression de la forme Y = m(X) + ε, où X est une variable aléatoire réelle et ε est un bruit
Gaussien indépendant. Afin d’énoncer leur résultat, supposons pour l’instant que la distribution
de (X, Y ) est connue et notons d? la coupure optimale qui maximise l’équivalent théorique L?
du critère CART empirique (1.3) défini, dans toute cellule A par

L?(j, z) = V
[
Y |X ∈ A

]
− P

[
X ∈ A,X(j) ≤ z

]
V
[
Y |X ∈ A,X(j) ≤ z

]
− P

[
X ∈ A,X(j) > z

]
V
[
Y |X ∈ A,X(j) > z

]
.

Dans ce modèle, l’estimateur vaut respectivement, sur chacune des deux cellules engendrées,

β?` = E[Y |X ≤ d?] and β?r = E[Y |X > d?].

Bien entendu, quand la distribution du couple (X, Y ) est inconnue, il en va de même pour les
quantités β?` , β?r , d? qui sont estimées par leurs contreparties empiriques

(β̂`, β̂r, d̂n) ∈ arg min
β`,βr,d

n∑
i=1

[
Yi − β`1Xi≤d − βr1Xi>d

]2
.
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Si le modèle de régression possède certaines régularités (entre autres, X a une densité C1 et m
est C1), Banerjee and McKeague [2007] ont prouvé que

n1/3(β̂l − β?l , β̂r − β?r , d̂n − d?)
D→ (c1, c2, 1) arg max

t
Q(t), (1.6)

où D correspond à la convergence en loi, Q(t) = aW (t)− bt2, et W est un mouvement Brownien
standard réel (les constantes a et b sont positives et dépendent des paramètres du modèle et
des quantités inconnues β?` , β?r et d?). La loi limite (1.6) permet de construire des intervalles
de confiance asymptotique pour les quantités β?` , β?r et d?, ce qui peut s’avérer particulièrement
intéressant dans certains problèmes où la position des points de rupture admet une interprétation
simple [voir par exemple Banerjee and McKeague, 2007].

Une autre analyse de la position des coupures a été réalisée par Ishwaran [2013]. L’auteur
s’est intéressé à l’ECP (End-Cut Preference) du critère de coupure CART, c’est-à-dire au fait que
les coupures portant sur des variables non informatives se concentrent avec grande probabilité
autour des bords des cellules [ce phénomène avait déjà été observé dans Breiman et al., 1984].
Ishwaran [2013] a souligné l’aspect positif de cette propriété qui était jusque là perçue comme un
défaut de l’algorithme CART. Pour bien la comprendre, considérons une cellule A contenant n
points et supposons que cette cellule est coupée en son centre selon une variable non informative.
Alors les deux cellules créées contiennent environ la moitié des données (si X est uniformément
réparti sur A) mais, puisque la variable est non informative, la coupure ne permet pas de réduire
l’erreur d’approximation dans chacune des cellules. Dans ce cas, l’erreur d’estimation a donc
augmenté car la taille de l’échantillon a été divisée par deux dans chacune des deux cellules
engendrées. On obtient donc une configuration où la coupure a augmenté l’erreur d’estimation
en laissant inchangée l’erreur d’approximation. L’ECP permet d’éviter cette configuration en
coupant préférentiellement les variables non informatives près du bord des cellules.

Forêts de Breiman Tout compte fait, peu de résultats théoriques portent sur les forêts de
Breiman [2001]. Wager [2014] et Mentch and Hooker [2014a], ont chacun établi dans des con-
textes légèrement différents la normalité asymptotique des estimateurs des forêts aléatoires.
Wager [2014] a montré que la variance des forêts infinies pouvait être estimée de manière consis-
tante grâce au Jackknife, ce qui permet d’évaluer la qualité des prédictions des forêts aléatoires.
Mentch and Hooker [2014a] ont démontré le même type de résultat pour des forêts avec un
nombre fini d’arbres, en distinguant plusieurs régimes asymptotiques.

1.5 Contributions

Nous avons choisi de structurer notre travail en cinq chapitres qui peuvent être lus indépendam-
ment les uns des autres. Le Chapitre 2 est une revue de la littérature sur les aspects théoriques
des forêts aléatoires, coécrit avec Gérard Biau et soumis au journal TEST. Le Chapitre 3 étudie
certaines propriétés asymptotiques des forêts aléatoires et a été accepté pour publication dans
la revue Journal of Multivariate Analysis. Le Chapitre 4 porte sur le lien entre les forêts et
les méthodes à noyau et a été soumis à la revue IEEE Transactions on Information Theory. Le
Chapitre 5, coécrit avec Gérard Biau et Jean-Philippe Vert, a pour objet la consistance des
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forêts de Breiman et a été accepté pour publication dans le journal The Annals of Statistics.
Enfin le Chapitre 6, relativement indépendant par son contenu des autres chapitres, présente
une étude de cas réalisée avec l’équipe du CBIO (Centre for computational BIOlogy) de l’Institut
Curie.

Chapitre 2

Nous proposons dans leChapitre 2 une revue de la littérature sur la théorie des forêts aléatoires,
venant compléter la présente introduction. Elle inclut notamment les résultats sur la sélection
de variables et sur certaines extensions algorithmiques des forêts aléatoires.

Chapitre 3

Avant d’établir certaines propriétés des forêts aléatoires (que ce soient celles de Breiman ou
d’autres modèles simplifiés), il nous paraissait nécessaire d’étudier plus en détail le lien entre les
forêts infinies (analysées en théorie, voir équation (1.2)) et les forêts finies (utilisées en pratique,
voir équation (1.1)). C’est l’objet de la première partie de ce chapitre. Nous montrons une
loi des grands nombres uniforme en le point d’estimation x reliant l’estimateur des forêts finies
et celui des forêts infinies et valable pour une grande classe de modèles de forêts (Théorème
3.1). Une analyse plus poussée nous permet ensuite de déduire un théorème central limite
uniforme en x pour les estimateurs des forêts finies (Théorème 3.2). Enfin, nous montrons
dans le Théorème 3.3 (reproduit ci-dessous) que, sous certaines hypothèses sur le modèle de
régression, l’erreur L2 des forêts finies est proche de celle des forêts infinies, si le nombre d’arbres
est bien choisi.

Théorème 3.3. Supposons que

Y = m(X) + ε,

où ε est une bruit Gaussien centré avec une variance σ2 < +∞, indépendante de X, et ‖m‖∞ =
sup

x∈[0,1]p
|m(x)| <∞. Alors, pour tout M,n ∈ N?,

0 ≤ R(mM,n)−R(m∞,n) ≤ 8
M
×
(
‖m‖2∞ + σ2(1 + 4 logn)

)
,

où, pour tout estimateur mn, R(mn) = E[mn(X)−m(X)]2.

En particulier, ce résultat permet d’étendre la consistance des forêts infinies aux forêts finies
sous les hypothèses précédentes sur le modèle de régression et en choisissant le nombre d’arbres
M de sorte queM/ logn→ +∞. Ces résultats nous permettent de nous concentrer dans le reste
de la thèse sur les propriétés des forêts infinies.

Dans la deuxième partie du Chapitre 3, nous prouvons un théorème général sur la consis-
tance des forêts aléatoires dont la construction est indépendante des données (Théorème 3.4).
Dans ce théorème, comme dans les exemples mentionnés à la Section 3.1 de cette introduc-
tion, la consistance de la forêt résulte de la consistance des arbres individuels qui la composent.
Afin de mettre en exergue certaines propriétés propres aux forêts aléatoires, nous considérons
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un modèle plus proche des forêts de Breiman : les forêts quantiles dont les nœuds terminaux
contiennent exactement une observation (voir Algorithme 1, Chapitre 3). Dans ce contexte,
nous montrons dans le Théorème 3.5 que le sous-échantillonnage est crucial pour assurer la
consistance de la forêt. En effet, les arbres de la forêt quantile sont inconsistants (car leurs
nœuds terminaux ne contiennent qu’un seul point) mais la forêt quantile est consistante grâce
au sous-échantillonnage.

Théorème 3.5. Supposons que

Y = m(X) + ε,

où ε est un bruit centré vérifiant V[ε|X = x] ≤ σ2, avec σ2 < ∞ une constante. Supposons de
plus que X admet une densité sur [0, 1]p et que m est continue. Alors, si an → +∞ et an/n→ 0,
la forêt infinie q quantile est consistante.

Chapitre 4

Afin de trouver une forme explicite facilement interprétable de l’estimateur des forêts aléatoires,
nous présentons dans le Chapitre 4 un lien entre les forêts infinies et les méthodes à noyau.
En modifiant légèrement la manière dont les arbres sont agrégés par la forêt, l’estimateur des
forêts aléatoires peut se réécrire comme un estimateur à noyau de la forme

m̃∞,n(x) =
∑n
i=1 YiKn(Xi,x)∑n
j=1Kn(Xj ,x) , (1.7)

où Kn(x, z) = PΘ [z ∈ An(x,Θ)] est la probabilité de connexion de x et de z dans la forêt,
c’est-à-dire la probabilité que x et z soient dans la même cellule d’un arbre aléatoire de la forêt
(Proposition 4.2). Le noyau Kn correspond donc à une mesure de proximité particulière,
intrinsèque à la forêt considérée. Les estimateurs de la forme (1.7) ont des performances simi-
laires (que ce soit en précision ou en temps de calcul) à celles des forêts originales, tout en étant
plus facilement interprétables. D’autre part, pour certains modèles de forêts, la probabilité de
connexion Kn peut être explicitée (Propositions 4.5 et 4.6), ce qui nous permet d’obtenir des
bornes sur les vitesses de convergences des estimateurs m̃∞,n (Théorèmes 4.1 et 4.2).

Chapitre 5

Le Chapitre 5 est consacré aux principaux résultats de cette thèse sur les forêts aléatoires de
Breiman. Nous énonçons deux théorèmes sur la consistance des forêts de Breiman dans le cadre
d’un modèle de régression additif. Le premier porte sur des forêts aléatoires élaguées (i.e., non
complètement développées) et repose sur le fait que les arbres individuels sont consistants, quel
que soit le taux de sous-échantillonnage. Plus précisément, si on suppose que chaque arbre de
la forêt de Breiman est construit à partir de an observations (sous-échantillonnage) et contient
au maximum tn feuilles (procédure d’élagage) alors le Théorème 5.1 est vérifié.

Théorème 5.1. Sous certaines hypothèses sur le modèle de régression, si an → +∞, tn → +∞
et si tn(log an)9/an → 0, les forêts de Breiman sont consistantes.
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La preuve du Théorème 5.1 montre également que chaque arbre de la forêt est consistant.
Autrement dit, les arbres CART, élagués de cette façon, sont consistants. Le Théorème 5.2
quant à lui concerne les forêts de Breiman complètement développées et suppose un taux de
sous-échantillonnage bien choisi (comme pour les forêts quantiles).

Théorème 5.2. Sous les mêmes hypothèses que précédemment, si (H5.2) est vérifiée et si an →
+∞ et an logn/n → 0, alors les forêts de Breiman complètement développées (i.e., tn = an)
sont consistantes.

Malheureusement, le Théorème 5.2 s’appuie sur une conjecture (H5.2) portant sur la
faible dépendance des arbres individuels en l’échantillon d’apprentissage qui semble difficile à
vérifier. Ces résultats de consistance sont les premiers de ce type pour l’algorithme original de
Breiman [2001].

Chapitre 6

Nous avons participé avec les membres du CBIO de l’institut Curie (Elsa Bernard, Yunlong Jiao,
Veronique Stoven, Thomas Walter et Jean-Philippe Vert) à l’un des Dreamchallenge (http://
dreamchallenges.org/) de 2013 organisés par le consortium SAGE. Lors des Dreamchallenge,
un problème d’apprentissage est posé et des données sont mises à disposition des participants,
qui tentent alors de proposer des solutions innovantes pour résoudre le problème initial. Le
Chapitre 6 présente les résultats que nous avons obtenus à un Dreamchallenge visant à prédire
la toxicité de certains composés chimiques en fonction du profil génétique de chaque individu.
Différents types de variables descriptives pour chaque patient (sexe, ethnie, séquence ARN,
SNP) étaient mis à disposition ainsi que plusieurs types de variables descriptives pour chacun
des 156 composés chimiques dont la toxicité était évaluée au moyen de l’EC10 (mesure de la
concentration du composé pour laquelle le niveau d’ATP de la cellule est réduit de 10%). Pour
résoudre ce problème de régression multi-tâches, nous avons utilisé des méthodes à noyau qui
permettent de prendre en compte les différents types de données. La proximité entre deux
profils génétiques a été mesurée grâce à un noyau intégrant les différents types d’informations
et la proximité entre les différents composés a été évaluée grâce à un noyau empirique. Cette
méthode s’est classée deuxième parmi les cent méthodes proposées par l’ensemble des candidats.

http://dreamchallenges.org/
http://dreamchallenges.org/


Chapter 2

A Random Forest Guided Tour

Abstract The random forest algorithm, proposed by L. Breiman in 2001, has been ex-
tremely successful as a general purpose classification and regression method. The approach,
which combines several randomized decision trees and aggregates their predictions by aver-
aging, has shown excellent performance in settings where the number of variables is much
larger than the number of observations. Moreover, it is versatile enough to be applied to
large-scale problems, is easily adapted to various ad-hoc learning tasks, and returns mea-
sures of variable importance. The present article reviews the most recent theoretical and
methodological developments for random forests. Emphasis is placed on the mathematical
forces driving the algorithm, with special attention given to the selection of parameters,
the resampling mechanism, and variable importance measures. This review is intended to
provide non-experts easy access to the main ideas.
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2.1 Introduction

To take advantage of the sheer size of modern data sets, we now need learning algorithms that
scale with the volume of information, while maintaining sufficient statistical efficiency. Random
forests, devised by L. Breiman in the early 2000s [Breiman, 2001], are part of the list of the most
successful methods currently available to handle data in these cases. This supervised learning
procedure, influenced by the early work of Amit and Geman [1997], Ho [1998], and Dietterich
[2000b], operates according to the simple but effective “divide and conquer” principle: sample
small fractions of the data, grow a randomized tree predictor on each small piece, then paste
(aggregate) these predictors together.

What has greatly contributed to the popularity of forests is the fact that they can be applied
to a wide range of prediction problems and have few parameters to tune. Aside from being simple
to use, the method is generally recognized for its accuracy and its ability to deal with small
sample sizes and high-dimensional feature spaces. At the same time, it is easily parallelizable
and has therefore the potential to deal with large real-life systems. The corresponding R package
randomForest can be freely downloaded on the CRAN website (http://www.r-project.org), while
a MapReduce [Jeffrey and Sanja, 2008] open source implementation called Partial Decision
Forests is available on the Apache Mahout website at https://mahout.apache.org. This allows
the building of forests using large data sets as long as each partition can be loaded into memory.

The random forest methodology has been successfully involved in various practical problems,
including a data science hackathon on air quality prediction (http://www.kaggle.com/c/dsg-
hackathon), chemoinformatics [Svetnik et al., 2003], ecology [Prasad et al., 2006, Cutler et al.,
2007], 3D object recognition [Shotton et al., 2011] and bioinformatics [Díaz-Uriarte and de An-
drés, 2006], just to name a few. J. Howard (Kaggle) and M. Bowles (Biomatica) claim in Howard
and Bowles [2012] that ensembles of decision trees—often known as “random forests”—have been
the most successful general-purpose algorithm in modern times, while H. Varian, Chief Economist
at Google, advocates in Varian [2014] the use of random forests in econometrics.

On the theoretical side, the story of random forests is less conclusive and, despite their
extensive use, little is known about the mathematical properties of the method. The most
celebrated theoretical result is that of Breiman [2001], which offers an upper bound on the
generalization error of forests in terms of correlation and strength of the individual trees. This
was followed by a technical note [Breiman, 2004], which focuses on a stylized version of the
original algorithm [see also Breiman, 2000a,b]. A critical step was subsequently taken by Lin and
Jeon [2006], who highlighted an interesting connection between random forests and a particular
class of nearest neighbor predictors, further developed by Biau and Devroye [2010]. In recent
years, various theoretical studies have been performed [e.g., Meinshausen, 2006, Biau et al.,
2008, Ishwaran and Kogalur, 2010, Biau, 2012, Genuer, 2012, Zhu et al., 2012], analyzing more
elaborate models and moving ever closer to the practical situation. Recent attempts towards
narrowing the gap between theory and practice include that of Denil et al. [2013], who prove the
first consistency result for online random forests, and Mentch and Hooker [2014a] and Wager
[2014], who study the asymptotic distribution of forests.

The difficulty in properly analyzing random forests can be explained by the black-box flavor
of the method, which is indeed a subtle combination of different components. Among the
forests’ essential ingredients, both bagging [Breiman, 1996] and the Classification And Regression

http://www.r-project.org
https://mahout.apache.org
http://www.kaggle.com/c/dsg-hackathon
http://www.kaggle.com/c/dsg-hackathon
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Trees (CART)-split criterion [Breiman et al., 1984] play critical roles. Bagging (a contraction
of bootstrap-aggregating) is a general aggregation scheme, which generates bootstrap samples
from the original data set, constructs a predictor from each sample, and decides by averaging.
It is one of the most effective computationally intensive procedures to improve on unstable
estimates, especially for large, high-dimensional data sets, where finding a good model in one
step is impossible because of the complexity and scale of the problem [Bühlmann and Yu, 2002,
Kleiner et al., 2012, Wager et al., 2013]. As for the CART-split criterion, it originates from
the influential CART algorithm of Breiman et al. [1984], and is used in the construction of the
individual trees to choose the best cuts perpendicular to the axes. At each node of each tree, the
best cut is selected by optimizing the CART-split criterion, based on the so-called Gini impurity
(for classification) or the prediction squared error (for regression).

However, while bagging and the CART-splitting scheme play key roles in the random forest
mechanism, both are difficult to analyze with rigorous mathematics, thereby explaining why
theoretical studies have so far considered simplified versions of the original procedure. This is
often done by simply ignoring the bagging step and/or replacing the CART-split selection by
a more elementary cut protocol. As well as this, in Breiman’s [2001] forests, each leaf (that is,
a terminal node) of individual trees contains a fixed pre-specified number of observations (this
parameter is usually chosen between 1 and 5). Disregarding the subtle combination of all these
components, most authors have focused on stylized, data-independent procedures, thus creating
a gap between theory and practice.

The goal of this survey is to embark the reader on a guided tour of random forests. We focus
on the theory behind the algorithm, trying to give an overview of major theoretical approaches
while discussing their inherent pros and cons. For a more methodological review covering ap-
plied aspects of random forests, we refer to the surveys by Criminisi et al. [2011] and Boulesteix
et al. [2012]. We start by gently introducing the mathematical context in Section 2 and describe
in full detail Breiman’s [2001] original algorithm. Section 3 focuses on the theory for a simpli-
fied forest model called purely random forests, and emphasizes the connections between forests,
nearest neighbor estimates and kernel methods. Section 4 provides some elements of theory
about resampling mechanisms, the splitting criterion and the mathematical forces at work in
Breiman’s approach. Section 5 is devoted to the theoretical aspects of associated variable se-
lection procedures. Lastly, Section 6 discusses various extensions to random forests including
online learning, survival analysis and clustering problems.

2.2 The random forest estimate

2.2.1 Basic principles

As mentioned above, the random forest mechanism is versatile enough to deal with both su-
pervised classification and regression tasks. However, to keep things simple, we focus in this
introduction on regression analysis, and only briefly survey the classification case.

Our goal in this section is to provide a concise but mathematically precise presentation of
the algorithm for building a random forest. The general framework is nonparametric regres-
sion estimation, in which an input random vector X ∈ [0, 1]p is observed, and the goal is to
predict the square integrable random response Y ∈ R by estimating the regression function
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m(x) = E[Y |X = x]. With this aim in mind, we assume we are given a training sample
Dn = (X1, Y1), . . . , (Xn, Yn) of independent random variables distributed the same as the in-
dependent prototype pair (X, Y ). The goal is to use the data set Dn to construct an estimate
mn : [0, 1]p → R of the function m. In this respect, we say that the regression function estimate
mn is (mean squared error) consistent if E[mn(X)−m(X)]2 → 0 as n→∞ (the expectation is
evaluated over X and the sample Dn).

A random forest is a predictor consisting of a collection ofM randomized regression trees. For
the j-th tree in the family, the predicted value at the query point x is denoted by mn(x; Θj ,Dn),
where Θ1, . . . ,ΘM are independent random variables, distributed the same as a generic random
variable Θ and independent of Dn. In practice, the variable Θ is used to resample the training
set prior to the growing of individual trees and to select the successive directions for splitting—
more precise definitions will be given later. At this stage, we note that the trees are combined
to form the (finite) forest estimate

mM,n(x; Θ1, . . . ,ΘM ,Dn) = 1
M

M∑
j=1

mn(x; Θj ,Dn). (2.1)

In the R package randomForest, the default value of M (the number of trees in the forest) is
ntree = 500. Since M may be chosen arbitrarily large (limited only by available computing
resources), it makes sense, from a modeling point of view, to letM tends to infinity, and consider
instead of (2.1) the (infinite) forest estimate

m∞,n(x;Dn) = EΘ [mn(x; Θ,Dn)] .

In this definition, EΘ denotes the expectation with respect to the random parameter Θ, condi-
tional on Dn. In fact, the operation “M → ∞" is justified by the law of large numbers, which
asserts that almost surely, conditional on Dn,

lim
M→∞

mM,n(x; Θ1, . . . ,ΘM ,Dn) = m∞,n(x;Dn)

(see for instance Breiman, 2001, and Scornet, 2014, for more information on this limit calcu-
lation). In the following, to lighten notation we will simply write m∞,n(x) instead of m∞,n(x;
Dn).

Classification. In the (binary) supervised classification problem [Devroye et al., 1996], the
random response Y takes values in {0, 1} and, given X, one has to guess the value of Y . A
classifier or classification rule mn is a Borel measurable function of x and Dn that attempts
to estimate the label Y from x and Dn. In this framework, one says that the classifier mn is
consistent if its conditional probability of error

L(mn) = P[mn(X) 6= Y |Dn]

satisfies
lim
n→∞

EL(mn) = L?,

where L? is the error of the optimal—but unknown—Bayes classifier:

m?(x) =
{

1 if P[Y = 1|X = x] > P[Y = 0|X = x]
0 otherwise.
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In the classification situation, the random forest classifier is obtained via a majority vote among
the classification trees, that is,

mM,n(x; Θ1, . . . ,ΘM ,Dn) =
{

1 if 1
M

∑M
j=1mn(x; Θj ,Dn) > 1/2

0 otherwise.

2.2.2 Algorithm

We now provide some insight on how the individual trees are constructed and how randomness
kicks in. In Breiman’s [2001] original forests, each node of a single tree is associated with a
hyperrectangular cell. At each step of the tree construction, the collection of cells forms a
partition of [0, 1]p. The root of the tree is [0, 1]p itself, and the terminal nodes (or leaves), taken
together, form a partition of [0, 1]p. If a leaf represents region A, then the regression tree outputs
on A the average of all Yi for which the corresponding Xi falls in A. Algorithm 2 describes in
full detail how to compute a forest’s prediction.

Algorithm 2 may seem a bit complicated at first sight, but the underlying ideas are simple.
We start by noticing that this algorithm has three important parameters:

1. an ∈ {1, . . . , n}: the number of sampled data points in each tree;

2. mtry ∈ {1, . . . , p}: the number of possible directions for splitting at each node of each tree;

3. nodesize ∈ {1, . . . , n}: the number of examples in each cell below which the cell is not
split.

The algorithm works by growing M different (randomized) trees as follows. Prior to the con-
struction of each tree, an observations are drawn at random with replacement from the original
data set; then, at each cell of each tree, a split is performed by maximizing the CART-criterion
(see below); lastly, construction of individual trees is stopped when each cell contains less than
nodesize points. By default in the regression mode, the parameter mtry is set to p/3, an is set
to n, and nodesize is set to 5. The role and influence of these three parameters on the accuracy
of the method will be thoroughly discussed in the next section.

We still have to describe how the CART-split criterion operates. With this aim in mind, we
let A be a generic cell and denote by Nn(A) the number of data points falling in A. A cut in A
is a pair (j, z), where j is some value (dimension) from {1, . . . , p} and z the position of the cut
along the j-th coordinate, within the limits of A. Let CA be the set of all such possible cuts in
A. Then, with the notation Xi = (X(1)

i , . . . ,X(p)
i ), for any (j, z) ∈ CA, the CART-split criterion

takes the form
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Algorithm 2: Breiman’s random forest predicted value at x.
Input: Training set Dn, number of trees M > 0, an ∈ {1, . . . , n}, mtry ∈ {1, . . . , p},

nodesize ∈ {1, . . . , n}, and x ∈ [0, 1]p.
Output: Prediction of the random forest at x.

1 for j = 1, . . . ,M do
2 Select an points, with replacement, uniformly in Dn.
3 Set P0 = {[0, 1]p} the partition associated with the root of the tree.
4 For all 1 ≤ ` ≤ an, set P` = ∅.
5 Set nnodes = 1 and level = 0.
6 while nnodes < an do
7 if Plevel = ∅ then
8 level = level + 1.
9 else

10 Let A be the first element in Plevel.
11 if A contains less than nodesize points then
12 Plevel ← Plevel\{A}.
13 Plevel+1 ← Plevel+1 ∪ {A}.
14 else
15 Select uniformly, without replacement, a subsetMtry ⊂ {1, . . . , p} of

cardinality mtry.
16 Select the best split in A by optimizing the CART-split criterion along the

coordinates inMtry (see text for details).
17 Cut the cell A according to the best split. Call AL and AR the two

resulting cells.
18 Plevel ← Plevel\{A}.
19 Plevel+1 ← Plevel+1 ∪ {AL} ∪ {AR}.
20 nnodes = nnodes + 1.
21 end
22 end
23 end
24 Compute the predicted value mn(x; Θj ,Dn) at x equal to the average of the Yi falling

in the cell of x in partition Plevel ∪ Plevel+1.
25 end
26 Compute the random forest estimate mM,n(x; Θ1, . . . ,ΘM ,Dn) at the query point x

according to (2.1).
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Lreg,n(j, z) = 1
Nn(A)

n∑
i=1

(Yi − ȲA)21Xi∈A

− 1
Nn(A)

n∑
i=1

(Yi − ȲAL1X(j)
i <z

− ȲAR1X(j)
i ≥z

)21Xi∈A, (2.2)

where AL = {x ∈ A : x(j) < z}, AR = {x ∈ A : x(j) ≥ z}, and ȲA (resp., ȲAL , ȲAR) is the
average of the Yi belonging to A (resp., AL, AR), with the convention 0/0 = 0. For each cell A,
the best cut (j?n, z?n) is selected by maximizing Ln(j, z) overMtry and CA; that is,

(j?n, z?n) ∈ arg max
j∈Mtry
(j,z)∈CA

Ln(j, z).

(To remove some of the ties in the argmax, the best cut is always performed in the middle of
two consecutive data points.)

Thus, at each cell of each tree, the algorithm chooses uniformly at random mtry coordinates
in {1, . . . , p}, evaluates criterion (2.2) over all possible cuts in the mtry directions, and returns
the best one. The quality measure (2.2) is the criterion used in the most influential CART
algorithm of Breiman et al. [1984]. This criterion measures the (renormalized) difference between
the empirical variance in the node before and after a cut is performed—the only difference here
is that it is evaluated over a subset Mtry of randomly selected coordinates, and not over the
whole range {1, . . . , p}. However, contrary to the CART algorithm, the individual trees are not
pruned, and the final cells have a cardinality that does not exceed nodesize. Also, each tree
is constructed on a subset of an examples picked within the initial sample, not on the whole
sample Dn. When an = n, the algorithm runs in bootstrap mode, whereas an < n corresponds to
subsampling (with replacement). Last but not least, the process is repeatedM (a large number)
times.

Classification. In the classification case, if a leaf represents region A, then a randomized
tree classifier takes the simple form

mn(x; Θj ,Dn) =
{

1 if
∑n
i=1 1Xi∈A,Yi=1 >

∑n
i=1 1Xi∈A,Yi=0, x ∈ A

0 otherwise.

That is, in each leaf, a majority vote is taken over all (Xi, Yi) for which Xi is in the same region.
Ties are broken, by convention, in favor of class 0. Algorithm 2 can be easily adapted to do
classification by modifying the CART-split criterion for the binary setting. For any cell A, let
p0,n(A) (resp., p1,n(A)) be the empirical probability that a data point with label 0 (resp. label
1) falls into A. Then, for any (j, z) ∈ CA, the classification CART-split criterion takes the form

Lclass,n(j, z) = p0,n(A)p1,n(A)− Nn(AL)
Nn(A) × p0,n(AL)p1,n(AL)

− Nn(AR)
Nn(A) × p0,n(AR)p1,n(AR). (2.3)
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This criterion is based on the so-called Gini impurity measure 2p0,n(A)p1,n(A) [Breiman et al.,
1984], which has a simple interpretation. Instead of using the majority vote to classify a data
point that falls in cell A, one can use the rule that assigns an observation, selected at random
from the node, to label ` with probability p`,n(A), for j ∈ {0, 1}. The estimated probability that
the item has actually label ` is p`,n(A). Therefore the estimated probability of misclassification
under this rule is the Gini index 2p1,n(A)p2,n(A). When dealing with classification problems, it
is usually recommended to set nodesize = 1 and mtry = √p [see, e.g., Liaw and Wiener, 2002].

2.2.3 Parameter tuning

Literature focusing on tuning the parameters M , mtry, nodesize and an is unfortunately rare,
with the notable exception of Díaz-Uriarte and de Andrés [2006], Bernard et al. [2008], and
Genuer et al. [2010]. It is easy to see that the forest’s variance decreases as M grows. Thus,
more accurate predictions are likely to be obtained by choosing a large number of trees. It is
interesting to note that picking a largeM does not lead to overfitting, since finite forests converge
to infinite ones [Breiman, 2001]. However, the computational cost for inducing a forest increases
linearly withM , so a good choice results from a trade-off between computational complexity (M
should not be too large for the computations to finish in a reasonable time) and accuracy (M
must be large enough for predictions to be stable). In this respect, Díaz-Uriarte and de Andrés
[2006] argue that the value of M is irrelevant (provided that M is large enough) in a prediction
problem involving microarray data sets, where the aim is to classify patients according to their
genetic profiles (typically, less than one hundred patients for several thousand genes). For more
details we refer the reader to Genuer et al. [2010], who offer a thorough discussion on the choice
of this parameter in various regression problems. Another interesting and related approach is
by Latinne et al. [2001], who propose a simple procedure that determines a priori a minimum
number of tree estimates to combine in order to obtain a prediction accuracy level similar to that
obtained with a larger forest. Their experimental results show that it is possible to significantly
limit the number of trees.

In the R package randomForest, the default value of the parameter nodesize is 1 for classifi-
cation and 5 for regression. These values are often reported to be good choices [e.g., Díaz-Uriarte
and de Andrés, 2006], despite the fact that this is not supported by solid theory. The effect
of mtry has been thoroughly investigated in Díaz-Uriarte and de Andrés [2006], who show that
this parameter has a little impact on the performance of the method, though larger values may
be associated with a reduction in the predictive performance. On the other hand, Genuer et al.
[2010] claim that the default value of mtry is either optimal or too small. Therefore, a conser-
vative approach is to take mtry as large as possible (limited by available computing resources)
and set mtry = p (recall that p is the dimension of the Xi). A data-driven choice of mtry is
implemented in the algorithm Forest-RK of Bernard et al. [2008].
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2.3 Simplified models and local averaging estimates

2.3.1 Simplified models

Despite their widespread use, a gap remains between the theoretical understanding of random
forests and their practical performance. This algorithm, which relies on complex data-dependent
mechanisms, is difficult to analyze and its basic mathematical properties are still not well un-
derstood.

This state of affairs has led to polarization between theoretical and empirical contributions
to the literature. Empirically focused papers describe elaborate extensions to the basic ran-
dom forest framework, adding domain-specific refinements that push the state of the art in
performance, but come with no clear guarantees. In contrast, most theoretical papers focus on
simplifications or stylized versions of the standard algorithm, where the mathematical analysis
is more tractable.

A basic framework to assess the theoretical properties of forests involves models that are
calibrated independently of the training set Dn. This family of simplified models is often called
purely random forests. A widespread example is the centered forest, whose principle is as follows:
(i) there is no bootstrap step; (ii) at each node of each individual tree, a coordinate is uniformly
chosen in {1, . . . , p}; and (iii) a split is performed at the center of the cell along the selected
coordinate. The operations (ii)-(iii) are recursively repeated k times, where k ∈ N is a parameter
of the algorithm. The procedure stops when a full binary tree with k levels is reached, so that
each tree ends up with exactly 2k leaves. The parameter k acts as a smoothing parameter that
controls the size of the terminal cells (see Figure 2.1 for an example in two dimensions). It
should be chosen large enough in order to detect local changes in the distribution, but not too
much to guarantee an effective averaging process in the leaves. In uniform random forests, a
variant of centered forests, cuts are performed uniformly at random over the range of the selected
coordinate, not at the center. Modulo some minor modifications, their analysis is similar.
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Figure 2.1: A centered tree at level 2.

The centered forest rule was formally analyzed in Biau et al. [2008] and Scornet [2014], who
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proved that the method is consistent (both for classification and regression) provided k →∞ and
n/2k →∞. The proof relies on a general consistency result for random trees stated in Devroye
et al. [1996, Chapter 6]. If X is uniformly distributed in [0, 1]p, then there are on average about
n/2k data points per terminal node. In particular, the choice k ≈ logn corresponds to obtaining
a small number of examples in the leaves, in accordance with Breiman’s [2001] idea that the
individual trees should not be pruned. Unfortunately, this choice of k does not satisfy the
condition n/2k →∞, so something is lost in the analysis. Moreover, the bagging step is absent,
and forest consistency is obtained as a by-product of tree consistency. Overall, this model does
not demonstrate the benefit of using forests in place of individual trees and is too simple to
explain the mathematical forces driving Breiman’s forests.

The rates of convergence of centered forests are discussed in Breiman [2004] and Biau [2012].
In their approaches, the target regression functionm(X) = E[Y |X], which is originally a function
of X = (X(1), . . . , X(p)), is assumed to depend only on a nonempty subset S (for Strong) of the
p features. Thus, letting XS = (X(j) : j ∈ S), we have

m(X) = E[Y |XS ].

The variables of the remaining set {1, . . . , p}\S have no influence on the response Y and can
be safely removed. In this dimension reduction scenario, the ambient dimension p can be large,
much larger than the sample size n, but we believe that the representation is sparse, i.e., that
a potentially small number of coordinates of m are active— the ones with indices matching the
set S. Letting |S| be the cardinality of S, the value |S| characterizes the sparsity of the model:
the smaller |S|, the sparser m.

Breiman [2004] and Biau [2012] proved that if the random trees are grown by using coor-
dinates in S with high probability, and if m satisfies a Lipschitz-type smoothness assumption,
then

E [m∞,n(X)−m(X)]2 = O
(
n

−0.75
|S| log 2+0.75

)
.

This equality shows that the rate of convergence of mn to m depends only on the number |S| of
strong variables, not on the ambient dimension p. This rate is strictly faster than the usual rate
n−2/(p+2) as soon as |S| ≤ b0.54pc. In effect, the intrinsic dimension of the regression problem
is |S|, not p, and we see that the random forest estimate cleverly adapts itself to the sparse
framework. This property may be useful for high-dimensional regression, when the number of
variables is much larger than the sample size. It may also explain why random forests are able
to handle a large number of input variables without overfitting.

An alternative model for pure forests, called purely uniform random forests (PURF) is dis-
cussed in Genuer [2012]. For p = 1, a PURF is obtained by drawing k random variables uniformly
on [0, 1], and subsequently dividing [0, 1] into random sub-intervals. Although this construction
is not exactly recursive, it is equivalent to growing a decision tree by deciding at each level
which node to split with a probability equal to its length. Genuer [2012] proves that PURF are
consistent and, under a Lipschitz assumption, that the estimate satisfies

E[m∞,n(X)−m(X)]2 = O
(
n−2/3

)
.



2.3. Simplified models and local averaging estimates 35

This rate is minimax over the class of Lipschitz functions [Stone, 1980, 1982].
It is often acknowledged that random forests reduce the estimation error of a single tree,

while maintaining the same approximation error. In this respect, Biau [2012] argues that the
estimation error of centered forests tends to zero (at the slow rate 1/ logn) even if each tree is
fully grown (i.e., k ≈ logn). This result is a consequence of the tree-averaging process, since the
estimation error of an individual fully grown tree does not tend to zero. Unfortunately, the choice
k ≈ logn is too large to ensure consistency of the corresponding forest, whose approximation
error remains constant. Similarly, Genuer [2012] shows that the estimation error of PURF is
reduced by a factor of 0.75 compared to the estimation error of individual trees. The most recent
attempt to assess the gain of forests in terms of estimation and approximation errors is by Arlot
and Genuer [2014], who claim that the rate of the approximation error of certain models is faster
than that of the individual trees.

2.3.2 Forests, neighbors and kernels

Let us consider a sequence of independent and identically distributed random variables X1,
. . . , Xn. In random geometry, a random observation Xi is said to be a layered nearest neighbor
(LNN) of a point x (from X1, . . . ,Xn) if the hyperrectangle defined by x and Xi contains no
other data points (Barndorff-Nielsen and Sobel, 1966, Bai et al., 2005; see also Devroye et al.,
1996, Chapter 11, Problem 6). As illustrated in Figure 2.2, the number of LNN of x is typically
larger than one and depends on the number and configuration of the sample points.

Surprisingly, the LNN concept is intimately connected to random forests. Indeed, if exactly
one point is left in the leaves, then no matter what splitting strategy is used, the forest estimate
at x is but a weighted average of the Yi whose corresponding Xi are LNN of x. In other words,

m∞,n(x) =
n∑
i=1

Wni(x)Yi, (2.4)

where the weights (Wn1, . . . ,Wnn) are nonnegative functions of the sample Dn that satisfy
Wni(x) = 0 if Xi is not an LNN of x and

∑n
i=1Wni = 1. This important connection was first

pointed out by Lin and Jeon [2006], who proved that if X is uniformly distributed on [0, 1]p
then, provided tree growing is independent of Y1, . . . , Yn (such simplified models are sometimes
called non-adaptive), we have

E [m∞,n(X)−m(X)]2 = O
( 1
nmax(logn)p−1

)
,

where nmax is the maximal number of points in the terminal cells (Biau and Devroye, 2010,
extended this inequality to the case where X has a density on [0, 1]p). Unfortunately, the exact
values of the weight vector (Wn1, . . . ,Wnn) attached to the original random forest algorithm are
unknown, and a general theory of forests in the LNN framework is still undeveloped.

It remains however that equation (2.4) opens the way to the analysis of random forests via
a local-averaging approach, i.e., via the average of those Yi for which Xi is “close” to x [Györfi
et al., 2002]. Indeed, observe, starting from (2.1), that for a finite forest with M trees, we have

mM,n(x; Θ1, . . . ,ΘM ) = 1
M

M∑
j=1

(
n∑
i=1

Yi1Xi∈An(x,Θj)

Nn(x,Θj)

)
,
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Figure 2.2: The layered nearest neighbors (LNN) of a point x in dimension p = 2.

where An(x,Θj) is the cell containing x and Nn(x,Θj) =
∑n
i=1 1Xi∈An(x,Θj) is the number of

data points falling in An(x,Θj). Thus,

mM,n(x; Θ1, . . . ,ΘM ) =
n∑
i=1

Wni(x)Yi,

where the weights Wni(x) are defined by

Wni(x) = 1
M

M∑
j=1

1Xi∈An(x,Θj)

Nn(x,Θj)
.

It is easy to see that the Wni are nonnegative and sum to one if the cell containing x is not
empty. Thus, the contribution of observations falling into cells with a high density of data
points is smaller than the contribution of observations belonging to less-populated cells. This
remark is especially true when the forests are built independently of the data set—for example,
PURF—since, in this case, the number of examples in each cell is not controlled. Next, if we let
M tend to infinity, then the estimate m∞,n may be written (up to some negligible terms)

m∞,n(x) ≈
∑n
i=1 YiKn(Xi,x)∑n
j=1Kn(Xj ,x) , (2.5)

where
Kn(x, z) = PΘ [z ∈ An(x,Θ)] .

The function Kn(·, ·) is called the kernel and characterizes the shape of the “cells” of the infinite
random forest. The quantity Kn(x, z) is nothing but the probability that x and z are connected
(i.e., they fall in the same cell) in a random tree. Therefore, the kernel Kn can be seen as
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a proximity measure between two points in the forest. Hence, any forest has its own metric
Kn, but unfortunately the one associated with Breiman’s forest is strongly data-dependent and
therefore complicated to work with.

It should be noted that Kn does not necessarily belong to the family of Nadaraya-Watson-
type kernels [Nadaraya, 1964, Watson, 1964], which satisfy a homogeneous property of the form
Kh(x, z) = 1

hK((x−z)/h) for some smoothing parameter h > 0. The analysis of estimates of the
form (2.5) is, in general, more complicated, depending of the type of forest under investigation.
For example, Scornet [2015] proved that for a centered forest defined on [0, 1]p with parameter
k, we have

Kk,n(x, z) =
∑

k1,...,kp∑p

j=1 kj=k

k!
k1! . . . kp!

(1
p

)k p∏
j=1

1d2kjxje=d2kj zje

(d·e is the ceiling function). As an illustration, Figure 2.3 shows the graphical representation for
k = 1, 2 and 5 of the function fk defined by

fk : [0, 1]× [0, 1] → [0, 1]
z = (z1, z2) 7→ Kk,n

(
(1

2 ,
1
2), z

)
.

The connection between forests and kernel estimates is mentioned in Breiman [2000a] and
developed in detail in Geurts et al. [2006]. The most recent advances in this direction are by
Arlot and Genuer [2014], who show that a simplified forest model can be written as a kernel
estimate, and provide its rates of convergence. On the practical side, Davies and Ghahramani
[2014] highlight the fact that using Gaussian processes with a specific kernel-based random
forest can empirically outperform state-of-the-art Gaussian process methods. Besides, kernel-
based random forests can be used as the input for a large variety of existing kernel-type methods
such as Kernel Principal Component Analysis and Support Vector Machines.

2.4 Theory for Breiman’s forests
This section deals with Breiman’s [2001] original algorithm. Since the construction of Breiman’s
forests depends on the whole sample Dn, a mathematical analysis of the whole algorithm is
difficult. To move forward, the individual mechanisms at work in the procedure have been
investigated separately, namely the resampling step and the splitting scheme.

2.4.1 The resampling mechanism

The resampling step in Breiman’s [2001] original algorithm is performed by choosing n times
from of n points with replacement to grow the individual trees. This procedure, which traces
back to the work of Efron [1982] [see also Politis et al., 1999], is called the bootstrap in the
statistical literature. The idea of generating many bootstrap samples and averaging predictors
is called bagging (bootstrap-aggregating). It was suggested by Breiman [1996] as a simple way
to improve the performance of weak or unstable learners. Although one of the great advantages
of the bootstrap is its simplicity, the theory turns out to be complex. In effect, the bootstrapped
observations have a distribution that is different from the original one, as the following example
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Figure 2.3: Representations of f1, f2 and f5 in [0, 1]2.

shows. Assume that X has a density, and note that whenever the data points are sampled with
replacement, then with positive probability, at least one observation from the original sample
will be selected more than once. Therefore, the resulting Xi of the bootstrapped sample cannot
have an absolutely continuous distribution.

The role of the bootstrap in random forests is still poorly understood and, to date, most
analyses are doomed to replace the bootstrap by a subsampling scheme, assuming that each
tree is grown with an < n examples randomly chosen without replacement from the initial
sample [Mentch and Hooker, 2014a, Wager, 2014, Scornet et al., 2015b]. Most of the time, the
subsampling rate an/n is assumed to tend to zero at some prescribed rate—an assumption that
excludes de facto the bootstrap regime. In this respect, the analysis of so-called median random
forests by Scornet [2014] provides some insight as to the role and importance of subsampling.
The assumption an/n → 0 guarantees that every single observation pair (Xi, Yi) is used in the
m-th tree’s construction with a probability that becomes small as n grows. It also forces the
query point x to be disconnected from (Xi, Yi) in a large proportion of trees. Indeed, if this were
not the case, then the predicted value at x would be overly influenced by the single pair (Xi, Yi),
which would make the ensemble inconsistent. In fact, the estimation error of the median forest
estimate is small as soon as the maximum probability of connection between the query point
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and all observations is small. Thus, the assumption an/n→ 0 is but a convenient way to control
these probabilities, by ensuring that partitions are dissimilar enough.

Biau and Devroye [2010] noticed that Breiman’s bagging principle has a simple application in
the context of nearest neighbor methods. Recall that the 1-nearest neighbor (1-NN) regression
estimate sets rn(x) = Y(1)(x), where Y(1)(x) corresponds to the feature vector X(1)(x) whose
Euclidean distance to x is minimal among all X1, . . . ,Xn. (Ties are broken in favor of smallest
indices.) It is clearly not, in general, a consistent estimate [Devroye et al., 1996, Chapter 5].
However, by bagging, one may turn the 1-NN estimate into a consistent one, provided that the
size of resamples is sufficiently small. We proceed as follows, via a randomized basic regression
estimate ran in which 1 ≤ an ≤ n is a parameter. The elementary predictor ran is the 1-NN
rule for a random subsample of size an drawn with (or without) replacement from Dn. We
apply bagging, that is, we repeat the random sampling an infinite number of times and take the
average of the individual outcomes. Thus, the bagged regression estimate r?n is defined by

r?n(x) = E? [ran(x)] ,

where E? denotes expectation with respect to the resampling distribution, conditional on the
data set Dn. Biau and Devroye [2010] proved that the estimate r?n is universally (i.e., without
conditions on the distribution of (X, Y )) mean squared consistent, provided an →∞ and an/n→
0. The proof relies on the observation that r?n is in fact a weighted nearest neighbor estimate
[Stone, 1977] with weights

Wni = P(i-th nearest neighbor of x is the 1-NN in a random selection).

The connection between bagging and nearest neighbor estimation is further explored by Biau
et al. [2010], who prove that the bagged estimate r?n achieves optimal rate of convergence over
Lipschitz smoothness classes, independently from the fact that resampling is done with or with-
out replacement.

2.4.2 Decision splits

The coordinate-split process of the random forest algorithm is not easy to grasp, essentially
because it uses both the Xi and Yi variables to make its decision. Building upon the ideas
of Bühlmann and Yu [2002], Banerjee and McKeague [2007] establish a limit law for the split
location in the context of a regression model of the form Y = m(X) + ε, where X is real-valued
and ε an independent Gaussian noise. In essence, their result is as follows. Assume for now
that the distribution of (X, Y ) is known, and denote by d? the (optimal) split that maximizes
the theoretical CART-criterion at a given node. In this framework, the regression estimates
restricted to the left and right children of the cell takes the respective forms

β?`,n = E[Y |X ≤ d?] and β?r,n = E[Y |X > d?].

When the distribution of (X, Y ) is unknown, so are β?` , β?r and d?, and these quantities are
estimated by their natural empirical counterparts:

(β̂`,n, β̂r,n, d̂n) ∈ arg min
β`,βr,d

n∑
i=1

[
Yi − β`1Xi≤d − βr1Xi>d

]2
.
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Assuming that the model satisfies some regularity assumptions (in particular, X has a density
f , and both f and m are continuously differentiable), Banerjee and McKeague [2007] prove that

n1/3(β̂`,n − β?` , β̂r,n − β?r , d̂n − d?)
D→ (c1, c2, 1) arg max

t
Q(t), (2.6)

where D denotes convergence in distribution, Q(t) = aW (t)−bt2, andW is a standard two-sided
Brownian motion process on the real line. Both a and b are positive constants that depend upon
the model parameters and the unknown quantities β?` , β?r and d?. The limiting distribution in
(2.6) allows one to construct confidence intervals for the position of CART-splits. Interestingly,
Banerjee and McKeague [2007] refer to the study of Qian et al. [2003] on the effects of phosphorus
pollution in the Everglades, which uses split points in a novel way. There, the authors identify
threshold levels of phosphorus concentration that are associated with declines in the abundance
of certain species. In their approach, split points are not just a means to build trees and forests,
but can also provide important information on the structure of the underlying distribution.

A further analysis of the behavior of forest splits is performed by Ishwaran [2013], who
argues that the so-called end-cut preference (ECP) of the CART-splitting procedure (that is,
the fact that splits along non-informative variables are likely to be near the edges of the cell—see
Breiman et al., 1984) can be seen as a desirable property. Given the randomization mechanism
at work in forests, there is indeed a positive probability that none of the preselected variables at
a node are informative. When this happens, and if the cut is performed, say, at the center of a
side of the cell, then the sample size of the two resulting cells is drastically reduced by a factor
of two—this is an undesirable property, which may be harmful for the prediction task. In other
words, Ishwaran [2013] stresses that the ECP property ensures that a split along a noisy variable
is performed near the edge, thus maximizing the tree node sample size and making it possible
for the tree to recover from the split downstream. Ishwaran [2013] claims that this property
can be of benefit even when considering a split on an informative variable, if the corresponding
region of space contains little signal.

There exists a variety of random forest variants based on the CART-criterion. For example,
the Extra-Tree algorithm of Geurts et al. [2006] consists in randomly selecting a set of split
points and then choosing the split that maximizes the CART-criterion. This algorithm has
similar accuracy performance while being more computationally efficient. In the PERT (Perfect
Ensemble Random Trees) approach of Cutler and Zhao [2001], one builds perfect-fit classification
trees with random split selection. While individual trees clearly overfit, the authors claim that
the whole procedure is eventually consistent since all classifiers are believed to be almost uncor-
related. Let us also mention that additional randomness can be added in the tree construction
by considering splits along linear combinations of features. This idea, due to Breiman [2001],
has been implemented by Truong [2009] in the package obliquetree of statistical computing
environment R.

2.4.3 Asymptotic normality and consistency

All in all, little has been proven mathematically for the original procedure of Breiman [2001].
Recently, consistency and asymptotic normality of the whole algorithm were proved under sim-
plifications of the procedure (replacing bootstrap by subsampling and simplifying the splitting
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step). Wager [2014] proves the asymptotic normality of the method and establishes that the
infinitesimal jackknife consistently estimates the forest variance. A similar result on the asymp-
totic normality of finite forests, proved by Mentch and Hooker [2014a], states that whenever M
(the number of trees) is allowed to vary with n, and when an = o(

√
n) and limn→∞ n/Mn = 0,

then for a fixed x, √
n(mM,n(x; Θ1, . . . ,ΘM )−m∞,n(x))√

a2
nζ1,an

D→ N,

where N is a standard normal random variable,

ζ1,an = Cov
[
mn(X1,X2, . . . ,Xan ; Θ),mn(X1,X′2, . . . ,X′an ; Θ′)

]
,

X′i an independent copy of Xi and Θ′ an independent copy of Θ. Note that in this model,
both the sample size and the number of trees grow to infinity. Recently, Scornet et al. [2015b]
proved a consistency result in the context of additive regression models for the pruned version of
Breiman’s forest. Unfortunately, the consistency of the unpruned procedure comes at the price
of a conjecture regarding the behavior of the CART algorithm that is difficult to verify.

We close this section with a negative but interesting result due to Biau et al. [2008]. In
this example, the total number k of cuts is fixed and mtry = 1. Furthermore, each tree is
built by minimizing the true probability of error at each node. Consider the joint distribution
of (X, Y ) sketched in Figure 2.4 and let m(x) = P[Y = 1|X = x]. The variable X has a
uniform distribution on [0, 1]2 ∪ [1, 2]2 ∪ [2, 3]2 and Y is a function of X—that is, m(x) ∈ {0, 1}
and L∗ = 0—defined as follows. The lower left square [0, 1] × [0, 1] is divided into countably
infinitely many vertical strips in which the strips with m(x) = 0 and m(x) = 1 alternate. The
upper right square [2, 3]× [2, 3] is divided similarly into horizontal strips. The middle rectangle
[1, 2]× [1, 2] is a 2×2 checkerboard. It is easy to see that no matter what the sequence of random
selection of split directions is and no matter for how long each tree is grown, no tree will ever cut
the middle rectangle and therefore the probability of error of the corresponding random forest
classifier is at least 1/6. This example illustrates that consistency of greedily grown random
forests is a delicate issue. Note however that if Breiman’s [2001] original algorithm is used in
this example (i.e., when all cells with more than one data point in them are split) then one
obtains a consistent classification rule.

2.5 Variable selection

2.5.1 Variable importance measures

Random forests can be used to rank the importance of variables in regression or classification
problems via two measures of significance. The first, called Mean Decrease Impurity (MDI), is
based on the total decrease in node impurity from splitting on the variable, averaged over all
trees. The second, referred to as Mean Decrease Accuracy (MDA), stems from the idea that if
the variable is not important, then rearranging its values should not degrade prediction accuracy.

Set X = (X(1), . . . ,X(p)). For a forest resulting from the aggregation of M trees, the MDI
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Figure 2.4: An example of a distribution for which greedy random forests are inconsistent. The
distribution of X is uniform on the union of the three large squares. White areas represent the
set where m(x) = 0 and grey where m(x) = 1.

of the variable X(j) is defined as

M̂DI(X(j)) = 1
M

M∑
`=1

∑
t∈T`
j?n,t=j

2pn,tLreg,n(j?n,t, z?n,t),

where pn,t(t) is the fraction of observations falling in the node t, {T`}1≤`≤M the collection of
trees in the forest, and (j?n,t, z?n,t) the split that maximizes the empirical criterion (2.2) in node
t. Note that the same formula holds for classification random forests by replacing the criterion
Lreg,n by its classification counterpart Lclass,n. Thus, the MDI of X(j) computes the weighted
decrease of impurity corresponding to splits along the variable X(j) and averages this quantity
over all trees.

The MDA relies on a different principle and uses the so-called out-of-bag error estimate. In
random forests, there is no need for cross-validation or a separate test set to get an unbiased
estimate of the test error. It is estimated internally, during the run, as follows. Since each tree is
constructed using a different bootstrap sample from the original data, about one-third of cases
are left out of the bootstrap sample and not used in the construction of the m-th tree. In this
way, for each tree, a test set—disjoint from the training set— is obtained, and averaging over
all these left-out cases and over all trees is known as the out-of-bag error estimate.

To measure the importance of the j-th feature, we randomly permute the values of variable
X(j) in the out-of-bag cases and put these cases down the tree. The MDA of X(j) is obtained
by averaging the difference in out-of-bag error estimation before and after the permutation over
all trees. In mathematical terms, consider a variable X(j) and denote by D`,n the out-of-bag
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test of the `-th tree and Dj`,n the same data set where the values of X(j) have been randomly
permuted. Recall that mn(·,Θ`) stands for the `-th tree estimate. Then, by definition,

M̂DA(X(j)) = 1
M

M∑
`=1

[
Rn
[
mn(·,Θ`),Dj`,n

]
−Rn

[
mn(·,Θ`),D`,n

]]
, (2.7)

where Rn is defined for D = D`,n or D = Dj`,n by

Rn
[
mn(·,Θ`),D

]
= 1
|D|

∑
i:(Xi,Yi)∈D

(Yi −mn(Xi,Θ`))2.

It is easy to see that the population version of M̂DA(X(j)) takes the form

MDA?(X(j)) = E
[
Y −mn(X′j ,Θ)

]2 − E[Y −mn(X,Θ)
]2
,

where X′j = (X(1), . . . , X ′(j), . . . , X(p)) and X ′(j) is an independent copy of X(j). For classifica-
tion purposes, the MDA still satisfies (2.7) with Rn(mn(·,Θ) ,D) the number of points that are
correctly classified by mn(·,Θ) in D.

2.5.2 Theoretical results

In the context of a pair of categorical variables (X, Y ), where X takes finitely many values in,
say, X1 × · · · × Xd, Louppe et al. [2013] consider totally randomized and fully developed trees.
At each cell, the `-th tree is grown by selecting a variable X(j) uniformly among the features
that have not been used in the parent nodes, and by subsequently dividing the cell into |Xj |
children (so the number of children equals the number of modalities of the selected variable).
In this framework, it can be shown that the population version of MDI(X(j)) for a single tree
satisfies

MDI?(X(j)) =
p−1∑
k=0

1(k
p

)
(p− k)

∑
B∈Pk(V −j)

I(Xj ;Y |B),

where V −j = {1, . . . , j − 1, j + 1, . . . , p}, Pk(V −j) the set of subsets of V −j of cardinality k,
and I(X(j);Y |B) the conditional mutual information of X(j) and Y given the variables in B. In
addition,

p∑
j=1

MDI?(X(j)) = I(X(1), . . . , X(p);Y ).

These results show that the information I(X(1), . . . , X(p);Y ) is the sum of the importances
of each variable, which can itself be made explicit using the information values I(X(j);Y |B)
between each variable X(j) and the output Y , conditional on variable subsets B of different
sizes.

Louppe et al. [2013] define a variable X(j) as irrelevant with respect to B ⊂ V = X1×· · ·×Xp
whenever I(X(j);Y |B) = 0. Thus, X(j) is irrelevant if and only if MDI?(X(j)) = 0. It is easy
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to see that if an additional irrelevant variable X(p+1) is added to the list of variables, then the
variable importance of any of the X(j) computed with a single tree does not change if the tree
is built with the new collection of variables V ∪ {X(p+1)}. In other words, building a tree with
an additional irrelevant variable does not change the importances of the other variables.

The most notable results regarding MDA are due to Ishwaran [2007], who studies a slight
modification of the criterion via feature noising. To add noise to a variable X(j), one considers a
new observation X, take X down the tree and stop when a split is made according to the variable
X(j). Then the right or left child node is selected with probability 1/2, and this procedure is
repeated for each subsequent node (whether it is performed along the variable X(j) or not). The
importance of variable X(j) is still computed by comparing the error of the forest with that
of the “noisy” forest. Assuming that the forest is consistent and that the regression function
is piecewise constant, Ishwaran [2007] gives the asymptotic behavior of M̂DA(X(j)) when the
sample size tends to infinity. This behavior is intimately related to the set of subtrees (of the
initial regression tree) whose roots are split along the coordinate X(j).

Let us lastly mention the approach of Gregorutti et al. [2013], who computed the MDA
criterion for several distributions of (X, Y ). For example, consider a model of the form

Y = m(X) + ε,

where (X, ε) is a Gaussian random vector, and assume that the correlation matrix C satisfies C =
[Cov(Xj , Xk)]1≤j,k≤p = (1− c)Ip + c11> (the symbol > denotes transposition, 1 = (1, . . . , 1)>,
and c is a constant in (0, 1)). Assume, in addition, that Cov(Xj , Y ) = τ0 for all j ∈ {1, . . . , p}.
Then, for all j,

MDI?(X(j)) = 2
(

τ0
1− c+ pc

)2
.

Thus, in the Gaussian setting, the variable importance decreases as the inverse of the square of
p when the number of correlated variables p increases.

2.5.3 Related works

The empirical properties of the MDA criterion have been extensively analyzed and compared
in the statistical computing literature. Indeed, Archer and Kimes [2008], Strobl et al. [2008],
Nicodemus and Malley [2009], Auret and Aldrich [2011], and Toloşi and Lengauer [2011] stress
the negative effect of correlated variables on MDA performance. In this respect, Genuer et al.
[2010] noticed that MDA is less able to detect the most relevant variables when the number of
correlated features increases. Similarly, the empirical study of Archer and Kimes [2008] points
out that both MDA and MDI behave poorly when correlation increases—these results have
been experimentally confirmed by Auret and Aldrich [2011] and Toloşi and Lengauer [2011]. An
argument of Strobl et al. [2008] to justify the bias of MDA in the presence of correlated variables
is that the algorithm evaluates the marginal importance of the variables instead of taking into
account their effect conditional on each other. A way to circumvent this issue is to combine
random forests and the Recursive Feature Elimination algorithm of Guyon et al. [2002], as in
Gregorutti et al. [2013]. Detecting relevant features can also be achieved via hypothesis testing
[Mentch and Hooker, 2014a]—a principle that may be used to detect more complex structures
of the regression function, like for instance its additivity [Mentch and Hooker, 2014b].
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As for the tree building process, selecting uniformly at each cell a set of features for splitting
is simple and convenient, but such procedures inevitably select irrelevant variables. Therefore,
several authors have proposed modified versions of the algorithm that incorporate a data-driven
weighing of variables. For example, Kyrillidis and Zouzias [2014] study the effectiveness of non-
uniform randomized feature selection in decision tree classification, and experimentally show that
such an approach may be more effective compared to naive uniform feature selection. Enriched
random forests, designed by Amaratunga et al. [2008] choose at each node the eligible subsets
by weighted random sampling with the weights tilted in favor of informative features. Similarly,
the reinforcement learning trees (RLT) of Zhu et al. [2012] build at each node a random forest to
determine the variable that brings the greatest future improvement in later splits, rather than
choosing the one with largest marginal effect from the immediate split.

Choosing weights can also be done via regularization. Deng and Runger [2012] propose a
Regularized Random Forest (RRF), which penalizes selecting a new feature for splitting when
its gain is similar to the features used in previous splits. Deng and Runger [2013] suggest a
Guided RRF (GRRF), in which the importance scores from an ordinary random forest are used
to guide the feature selection process in RRF. Lastly, a Garrote-style convex penalty, proposed
by Meinshausen [2009], selects functional groups of nodes in trees, yielding to parcimonious
estimates. We also mention the work of Konukoglu and Ganz [2014] who address the problem of
controlling the false positive rate of random forests and present a principled way to determine
thresholds for the selection of relevant features without any additional computational load.

2.6 Extensions

Weighted forests. In Breiman’s [2001] forests, the final prediction is the average of the indi-
vidual tree outcomes. A natural way to improve the method is to incorporate tree-level weights
to emphasize more accurate trees in prediction [Winham et al., 2013]. A closely related idea,
proposed by Bernard et al. [2012], is to guide tree building—via resampling of the training
set and other ad hoc randomization procedures—so that each tree will complement as much
as possible the existing trees in the ensemble. The resulting Dynamic Random Forest (DRF)
shows significant improvement in terms of accuracy on 20 real-based data sets compared to the
standard, static, algorithm.

Online forests. In its original version, random forests is an offline algorithm, which is
given the whole data set from the beginning and required to output an answer. In contrast,
online algorithms do not require that the entire training set is accessible at once. These models
are appropriate for streaming settings, where training data is generated over time and must
be incorporated into the model as quickly as possible. Random forests have been extended to
the online framework in several ways [Saffari et al., 2009, Denil et al., 2013, Lakshminarayanan
et al., 2014]. In Lakshminarayanan et al. [2014], so-called Mondrian forests are grown in an
online fashion and achieve competitive predictive performance comparable with other online
random forests while being faster. When building online forests, a major difficulty is to decide
when the amount of data is sufficient to cut a cell. Exploring this idea, Yi et al. [2012] propose
Information Forests, whose construction consists in deferring classification until a measure of
classification confidence is sufficiently high, and in fact break down the data so as to maximize
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this measure. An interesting theory related to these greedy trees can be found in Biau and
Devroye [2013].

Survival forests. Survival analysis attempts to deal with incomplete data, and particularly
right-censored data in fields such as clinical trials. In this context, parametric approaches such
as proportional hazards are commonly used, but fail to model nonlinear effects. Random forests
have been extended to the survival context by Ishwaran et al. [2008], who prove consistency of
Random Survival Forests (RSF) algorithm assuming that all variables are factors. Yang et al.
[2010] showed that by incorporating kernel functions into RSF, their algorithm KIRSF achieves
better results in many situations. Ishwaran et al. [2011] review the use of the minimal depth,
which measures the predictive quality of variables in survival trees.

Ranking forests. Clémençon et al. [2013] have extended random forests to deal with
ranking problems and propose an algorithm called Ranking Forests based on the ranking trees
of Clémençon and Vayatis [2009]. Their approach is based on nonparametric scoring and ROC
curve optimization in the sense of the AUC criterion.

Clustering forests. Yan et al. [2013] present a new clustering ensemble method called
Cluster Forests (CF) in the context of unsupervised classification. CF randomly probes a high-
dimensional data cloud to obtain good local clusterings, then aggregates via spectral clustering
to obtain cluster assignments for the whole data set. The search for good local clusterings is
guided by a cluster quality measure, and CF progressively improves each local clustering in a
fashion that resembles tree growth in random forests.

Quantile forests. Meinshausen [2006] shows that random forests provide information about
the full conditional distribution of the response variable, and thus can be used for quantile
estimation.

Missing data. One of the strengths of random forests is that they can handle missing data.
The procedure, explained in Breiman [2003], takes advantage of the so-called proximity matrix,
which measures the proximity between pairs of observations in the forest, to estimate missing
values. This measure is the empirical counterpart of the kernels defined in Section 3.2. Data
imputation based on random forests has further been explored by Rieger et al. [2010], Crookston
and Finley [2008], and extended to unsupervised classification by Ishioka [2013].

Forests and machine learning. One-class classification is a binary classification task for
which only one class of samples is available for learning. Désir et al. [2013] study the One Class
Random Forests algorithm, which is designed to solve this particular problem. Geremia et al.
[2013] have introduced a supervised learning algorithm called Spatially Adaptive Random Forests
to deal with semantic image segmentation applied to medical imaging protocols. Lastly, in the
context of multi-label classification, Joly et al. [2014] adapt the idea of random projections
applied to the output space to enhance tree-based ensemble methods by improving accuracy
while significantly reducing the computational burden.



Chapter 3

On the asymptotics of random
forests

Abstract The last decade has witnessed a growing interest in random forest models which
are recognized to exhibit good practical performance, especially in high-dimensional settings.
On the theoretical side, however, their predictive power remains largely unexplained, thereby
creating a gap between theory and practice. In this paper, we present some asymptotic results
on random forests in a regression framework. Firstly, we provide theoretical guarantees to
link finite forests used in practice (with a finite number M of trees) to their asymptotic
counterparts (with M = ∞). Using empirical process theory, we prove a uniform central
limit theorem for a large class of random forest estimates, which holds in particular for
Breiman’s [2001] original forests. Secondly, we show that infinite forest consistency implies
finite forest consistency and thus, we state the consistency of several infinite forests. In
particular, we prove that q quantile forests—close in spirit to Breiman’s [2001] forests but
easier to study—are able to combine inconsistent trees to obtain a final consistent prediction,
thus highlighting the benefits of random forests compared to single trees.

We would like to thank the two referees for valuable comments and insightful suggestions and Luc
Devroye for a substantial improvement of the proof of Lemma 3.2.
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3.1 Introduction

Random forests are a class of algorithms used to solve classification and regression problems.
As ensemble methods, they grow several trees as base estimates and aggregate them to make a
prediction. In order to obtain many different trees based on a single training set, random forests
procedures introduce randomness in the tree construction. For instance, trees can be built by
randomizing the set of features [Dietterich and Kong, 1995, Ho, 1998], the data set [Breiman,
1996, 2000b], or both at the same time [Breiman, 2001, Cutler and Zhao, 2001].

Among all random forest algorithms, the most popular one is that of Breiman [2001], which
relies on CART procedure [Classification and Regression Trees, Breiman et al., 1984] to grow
the individual trees. As highlighted by several applied studies [see, e.g., Hamza and Laroque,
2005, Díaz-Uriarte and de Andrés, 2006], Breiman’s [2001] random forests can outperform state-
of-the-art methods. They are recognized for their ability to handle high-dimensional data sets,
thus being useful in fields such as genomics [Qi, 2012] and pattern recognition [Rogez et al.,
2008], just to name a few. On the computational side, Breiman’s [2001] forests are easy to run
and robust to changes in the parameters they depend on [Liaw and Wiener, 2002, Genuer et al.,
2008]. Besides, extensions have been developed in ranking problems [Clémençon et al., 2013],
quantile estimation [Meinshausen, 2006], and survival analysis [Ishwaran et al., 2008]. Interesting
new developments in the context of massive data sets have been achieved. For instance, Geurts
et al. [2006] modified the procedure to reduce calculation time, while other authors extended
the procedure to online settings [Denil et al., 2013, Lakshminarayanan et al., 2014, and the
references therein].

While Breiman’s [2001] forests are extensively used in practice, some of their mathematical
properties remain under active investigation. In fact, most theoretical studies focus on simplified
versions of the algorithm, where the forest construction is independent of the training set.
Consistency of such simplified models has been proved [e.g., Biau et al., 2008, Ishwaran and
Kogalur, 2010, Denil et al., 2013]. However, these results do not extend to Breiman’s [2001]
original forests whose construction critically depends on the whole training set. Recent attempts
to bridge the gap between theoretical forest models and Breiman’s [2001] forests have been made
by Wager [2014] and Scornet et al. [2015b] who establish consistency of the original algorithm
under suitable assumptions.

Apart from the dependence of the forest construction on the data set, there is another
fundamental difference between existing forest models and the ones implemented. Indeed, in
practice, a forest can only be grown with a finite number M of trees although most theoretical
works assume, by convenience, that M =∞. Since the predictor with M =∞ does not depend
on the specific tree realizations that form the forest, it is therefore more amenable to analysis.
However, surprisingly, no study aims at clarifying the link between finite forests (finite M) and
infinite forests (M = ∞) even if some authors [Mentch and Hooker, 2014a, Wager et al., 2014]
proved results on finite forest predictions at a fixed point x.



3.2. Notation 49

In the present paper, our goal is to study the connection between infinite forest models and
finite forests used in practice in the context of regression. We start by proving a uniform central
limit theorem for various random forests estimates, including Breiman’s [2001] ones. In Section
3, assuming some regularity on the regression model, we point out that the L2 risk of any infinite
forest is bounded above by the risk of the associated finite forests. Thus infinite forests are better
estimates than finite forests in terms of L2 risk. Under the same assumptions, our analysis also
shows that the risks of infinite and finite forests are close, if the number of trees is chosen to
be large enough. An interesting corollary of this result is that infinite forest consistency implies
finite forest consistency. Finally, in Section 4, we prove the consistency of several infinite random
forests. In particular, taking one step toward the understanding of Breiman’s [2001] forests, we
prove that q quantile forests, a variety of forests whose construction depends on the positions
Xi’s of the data, are consistent. As for Breiman’s [2001] forests, each leaf of each tree in q
quantile forests contains a small number of points that does not grow to infinity with the sample
size. Thus, q quantile forests average inconsistent trees estimate to build a consistent prediction.

We start by giving some notation in Section 2. All proofs are postponed to Section 5.

3.2 Notation
Throughout the paper, we assume to be given a training sample Dn = (X1, Y1), . . . , (Xn, Yn) of
[0, 1]p× R-valued independent random variables distributed as the prototype pair (X, Y ), where
E[Y 2] < ∞. We aim at predicting the response Y , associated with the random variable X, by
estimating the regression function m(x) = E [Y |X = x]. In this context, we use random forests
to build an estimate mn : [0, 1]p → R of m, based on the data set Dn.

A random forest is a collection of M randomized regression trees [for an overview on tree
construction, see Chapter 20 in Györfi et al., 2002]. For the j-th tree in the family, the predicted
value at point x is denoted by mn(x,Θj ,Dn), where Θ1, . . . ,ΘM are independent random vari-
ables, distributed as a generic random variable Θ, independent of the sample Dn. This random
variable can be used to sample the training set or to select the candidate directions or positions
for splitting. The trees are combined to form the finite forest estimate

mM,n(x,Θ1, . . . ,ΘM ) = 1
M

M∑
m=1

mn(x,Θm). (3.1)

By the law of large numbers, for any fixed x, conditionally on Dn, the finite forest estimate
tends to the infinite forest estimate

m∞,n(x) = EΘ [mn(x,Θ)] .

The risk of m∞,n is defined by

R(m∞,n) = E[m∞,n(X)−m(X)]2, (3.2)

while the risk of mM,n equals

R(mM,n) = E[mM,n(X,Θ1, . . . ,ΘM )−m(X)]2. (3.3)
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It is stressed that both risks R(m∞,n) and R(mM,n) are deterministic since the expectation in
(3.2) is over X,Dn, and the expectation in (3.3) is over X,Dn and Θ1, . . . ,ΘM . Throughout the
paper, we say that m∞,n (resp. mM,n) is L2 consistent if R(m∞,n) (resp. R(mM,n)) tends to
zero as n→∞.

As mentioned earlier, there is a large variety of forests, depending on how trees are grown
and how the randomness Θ influences the tree construction. For instance, tree construction can
be independent of Dn [Biau, 2012], depend only on the Xi’s [Biau et al., 2008] or depend on the
whole training set [Cutler and Zhao, 2001, Geurts et al., 2006, Zhu et al., 2012]. Throughout
the paper, we use Breiman’s [2001] forests and uniform forests to exemplify our results. In
Breiman’s [2001] original procedure, splits depend on the whole sample and are performed to
minimize variance within the two resulting cells. The algorithm stops when each cell contains
less than a small pre-specified number of points (typically, 5 in regression). On the other hand,
uniform forests are a simpler procedure since, at each node, a coordinate is uniformly selected
among {1, . . . , p} and a split position is uniformly chosen in the range of the cell, along the
pre-chosen coordinate. The algorithm stops when a full binary tree of level k is built, that is if
each cell has been cut exactly k times, where k ∈ N is a parameter of the algorithm.

In the rest of the paper, we will repeatedly use the random forest connection function Kn,
defined as

Kn : [0, 1]p × [0, 1]p → [0, 1]
(x, z) 7→ PΘ

[
x Θ↔ z

]
,

where x Θ↔ z is the event where x and z belong to the same cell in the tree Tn(Θ) designed with
Θ and Dn. Moreover, notation PΘ denotes the probability with respect to Θ, conditionally on
Dn. The same notational convention holds for the expectation EΘ and the variance VΘ. Thus,
if we fix the training set Dn, we see that the connection Kn(x, z) is just the probability that x
and z are connected in the forest.

We say that a forest is discrete (resp. continuous) if, keeping Dn fixed, its connection function
Kn(•, •) is piecewise constant (resp. continuous). In fact, most existing forest models fall in
one of these two categories. For example, if, at each cell, the number of possible splits is finite,
then the forest is discrete. This is the case of Breiman’s [2001] forests, where splits can only be
performed at the middle of two consecutive data points along any coordinate. However, if splits
are drawn according to some density along each coordinate, the resulting forest is continuous.
For instance, uniform forests are continuous.

3.3 Finite and infinite random forests
Contrary to finite forests which depend upon the particular Θj ’s used to design trees, infinite
forests do not and are therefore more amenable to mathematical analysis. Besides, finite forests
predictions can be difficult to interpret since they depend on the random parameters Θj ’s. In
addition, the Θj ’s are independent of the data set and thus unrelated to the particular prediction
problem.

In this section, we study the link between finite forests and infinite forests. More specifically,
assuming that the data set Dn is fixed, we examine the asymptotic behavior of the finite forest
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estimate mM,n(•,Θ1, . . . ,ΘM ) as M tends to infinity. This setting is consistent with practical
problems, where Dn is fixed, and one can grow as many trees as possible.

Clearly, by the law of large numbers, we know that conditionally on Dn, for all x ∈ [0, 1]p,
almost surely,

mM,n(x,Θ1, . . . ,ΘM ) →
M→∞

m∞,n(x). (3.4)

The following theorem extends the pointwise convergence in (3.4) to the convergence of the
whole functional estimate mM,n(•,Θ1, . . . ,ΘM ), towards the functional estimate m∞,n(•).

Theorem 3.1. Consider a continuous or discrete random forest. Then, conditionally on Dn,
almost surely, for all x ∈ [0, 1]p, we have

mM,n(x,Θ1, . . . ,ΘM ) →
M→∞

m∞,n(x).

Remark 3.1. Since the set [0, 1]p is not countable, we cannot reverse the “almost sure” and
“for all x ∈ [0, 1]p” statements in (3.4). Thus, Theorem 3.1 is not a consequence of (3.4).

Theorem 3.1 is a first step to prove that infinite forest estimates can be uniformly approx-
imated by finite forest estimates. To pursue the analysis, a natural question is to determine
the rate of convergence in Theorem 3.1. The pointwise rate of convergence is provided by the
central limit theorem which says that, conditionally on Dn, for all x ∈ [0, 1]p,

√
M
(
mM,n(x,Θ1, . . . ,ΘM )−m∞,n(x)

) D→
M→∞

N
(
0, σ̃2(x)

)
, (3.5)

where

σ̃2(x) = VΘ

(
1

Nn(x,Θ)

n∑
i=1

Yi1x Θ↔Xi

)
≤ 4 max

1≤i≤n
Y 2
i

(as before, VΘ denotes with respect to Θ, conditionally on Dn), and Nn(x,Θ) is the number of
data points falling into the cell of the tree Tn(Θ) which contains x.

Equation (3.5) is not sufficient to determine the asymptotic distribution of the functional
estimate mM,n(•,Θ1, . . . ,ΘM ). To make it explicit, we need to introduce the empirical process
GM [see van der Vaart and Wellner, 1996] defined by

GM =
√
M

(
1
M

M∑
m=1

δΘm − PΘ

)
,

where δΘm is the Dirac function at Θm. We also let F2 = {gx : θ 7→ mn(x, θ); x ∈ [0, 1]p} be the
collection of all possible tree estimates in the forest. In order to prove that a uniform central
limit theorem holds for random forest estimates, we need to show that there exists a Gaussian
process G such that

sup
g∈F2

∣∣∣∣ ∫
Θ
g(θ)dGM (θ)−

∫
Θ
g(θ)dG(θ)

∣∣∣∣ →M→∞ 0, (3.6)
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where the first part on the left side can be written as∫
Θ
g(θ)dGM (θ) =

√
M

(
1
M

M∑
m=1

g(Θm)− EΘ
[
g(Θ)

])
.

For more clarity, instead of (3.6), we will write

√
M

(
1
M

M∑
m=1

mn(•,Θm)− EΘ [mn(•,Θ)]
)
D→ Gg•. (3.7)

To establish identity (3.7), we first define, for all ε > 0, the random forest grid step δ(ε) by

δ(ε) = sup

η ∈ R : sup
x1,x2∈[0,1]p
‖x1−x2‖∞≤η

∣∣1−Kn(x1,x2)
∣∣ ≤ ε2

8

 ,
where Kn is the connection function of the forest. The function δ can be seen as the modulus of
continuity of Kn in the sense that it is the distance such that Kn(x1,x2) does not vary of much
that ε2/8 if ‖x1 − x2‖∞ ≤ δ(ε). We will also need the following assumption.

(H3.1) One of the following properties is satisfied:

• The random forest is discrete,

• There exist C,A > 0, α < 2 such that, for all ε > 0,

δ(ε) ≥ C exp(−A/εα).

Observe that (H3.1) is mild since most forests are discrete and the only continuous forest
we have in mind, the uniform forest, satisfies (H3.1), as stated in Lemma 3.1 below.

Lemma 3.1. Let k ∈ N. Then, for all ε > 0, the grid step δ(ε) of uniform forests of level k
satisfies

δ(ε) ≥ exp
(
−Ak,p
ε2/3

)
,

where Ak,p = (8pe(k + 2)!)1/3.

The following theorem states that a uniform central limit theorem is valid over the class of
random forest estimates, provided that (H3.1) is satisfied.

Theorem 3.2. Consider a random forest which satisfies (H3.1). Then, conditionnally on Dn,
√
M (mM,n(•)−m∞,n(•)) D→ Gg•,

where G is a Gaussian process with mean zero and a covariate function

CovΘ(Ggx,Ggz) = CovΘ

(
n∑
i=1

Yi
1

x Θ↔Xi

Nn(x,Θ) ,
n∑
i=1

Yi
1

z Θ↔Xi

Nn(z,Θ)

)
.
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According to the discussion above, Theorem 3.2 holds for uniform forests (by Lemma 3.1)
and Breiman’s [2001] forests (since they are discrete). Moreover, according to this Theorem,
the finite forest estimates tend uniformly to the infinite forest estimates, with the standard rate
of convergence

√
M . This result contributes to bridge the gap between finite forests used in

practice and infinite theoretical forests.
The proximity between two estimates can also be measured in terms of their L2 risk. In this

respect, Theorem 3.3 states that the risk of infinite forests is lower than the one of finite forests
and provides a bound on the difference between these two risks. We first need an assumption
on the regression model.

(H3.2) One has

Y = m(X) + ε,

where ε is a centered Gaussian noise with finite variance σ2, independent of X, and ‖m‖∞ =
sup

x∈[0,1]p
|m(x)| <∞.

Theorem 3.3. Assume that (H3.2) is satisfied. Then, for all M,n ∈ N?,

R(mM,n) = R(m∞,n) + 1
M
EX,Dn

[
VΘ [mn(X,Θ)]

]
.

In particular,

0 ≤ R(mM,n)−R(m∞,n) ≤ 8
M
×
(
‖m‖2∞ + σ2(1 + 4 logn)

)
.

Theorem 3.3 reveals that the prediction accuracy of infinite forests is better than that of
finite forests. In practice however, there is no simple way to implement infinite forests and, in
fact, finite forests are nothing but Monte Carlo approximations of infinite forests. But, since the
difference of risks between both types of forests is bounded (by Theorem 3.3), the prediction
accuracy of finite forests is almost as good as that of infinite forests provided the number of
trees is large enough. More precisely, under (H3.2), for all ε > 0, if

M ≥ 8(‖m‖2∞ + σ2)
ε

+ 32σ2 logn
ε

,

then R(mM,n)−R(m∞,n) ≤ ε.
Another interesting consequence of Theorem 3.3 is that, assuming that (H3.2) holds and

that M/ logn → ∞ as n → ∞, finite random forests are consistent as soon as infinite random
forests are. This allows to extend all previous consistency results regarding infinite forests [see,
e.g., Meinshausen, 2006, Biau et al., 2008] to finite forests. It must be stressed that the “logn”
term comes from the Gaussian noise, since, if ε1, . . . , εn are independent and distributed as a
Gaussian noise ε ∼ N (0, σ2), we have,

E

[
max

1≤i≤n
ε2
i

]
≤ σ2(1 + 4 logn),

[see, e.g., Chapter 1 in Boucheron et al., 2013]. Therefore, the required number of trees depends
on the noise in the regression model. For instance, if Y is bounded, then the condition turns
into M →∞.
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3.4 Consistency of some random forest models
Section 3 was devoted to the connection between finite and infinite forests. In particular, we
proved in Theorem 3.3 that the consistency of infinite forests implies that of finite forests, as
soon as (H3.2) is satisfied and M/ logn → ∞. Thus, it is natural to focus on the consistency
of infinite forest estimates, which can be written as

m∞,n(X) =
n∑
i=1

W∞ni (X)Yi, (3.8)

where

W∞ni (X) = EΘ

[
1

X Θ↔Xi

Nn(X,Θ)

]
are the random forest weights.

3.4.1 Totally non adaptive forests

Proving consistency of infinite random forests is in general a difficult task, mainly because
forest construction can depend on both the Xi’s and the Yi’s. This feature makes the resulting
estimate highly data-dependent, and therefore difficult to analyze (this is particularly the case
for Breiman’s [2001] forests). To simplify the analysis, we investigate hereafter infinite random
forest estimates whose weights depends only on X,X1, . . . ,Xn which is called the X-property.
The good news is that when infinite forest estimates have the X-property, they fall in the
general class of local averaging estimates, whose consistency can be addressed using Stone’s
[1977] theorem.

Therefore, using Stone’s theorem as a starting point, we first prove the consistency of random
forests whose construction is independent of Dn, which is the simplest case of random forests
satisfying the X-property. For such forests, the construction is based on the random parameter
Θ only. As for now, we say that a forest is totally non adaptive of level k (k ∈ N, with k possibly
depending on n) if each tree of the forest is built independently of the training set and if each
cell is cut exactly k times. The resulting cell containing X, designed with randomness Θ, is
denoted by An(X,Θ).

Theorem 3.4. Assume that X is distributed on [0, 1]p and consider a totally non adaptive forest
of level k. In addition, assume that for all ρ, ε > 0, there exists N > 0 such that, with probability
1− ρ, for all n > N ,

diam(An(X,Θ)) ≤ ε.

Then, providing k →∞ and 2k/n→ 0, the infinite random forest is L2 consistent, that is

R(m∞,n)→ 0 as n→∞.

Theorem 3.4 is a generalization of some consistency results in Biau et al. [2008] for the case
of totally non adaptive random forest. Together with Theorem 3.3, we see that if (H3.2) is
satisfied and M/ logn→∞ as n→∞, then the finite random forest is L2 consistent.
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According to Theorem 3.4, a totally non adaptive forest of level k is consistent if the cell
diameters tend to zero as n→∞ and if the level k is properly tuned. This is in particular true
for uniform random forests, as shown in the following corollary.

Corollary 3.1. Assume that X is distributed on [0, 1]p and consider a uniform forest of level
k. Then, providing that k →∞ and 2k/n→ 0, the uniform random forest is L2 consistent.

3.4.2 q quantile forests

For totally non adaptive forests, the main difficulty that consists in using the data set to build
the forest and to predict at the same time, vanishes. However, because of their simplified
construction, these forests are far from accurately modelling Breiman’s [2001] forest. To take
one step further into the understanding of Breiman’s [2001] forest behavior, we study the q
(q ∈ [1/2, 1)) quantile random forest, which satisfies the X-property. Indeed, their construction
depends only on the Xi’s which is a good trade off between the complexity of Breiman’s [2001]
forests and the simplicity of totally non adaptive forests. As an example of q quantile trees, the
median tree (q = 1/2) has already been studied by Devroye et al. [1996], such as the k-spacing
tree [Devroye et al., 1996] whose construction is based on quantiles.

Algorithm 3: q quantile forest predicted value at x.
Input: Fix an ∈ {1, . . . , n}, and x ∈ [0, 1]p.
Data: A training set Dn.

1 for ` = 1, . . . ,M do
2 Select an points, without replacement, uniformly in Dn.
3 Set P = {[0, 1]p} the partition associated with the root of the tree.
4 while there exists A ∈ P which contains strictly more than two points do
5 Select uniformly one dimension j within {1, . . . , p}.
6 Let N be the number of data points in A and select q′ ∈ [1− q, q]∩ (1/N, 1− 1/N).
7 Cut the cell A at the position given by the q′ empirical quantile (see definition

above) along the j-th coordinate.
8 Call AL and AR the two resulting cells.
9 Set P ← (P\{A}) ∪AL ∪AR.

10 end
11 for each A ∈ P which contains exactly two points do
12 Select uniformly one dimension j within {1, . . . , p}.
13 Cut along the j-th direction, in the middle of the two points.
14 Call AL and AR the two resulting cells.
15 Set P ← (P\{A}) ∪AL ∪AR.
16 end
17 Compute the predicted value mn(x,Θ`) at x equal to the single Yi falling in the cell

of x, with respect to the partition P.
18 end
19 Compute the random forest estimate mM,n(x; Θ1, . . . ,ΘM ) at the query point x

according to equality (3.1).
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In the spirit of Breiman’s [2001] algorithm, before growing each tree, data are subsampled,
that is an points (an < n) are selected without replacement. Then, each split is performed on an
empirical q′-quantile (where q′ ∈ [1− q, q] can be pre-specified by the user or randomly chosen)
along a coordinate, chosen uniformly at random among the p coordinates. Recall that the q′-
quantile (q′ ∈ [1 − q, q]) of X1, . . . ,Xn is defined as the only X(`) satisfying Fn(X(`−1)) ≤ q′ <
Fn(X(`)), where the X(i)’s are ordered increasingly. Note that data points on which splits are
performed are not sent down to the resulting cells. This is done to ensure that data points are
uniformly distributed on the resulting cells (otherwise, there would be at least one data point on
the edge of the resulting cell, and thus the data point distribution would not be uniform on this
cell). Finally, the algorithm stops when each cell contains exactly one point. The full procedure
is described in Algorithm 3.

Since the construction of q quantile forests depends on the Xi’s and is based on subsampling,
it is a more realistic modeling of Breiman’s [2001] forests than totally non adaptive forests. It
also provides a good understanding on why random forests are still consistent even when there
is exactly one data point in each leaf. Theorem 3.5 states that with a proper subsampling rate
of the training set, the q quantile random forests are consistent.

(H3.3) One has

Y = m(X) + ε,

where ε is a centred noise such that V[ε|X = x] ≤ σ2, where σ2 < ∞ is a constant. Moreover,
X has a density on [0, 1]p and m is continuous.

Theorem 3.5. Assume that (H3.3) is satisfied. Then, providing an → ∞ et an/n → 0, the
infinite q quantile random forest is L2 consistent.

3.4.3 Discussion

Some remarks are in order. At first, observe that each tree in the q quantile forest is inconsistent
[see Problem 4.3 in Györfi et al., 2002], because each leaf contains exactly one data point, a
number which does not grow to infinity as n → ∞. Thus, Theorem 3.5 shows that q quantile
forest combines inconsistent trees to form a consistent estimate.

Secondly, many random forests can be seen as quantile forests if they satisfy the X-property
and if splits do not separate a small fraction of data points from the rest of the sample (indeed,
for each split in the q quantile forests, the resulting cells contain at least a fraction q of the
observations falling into the parent node). The last assumption is true, for example, if X has a
density on [0, 1]p bounded from below and from above, and if some splitting rule forces splits to
be performed far away from the cell edges. This assumption is explicitly made in the analysis
of Meinshausen [2006] and Wager [2014] to ensure that cell diameters tend to zero as n → ∞,
which is a necessary condition to prove the consistency of partitioning estimates [see Chapter 4
in Györfi et al., 2002]. Unfortunately, there are no results stating that splits in Breiman’s [2001]
forests are performed far from the edges [see Ishwaran, 2013, for an analysis of the splitting
criterion in Breiman’s forests].

In addition, we note that Theorem 3.5 does not cover the bootstrap case since in that case,
an = n data points are selected with replacement. However, the condition on the subsampling
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rate can be replaced by the following one: for all x,

max
i
PΘ

[
x Θ↔ Xi

]
→ 0 as n→∞. (3.9)

Condition (3.9) can be interpreted by saying that a point x should not be connected too often
to the same data point in the forest, thus meaning that trees have to be various enough to
ensure the forest consistency. This idea of diversity among trees has already been suggested by
Breiman [2001]. In bootstrap case, a single data point is selected in about 63% of trees. Thus,
the term maxiPΘ

[
x Θ↔ Xi

]
is roughly upper bounded by 0.63 which is not sufficient to prove

(3.9). It does not mean that random forests based on bootstrap are inconsistent but that a more
detailed analysis is required. A possible, but probably difficult, route is an in-depth analysis of
the connection function Kn(x,Xi) = PΘ

[
x Θ↔ Xi

]
.

Finally, a natural question is how to extend random forests to the case of functional data
[see, e.g., Ramsay and Silverman, 2005, Ferraty and Vieu, 2006, Horváth and Kokoszka, 2012,
Bongiorno et al., 2014, for an overview of functional data analysis]. A first attempt may be
done by expanding each variable in a particular truncated functional basis. Each curve is then
represented by a finite number of coefficient and any standard random forest procedure can be
applied [see, e.g., Poggi and Tuleau, 2006, Gregorutti et al., 2014, for practical applications].
Since this method mainly consists in projecting functional variables onto finite dimensional
spaces, it suffers from several drawbacks (for example, it depends on the basis and on the
truncated procedure which are arbitrarily chosen in most cases). Unfortunately, we are not
aware of functional random forest procedures that can directly handle functional data. Given the
good performance of random forests in high dimensional settings and the numerous applications
involving functional data, developing such functional forests is certainly is an interesting research
topic.

3.5 Proofs

3.5.1 Proof of Theorem 3.1

Note that the forest estimate mM,n can be written as

mM,n(x) =
n∑
i=1

WM
ni (x)Yi,

where

WM
ni (x) = 1

M

M∑
m=1

1
xΘm↔Xi

Nn(x,Θm) .

Similarly, one can write the infinite forest estimate m∞,n as

m∞,n(x) =
n∑
i=1

W∞ni (x)Yi,
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where

W∞ni (x) = EΘ

[
1

x Θ↔Xi

Nn(x,Θ)

]
.

We assume that Dn is fixed and prove Theorem 3.1 for p = 2. The general case can be
treated similarly. Throughout the proof, we write, for all θ, x, z ∈ [0, 1]2,

fx,z(θ) =
1

x θ↔z
Nn(x, θ) .

Let us first consider a discrete random forest. By definition of such random forests, there
exists v ∈ N? and a partition {A` : 1 ≤ ` ≤ v} of [0, 1]2 such that the connection function Kn is
constant over the sets A`1 × A`2 ’s (1 ≤ `1, `2 ≤ v). For all 1 ≤ ` ≤ v, denote by a`, the center
of the cell A`. Take x, z ∈ [0, 1]2. There exist `1, `2 such that x ∈ A`1 , z ∈ A`2 . Thus, for all θ,∣∣∣∣∣∣

1
x θ↔z

Nn(x, θ) −
1

a`1
θ↔a`2

Nn(a`1 , θ)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
1

x θ↔z
Nn(x, θ) −

1
a`1

θ↔z

Nn(a`1 , θ)
+

1
a`1

θ↔z

Nn(a`1 , θ)
−
1

a`1
θ↔a`2

Nn(a`1 , θ)

∣∣∣∣∣∣
≤ 1
Nn(a`1 , θ)

∣∣∣∣1x θ↔z
− 1

a`1
θ↔z

∣∣∣∣
+ 1
Nn(a`1 , θ)

∣∣∣∣1a`1
θ↔z
− 1

a`1
θ↔a`2

∣∣∣∣
≤ 1
Nn(a`1 , θ)

1
x θ=a`1

+ 1
Nn(a`1 , θ)

1
a`2

θ=z

≤ 0.

Thus, the set

H =
{
θ 7→ fx,z(θ) : x, z ∈ [0, 1]2

}
is finite. Therefore, by the strong law of large numbers, almost surely, for all f ∈ H,

1
M

M∑
m=1

f(Θm) →
M→∞

EΘ
[
f(Θ)

]
.

Noticing that WM
ni (x) = 1

M

∑M
m=1 fx,Xi(Θm), we obtain that, almost surely, for all x ∈ [0, 1]2,

WM
ni (x)→W∞ni (x), as M →∞.

Since Dn is fixed and random forest estimates are linear in the weights, the proof of the discrete
case is complete.

Let us now consider a continuous random forest. We define, for all x, z ∈ [0, 1]2,

WM
n (x, z) = 1

M

M∑
m=1

1
xΘm↔ z

Nn(x,Θm) ,
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and

W∞n (x, z) = EΘ

[
1

x Θ↔z
Nn(x,Θ)

]
.

According to the strong law of large numbers, almost surely, for all x, z ∈ [0, 1]2 ∩Q2,

lim
M→∞

WM
n (x, z) = W∞n (x, z).

Set x, z ∈ [0, 1]2 where x = (x(1), x(2)) and z = (z(1), z(2)). Assume, without loss of generality,
that x(1) < z(1) and x(2) < z(2). Let

Ax = {u ∈ [0, 1]2, u(1) ≤ x(1) and u(2) ≤ x(2)},
and Az = {u ∈ [0, 1]2, u(1) ≥ z(1) and u(2) ≥ z(2)}.

Choose x1 ∈ Ax ∩ Q2 (resp. z2 ∈ Az ∩ Q2) and take x2 ∈ [0, 1]2 ∩ Q2 (resp. z1 ∈ [0, 1]2 ∩ Q2)
such that x1,x,x2 (resp. z2, z, z1) are aligned in this order (see Figure 3.1).

Figure 3.1: Respective positions of x,x1,x2 and z, z1, z2

Thus, ∣∣∣WM
n (x, z)−W∞n (x, z)

∣∣∣ ≤ ∣∣∣WM
n (x, z)−WM

n (x1, z2)
∣∣∣

+
∣∣∣WM

n (x1, z2)−W∞n (x1, z2)
∣∣∣

+ |W∞n (x1, z2)−W∞n (x, z)| . (3.10)

Set ε > 0. Because of the continuity of Kn, we can choose x1,x2 close enough to x and z2, z1
close enough to z such that,

|Kn(x2,x1)− 1| ≤ ε,
|Kn(z1, z2)− 1| ≤ ε,
|1−Kn(x1,x)| ≤ ε,
|1−Kn(z2, z)| ≤ ε.
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Let us consider the second term in equation (3.10). Since x1, z2 belong to [0, 1]2 ∩ Q2, almost
surely, there exists M1 > 0 such that, if M > M1,∣∣∣WM

n (x1, z2)−W∞n (x1, z2)
∣∣∣ ≤ ε.

Regarding the first term in (3.10), note that, according to the position of x1, z2,x, for all θ,
we have

1
x1

θ↔z2

Nn(x, θ) =
1

x1
θ↔z2

Nn(x1, θ)
.

Therefore ∣∣∣WM
n (x, z)−WM

n (x1, z2)
∣∣∣ ≤ 1

M

M∑
m=1

∣∣∣∣∣ 1
xΘm↔ z

Nn(x,Θm) −
1

x1
Θm↔ z2

Nn(x,Θm)

∣∣∣∣∣ .
Observe that, given the positions of x,x1, z, z2, the only case where∣∣∣∣∣ 1

xΘm↔ z
Nn(x,Θm) −

1
x1

Θm↔ z2

Nn(x,Θm)

∣∣∣∣∣ 6= 0

occurs when x1
Θm= z2 and x Θm↔ z. Thus,

1
M

M∑
m=1

∣∣∣∣∣ 1
xΘm↔ z

Nn(x,Θm) −
1

x1
Θm↔ z2

Nn(x,Θm)

∣∣∣∣∣
= 1
M

M∑
m=1

∣∣∣∣∣ 1
xΘm↔ z

Nn(x,Θm) −
1

x1
Θm↔ z2

Nn(x,Θm)

∣∣∣∣∣1x1
Θm= z2

1
xΘm↔ z

≤ 1
M

M∑
m=1

1
xΘm↔ z

1
x1

Θm= z2
.

Again, given the relative positions of x,x1,x2, z, z2, z1, we obtain

1
M

M∑
m=1

1
xΘm↔ z

1
x1

Θm= z2
≤ 1
M

M∑
m=1

(
1

x1
Θm= x

+ 1
z2

Θm= z

)

≤ 1
M

M∑
m=1

(
1

x1
Θm= x2

+ 1
z2

Θm= z1

)

≤ 1
M

M∑
m=1

1
x1

Θm= x2
+ 1
M

M∑
m=1

1
z2

Θm= z1
.

Collecting the previous inequalities, we have∣∣∣WM
n (x, z)−W∞n (x1, z2)

∣∣∣ ≤ 1
M

M∑
m=1

1
x1

Θm= x2
+ 1
M

M∑
m=1

1
z2

Θm= z1

≤ 2− 1
M

M∑
m=1

1
x1

Θm↔ x2
− 1
M

M∑
m=1

1
z2

Θm↔ z1
.
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Since x2, z1,x1, z2 ∈ [0, 1]2 ∩Q2, we deduce that there exists M2 such that, for all M > M2,∣∣∣WM
n (x, z)−W∞n (x1, z2)

∣∣∣ ≤ 2−K∞(x2,x1)−K∞(z1, z2) + 2ε. (3.11)

Considering the third term in (3.10), using the same arguments as above, we see that

|W∞n (x1, z2)−W∞n (x, z)| ≤ EΘ

∣∣∣∣∣ 1x1
Θ↔z2

Nn(x1,Θ) −
1

x Θ↔z
Nn(x,Θ)

∣∣∣∣∣
≤ EΘ

[∣∣∣∣∣ 1x1
Θ↔z2

Nn(x1,Θ) −
1

x Θ↔z
Nn(x,Θ)

∣∣∣∣∣1x1
Θ=z2
1

x Θ↔z

]

≤ EΘ

[
1

x1
Θ=z2
1

x Θ↔z

]
≤ EΘ

[
1

x1
Θ=x2

+ 1
z2

Θ=z1

]
≤ 2−Kn(x1,x2)−Kn(z2, z1). (3.12)

Using inequalities (3.11) and (3.12) in (3.10), we finally conclude that, for allM > max(M1,M2),∣∣∣WM
n (x, z)−W∞n (x, z)

∣∣∣ ≤ 4− 2Kn(x2,x1)− 2Kn(z1, z2) + 3ε

≤ 7ε.

This completes the proof of Theorem 3.1.

3.5.2 Proof of Lemma 3.1 and Theorem 3.2

Proof of Lemma 3.1. Set k ∈ N and ε > 0. We start by considering the case where p = 1. Take
x, z ∈ [0, 1] and let w = − log (|x− z|). The probability that x and z are not connected in the
uniform forest after k cuts is given by

1−Kk(x, z) ≤ 1−Kk(0, |z − x|)
(according to Technical Lemma 3.1, see the end of the section)

≤ e−w1k>0

k−1∑
i=0

wi

i!

(according to Technical Lemma 3.2, see the end of the section)

≤ (k + 2)!e
w3 ,

for all w > 1. Now, consider the multivariate case, and let x, z ∈ [0, 1]p. Set, for all 1 ≤ j ≤ p,
wj = − log (|xj − zj |). By union bound, recalling that 1−Kk(x, z) = PΘ(x Θ= z), we have

1−Kk(x, z) ≤
p∑
j=1

(1−Kk(xj , zj))

≤ p(k + 2)!e
min

1≤j≤p
w3
j

.
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Thus, if, for all 1 ≤ j ≤ p,

|xj − zj | ≤ exp
(
−(Ak,p)1/3

ε2/3

)
,

then

1−Kk(x, z) ≤ ε2

8 ,

where Ak,p = (8pe(k + 2)!)1/3. Consequently,

δ(ε) ≥ exp
(
−(Ak,p)1/3

ε2/3

)
.

Proof of Theorem 3.2. We start the proof by proving that the class

H =
{
θ 7→ fx,z(θ) : x, z ∈ [0, 1]2

}
is PΘ-Donsker, that is, there exists a Gaussian process G such that

sup
f∈H

{
E|f | (dGM − dG)

}
→

M→∞
0.

At first, let us consider a finite random forest. As noticed in the proof of Theorem 3.1, the
set H is finite. Consequently, by the central limit theorem, the set H is PΘ-Donsker.

Now, consider a random forest which satisfies the second statement in (H3.1). Set ε > 0.
Consider a regular grid of [0, 1]p with a step δ and let Gδ be the set of nodes of this grid. We
start by finding a condition on δ such that the set

G̃δ = {[fx1,z1 , fx2,z2 ] : x1,x2, z1, z2 ∈ Gδ}

is a covering of ε-bracket of the set H, that is, for all f ∈ H, there exists x1, z1,x2, z2 ∈ Gδ such
that

fx1,z1 ≤ f ≤ fx2,z2 and E1/2 [fx2,z2(Θ)− fx1,z1(Θ)]2 ≤ ε. (3.13)

To this aim, set x, z ∈ [0, 1]p and choose x1,x2, z1, z2 ∈ Gδ (see Figure 3.2). Note that, for
all θ,

1
x1

θ↔z2

Nn(x1, θ)
≤

1
x θ↔z

Nn(x, θ) ≤
1

x2
θ↔z1

Nn(x2, θ)
,
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that is, fx1,z2 ≤ fx,z ≤ fx2,z1 . To prove the second statement in (3.13), observe that

E1/2[fx2,z2(Θ)− fx1,z1(Θ)
]2 = E

1/2
Θ

[
1

x1
Θ↔z2

Nn(x1,Θ) −
1

x2
Θ↔z1

Nn(x2,Θ)

]2

= E
1/2
Θ

[( 1
x1

Θ↔z2

Nn(x1,Θ) −
1

x2
Θ↔z1

Nn(x2,Θ)

)
× 1

x1
Θ=z2
1

x2
Θ↔z1

]2

≤ E1/2
Θ

[
1

x1
Θ=x2

+ 1
z1

Θ=z2

]2

≤ 2
√

1−Kn(x1,x2) + 1−Kn(z1, z2).

Figure 3.2: Respective positions of x,x1,x2 and z, z1, z2 with p = 2.

Thus, we have to choose the grid step δ such that

sup
x1,x2∈[0,1]p
‖x1−x2‖∞≤δ

∣∣1−Kn(x1,x2)
∣∣ ≤ ε2

8 . (3.14)

By (H3.1) and the definition of the random forest grid step, there exist constants C,A > 0 and
0 < α < 2 such that, for all ε > 0, if

δ ≥ C exp(−A/εα), (3.15)

then (3.14) is satisfied. Hence, if δ satisfies (3.15), then G̃δ is a covering of ε-bracket of H. In
that case, the number N[ ](ε,F , L2(P )) of ε-bracket needed to cover H satisfies

N[ ](ε,F , L2(P )) ≤ Card(G̃δ) ≤ Card(Gδ)4 ≤
(1
δ

)4p
.
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Consequently,

√
logN[ ](ε,F , L2(P )) ≤

√
2Ap
εα
− 2p logC

where the last term is integrable near zero since α < 2. Thus, according to Theorem 2.5.6 in
van der Vaart and Wellner [1996] (and the remark at the beginning of Section 2.5.2), the class
H is PΘ-Donsker.

To conclude the proof, consider a random forest satisfying (H3.1). From above, we see that
the class H is PΘ-Donsker. Recall that F2 = {gx : θ 7→ mn(x, θ) : x ∈ [0, 1]p}, where

mn(x,Θ) =
n∑
i=1

Yifx,Xi(Θ).

Since the training set Dn is fixed, we have

sup
gx∈F2

{
E|gx| (dGM − dG)

}
= sup

x∈[0,1]p

{
E
∣∣∣ n∑
i=1

Yifx,Xi

∣∣∣ (dGM − dG)
}

≤
n∑
i=1
|Yi| sup

x∈[0,1]p

{
E|fx,Xi | (dGM − dG)

}
≤
(

n∑
i=1
|Yi|

)
sup

x,z∈[0,1]p

{
E|fx,z| (dGM − dG)

}
,

which tends to zero as M tends to infinity, since the class H is PΘ-Donsker.
Finally, note that Breiman’s [2001] random forests are discrete, thus satisfying (H3.1).

Uniform forests are continuous and satisfy (H3.1) according to Lemma 3.1.

3.5.3 Proof of Theorem 3.3

Observe that,(
mM,n(X,Θ1, . . . ,Θm)−m(X)

)2

=
(
mM,n(X,Θ1, . . . ,Θm)− EΘ [mn(X,Θ)]

)2
+
(
EΘ [mn(X,Θ)]−m(X)

)2

+ 2
(
EΘ [mn(X,Θ)]−m(X)

)(
mM,n(X,Θ1, . . . ,Θm)− EΘ [mn(X,Θ)]

)
.

Taking the expectation on both sides, we obtain

R(mM,n) = R(m∞,n) + E
[
mM,n(X,Θ1, . . . ,Θm)− EΘ [mn(X,Θ)]

]2
,
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by noticing that

E

[(
mM,n(X,Θ1, . . . ,Θm)− EΘ [mn(X,Θ)]

)(
EΘ [mn(X,Θ)]−m(X)

)]

= EX,Dn

[(
EΘ [mn(X,Θ)]−m(X)

)

× EΘ1,...,ΘM

[
mM,n(X,Θ1, . . . ,Θm)− EΘ

[
mn(X,Θ)

]]]
= 0,

according to the definition of mM,n. Fixing X and Dn, note that random variables mn(X,Θ1),
. . . ,mn(X,Θ1) are independent and identically distributed. Thus, we have

E [mM,n(X,Θ1, . . . ,Θm)− EΘ [mn(X,Θ)]]2

= EX,DnEΘ1,...,ΘM

[
1
M

M∑
m=1

mn(X,Θm)− EΘ [mn(X,Θ)]
]2

= 1
M
× E

[
VΘ [mn (X,Θ)]

]
,

which concludes the first part of the proof. Now, note that the tree estimate mn(X,Θ) can be
written as

mn(X,Θ) =
n∑
i=1

Wni(X,Θ)Yi,

where

Wni(X,Θ) =
1

X Θ↔Xi

Nn(X,Θ) .
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Therefore,

R(mM,n)−R(m∞,n) = 1
M
× E

[
VΘ [mn(X,Θ)]

]
= 1
M
× E

[
VΘ

[
n∑
i=1

Wni(X,Θ)(m(Xi) + εi)
]]

≤ 1
M
× E

[
EΘ

[
max

1≤i≤n
(m(Xi) + εi)− min

1≤j≤n
(m(Xj) + εj)

]2
]

≤ 1
M
× E

[
2EΘ

[
max

1≤i≤n
m(Xi)− min

1≤j≤n
m(Xj)

]2

+ 2EΘ

[
max

1≤i≤n
εi − min

1≤j≤n
εj

]2
]

≤ 1
M
×
[
8‖m‖2∞ + 2E

[
max

1≤i≤n
εi − min

1≤j≤n
εj

]2
]

≤ 1
M
×
[
8‖m‖2∞ + 8σ2E

[
max

1≤i≤n

εi
σ

]2
]
.

The term inside the brackets is the maximum of n χ2-squared distributed random variables.
Thus, for all n ∈ N?,

E

[
max

1≤i≤n

(
εi
σ

)2
]
≤ 1 + 4 logn,

[see, e.g., Chapter 1 in Boucheron et al., 2013]. Therefore,

R(mM,n)−R(m∞,n) ≤ 8
M
×
(
‖m‖2∞ + σ2(1 + 4 logn)

)
.

3.5.4 Proof of Theorem 3.4 and Corollary 3.1

The proof of Theorem 3.4 is based on Stone’s theorem which is recalled here.

Stone’s theorem [1977]. Assume that the following conditions are satisfied for every distri-
bution of X:

(i) There is a constant c such that for every non negative measurable function f satisfying
Ef(X) <∞ and any n,

E

(
n∑
i=1

Wni(X)f(Xi)
)
≤ c E (f(X)) .

(ii) There is a D > 1 such that, for all n,

P

(
n∑
i=1

Wni(X) < D

)
= 1.
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(iii) For all a > 0,

lim
n→∞

E

(
n∑
i=1

Wni(X)1‖X−Xi‖>a

)
= 0.

(iv) The sum of weights satisfies

n∑
i=1

Wni(X) →
n→∞

1 in probability.

(v)

lim
n→∞

E

(
max

1≤i≤n
Wni(X)

)
= 0.

Then the corresponding regression function estimate mn is universally L2 consistent, that is,

lim
n→∞

E [mn(X)−m(X)]2 = 0,

for all distributions of (X, Y ) with EY 2 <∞.

Proof of Theorem 3.4. We check the assumptions of Stone’s theorem. For every non negative
measurable function f satisfying Ef(X) <∞ and for any n, almost surely,

EX,Dn

(
n∑
i=1

Wni(X,Θ)f(Xi)
)
≤ EX (f(X)) ,

where

Wni(X,Θ) =
1Xi∈An(X,Θ)
Nn(X,Θ)

are the weights of the random tree Tn(Θ) [see the proof of Theorem 4.2 in Györfi et al., 2002].
Taking expectation with respect to Θ from both sides, we have

EX,Dn

(
n∑
i=1

W∞ni (X)f(Xi)
)
≤ EX (f(X)) ,

which proves the first condition of Stone’s theorem.
According to the definition of random forest weights W∞ni , since

∑n
i=1Wni(X,Θ) ≤ 1 almost

surely, we have

n∑
i=1

W∞ni (X) = EΘ

[
n∑
i=1

Wni(X,Θ)
]
≤ 1.
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To check condition (iii), note that, for all a > 0,

E

[
n∑
i=1

W∞ni (X)1‖X−Xi‖∞>a

]
=E

[
n∑
i=1

1
X Θ↔Xi

Nn(X,Θ)1‖X−Xi‖∞>a

]

=E
[ n∑
i=1

1
X Θ↔Xi

Nn(X,Θ)1‖X−Xi‖∞>a

× 1diam(An(X,Θ))≥a/2

]
,

because 1‖X−Xi‖∞>a1diam(An(X,Θ))<a/2 = 0. Thus,

E

[ n∑
i=1

W∞ni (X)1‖X−Xi‖∞>a

]
≤ E

[
1diam(An(X,Θ))≥a/2

×
n∑
i=1
1

X Θ↔Xi

1‖X−Xi‖∞>a

]
≤ P

[
diam(An(X,Θ)) ≥ a/2

]
,

which tends to zero, as n→∞, by assumption.
To prove assumption (iv), we follow the arguments developed by Biau et al. [2008]. For

completeness, these arguments are recalled here. Let us consider the partition associated with
the random tree Tn(Θ). By definition, this partition has 2k cells, denoted by A1, . . . , A2k . For
1 ≤ i ≤ 2k, let Ni be the number of points among X,X1, . . . ,Xn falling into Ai. Finally, set
S = {X,X1, . . . ,Xn}. Since these points are independent and identically distributed, fixing the
set S (but not the order of the points) and Θ, the probability that X falls in the i-th cell is
Ni/(n+ 1). Thus, for every fixed t > 0,

P
[
Nn(X,Θ) < t

]
= E

[
P
[
Nn(X,Θ) < t

∣∣∣S,Θ]]

= E

 ∑
i:Ni<t+1

Ni

n+ 1


≤ 2k

n+ 1 t.

Thus, by assumption, Nn(X,Θ)→∞ in probability, as n→∞. Consequently, observe that

n∑
i=1

W∞ni (X) = EΘ

[
n∑
i=1

Wni(X,Θ)
]

= EΘ
[
1Nn(X,Θ) 6=0

]
= PΘ [Nn(X,Θ) 6= 0]
→ 1 as n→∞.
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At last, to prove (v), note that,

E

[
max

1≤i≤n
W∞ni (X)

]
≤ E

[
max

1≤i≤n

1Xi∈An(X,Θ)
Nn(X,Θ)

]
≤ E

[
1Nn(X,Θ)>0
Nn(X,Θ)

]
→ 0 as n→∞,

since Nn(X,Θ)→∞ in probability, as n→∞.

Proof of Corollary 3.1. We check conditions of Theorem 3.4. Let us denote by Vnj(X,Θ) the
length of the j-th side of the cell containing X and Knj(X,Θ) the number of times the cell
containing X is cut along the j-coordinate. Note that, if U1, . . . , Un are independent uniform on
[0, 1],

E [Vnj(X,Θ)] ≤ E

E
Knj(X,Θ)∏

l=1
max(Ui, 1− Ui)|Knj(X,Θ)


= E

[[
E
[
max(U1, 1− U1)

]]Knj(X,Θ)]
= E

[(3
4

)Knj(X,Θ)
]
.

Since Knj(X,Θ) is distributed as a binomial B(kn, 1/p), Knj(X,Θ)→ +∞ in probability, as n
tends to infinity. Thus E [Vnj(X,Θ)]→ 0 as n→∞.

3.5.5 Proof of Theorem 3.5

Consider a theoretical q quantile tree where cuts are made similarly as in the q quantile tree
(defined in Algorithm 3) but by selecting q′ ∈ [1 − q, q] and by performing the cut at the
q′ theoretical quantile (instead of empirical one). The tree is then stopped at level k, where
k ∈ N is a parameter to be chosen later. Denote by A?k(X,Θ) the cell of the theoretical q
quantile tree of level k containing X and built with the randomness Θ. Finally, we let d?k =
(d?1(X,Θ), . . . , d?k(X,Θ)) be the k cuts used to construct the cell A?k(X,Θ).

To prove Theorem 3.5, we need the following lemma which states that the cell diameter of
a theoretical q quantile tree tends to zero.

Lemma 3.2. Assume that X has a density over [0, 1]p, with respect to the Lebesgue measure.
Thus, for all q ∈ [1/2, 1), the theoretical q quantile tree defined above satisfies, for all γ,

P
[
diam(A?k(X,Θ)) > γ

]
→
k→∞

0.

Proof of Lemma 3.2. Set q ∈ [1/2, 1) and consider a theoretical q quantile tree. For all A ⊂
[0, 1]p, let

µ(A) =
∫
A
fdν,
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where ν is the Lebesgue measure, and f the density of X. Take z ∈ [0, 1], ` ∈ {1, . . . , p} and let
∆ be the hyperplane such that ∆ = {x : x(`) = z}. At last, we denote by D = {A : A ∩∆ 6= ∅}
the set of cells of the theoretical q quantile tree that have a non-empty intersection with ∆.

If a cell A?k(X,Θ) belongs to D, then:

Case 1 Either the next split in A?k(X,Θ) is performed along the `-th coordinate and, in that case,
one of the two resulting cell has an empty intersection with ∆. Note that the measure of
this cell is, at least, (1− q)µ(A?k(X,Θ)).

Case 2 Or the next split is performed along the j-th coordinate (with j 6= `) and, in that case,
the two resulting cells have a non-empty intersection with ∆.

Since the splitting directions are chosen uniformly over {1, . . . , p}, for each cell Case 1 occurs
with probability 1/p and Case 2 with probability 1−1/p. Let jk(X,Θ) be the random variable
equals to the coordinate along which the split in the cell A?k−1(X,Θ) is performed. Thus,

P
[
A?k+1(X,Θ) ∈ D

]
≤ E

[
P
[
A?k+1(X,Θ) ∈ D

] ∣∣∣jk+1(X,Θ)
]

≤ E
[
P [A?k(X,Θ) ∈ D] (1− q)1jk+1(X,Θ)=`

+ P [A?k(X,Θ) ∈ D]1jk+1(X,Θ) 6=`
]

≤ P [A?k(X,Θ) ∈ D]

×
(
(1− q)P [jk+1(X,Θ) = `] + P [jk+1(X,Θ) 6= `]

)
≤
(

1− q

p

)
P [A?k(X,Θ) ∈ D] .

Consequently, for all k,

P
[
A?k+1(X,Θ) ∈ D

]
≤
(

1− q

p

)k
P [A?k(X,Θ) ∈ D] , (3.16)

that is

P [A?k(X,Θ) ∈ D] →
k→∞

0. (3.17)

To finish the proof, take ε > 0 and consider a ε× . . .× ε grid. Within a grid cell, all points are
distant from, at most, εp1/2. Thus, if a cell A of the median tree is contained in a grid cell, it
satisfies

diam(A) ≤ εp1/2.

Consider the collection of hyperplane that correspond to the grid, that is all hyperplanes of the
form {x : x(`) = jε} for ` ∈ {1, . . . , p} and j ∈ {0, . . . , b1/εc}. Denote by ∆grid the collection of
these hyperplanes. Since the number of hyperplanes is finite, according to (3.17), we have

P
[
diam(A?k(X,Θ)) ≥ εp1/2

]
≤ P [A?k(X,Θ) ∩∆grid 6= ∅] →

k→∞
0,

which concludes the proof.
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Figure 3.3: Respective positions of theoretical and empirical splits in a median tree.

Recall that An(X,Θ) is the cell of the q quantile tree containing X. Similarly, Ak,n(X,Θ)
is the cell of the q quantile tree containing X where only the first k cuts (k ∈ N?) are per-
formed . We denote by dk,n = (d1,n(X,Θ), . . . , dk,n(X,Θ)) the k cuts used to construct the cell
Ak,n(X,Θ).

Lemma 3.3. Assume that X has a density over [0, 1]p, with respect to the Lebesgue measure.
Thus, for all k ∈ N, a.s.

‖dk,n − d?k‖∞ →
n→∞

0.

Proof of Lemma 3.3. To keep the argument simple, we fix X ∈ [0, 1]p and assume that the first
and second splits are performed at the empirical median along the first (resp. second) coordinate.
Since X and Θ are fixed, we omit the dependency in X and Θ in the rest of the proof. Let d1,n
(resp. d2,n) be the position of the first (resp. second) splits along the first (resp. second) axis.
We denote by d?1 (resp. d?2) the position of the theoretical median of the distribution (see Figure
3.3).

Fix ε > 0. Since the Xi’s are i.i.d., the empirical median tends to the theoretical median
almost surely. With our notation, a.s., d1,n → d?1, as n tends to infinity. Therefore, Lemma
3.3 holds for k = 1. We now prove Lemma 3.3 for k = 2. To this end, we define, for all
0 ≤ a < b ≤ 1, the subset Ha,b of the cell A?1 by

Ha,b = [0, 1]× [a, b]× [0, 1]× . . .× [0, 1] ∩A?1.

Let α = min(µ(Hd?2−ε,d
?
2
), µ(Hd?2,d

?
2+ε)). Denote by d2,n(d?1) the empirical median of data points

falling into the cell A?1. Since X has a density on [0, 1]p, one can find ε1 such that, for all n large
enough, a.s., {

|d2,n(d?1)− d?2| ≤ ε1
min(µ(Hd?2−ε1,d

?
2
), µ(Hd?2,d

?
2+ε1)) ≤ α/100.
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By the same argument, one can find ε2 such that, for all n large enough, a.s.,{
|d1,n − d?1| ≤ ε2
min(µ(Hd?1−ε2,d

?
1
), µ(Hd?1,d

?
1+ε2)) ≤ α/100.

A direct consequence of the law of the iterated logarithm applied to cumulative distribution
function is that, for all n large enough, a.s.,

max
(
Nn(Hd?2−ε1,d

?
2
), Nn(Hd?2,d

?
2+ε1)

)
≤ 0.02αn, (3.18)

max
(
Nn(Hd?1−ε2,d

?
1
), Nn(Hd?1,d

?
1+ε2)

)
≤ 0.02αn, (3.19)

and min
(
Nn(Hd?2−ε,d

?
2−ε1), Nn(Hd?2+ε1,d?2+ε)

)
≥ 0.98αn. (3.20)

The empirical median in the cell A1,n is given by X(2)
(bNn(A1,n)/2c), where the Xi’s are sorted along

the second coordinate. According to (3.19), the cell A(?)
1 contains at most Nn(A1,n) + 0.02αn.

Therefore, the empirical median d2,n(d?1) in the cell A?1 is at most X(2)
(b(Nn(A1,n)+0.02αn)/2c). Thus,

according to (3.18) and (3.20),

d2,n ≤ X(2)
(b(Nn(A1,n)+0.02αn)/2c) ≤ d

?
2 + ε.

Similarly, one has

d2,n ≥ X(2)
(b(Nn(A1,n)−0.02αn)/2c) ≤ d

?
2 − ε.

Consequently, for all n large enough, a.s., |d2,n − d?2| ≤ ε. The extension for arbitrary k is
straightforward.

Lemma 3.4. Assume that X has a density over [0, 1]p, with respect to the Lebesgue measure.
Thus, for all q ∈ [1/2, 1), the theoretical q quantile tree defined above satisfies, for all γ,

P
[
diam(An(X,Θ)) > γ

]
→

n→∞
0.

Proof. Now, consider the empirical q quantile tree as defined in Algorithm 3 but stopped at
level k. Thus, for n large enough, at each step of the algorithm, q′ is selected in [1 − q, q]. Set
ε, γ > 0. By Lemma 3.2, there exists k0 ∈ N such that, for all k ≥ k0,

P
[
diam(Ak(X,Θ)) > γ

]
≤ ε.

Thus, according to Lemma 3.3, for all n large enough, a.s.,

P
[
diam(Ak0,n(X,Θ)) > γ/2

]
≤ ε.

Since, for all n large enough, a.s.,

diam(Ak0,n(X,Θ)) ≥ diam(An(X,Θ)),

the proof is complete.
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Proof of Theorem 3.5. We check the conditions of Stone’s theorem. Condition (i) is satisfied
since the regression function is uniformly continuous and Var[Y |X = x] ≤ σ2 [see remark after
Stone theorem in Györfi et al., 2002].

Condition (ii) is always satisfied for random trees. Condition (iii) is verified since

P [diam(An(X,Θ)) > γ] →
n→∞

0,

according to Lemma 3.4.
Since each cell contains exactly one data point,

n∑
i=1

Wni(x) =
n∑
i=1
EΘ

[
1Xi∈An(X,Θ)
Nn(X,Θ)

]

=EΘ

[
1

Nn(X,Θ)

n∑
i=1
1Xi∈An(X,Θ)

]
=1.

Thus, conditions (iv) of Stone theorem is satisfied.
To check (v), observe that in the subsampling step, there are exactly

(an−1
n−1

)
choices to pick

a fixed observation Xi. Since x and Xi belong to the same cell only if Xi is selected in the
subsampling step, we see that

PΘ
[
X Θ↔ Xi

]
≤
(an−1
n−1

)(an
n

) = an
n
.

So,

E

[
max

1≤i≤n
Wni(X)

]
≤ E

[
max

1≤i≤n
PΘ

[
X Θ↔ Xi

]]
≤ an

n
,

which tends to zero by assumption.

3.5.6 Proofs of Technical Lemmas 3.1 and 3.2

Technical Lemma 3.1. Take k ∈ N and consider a uniform random forest where each tree is
stopped at level k. For all x, z ∈ [0, 1]p, its connection function satisfies

Kk(0, |x− z|) ≤ Kk(x, z),

where |x− z| = (|x1 − z1|, . . . , |xd − zd|).

Proof. Take x, z ∈ [0, 1]. Without loss of generality, one can assume that x < z and let µ = z−x.
Consider the following two configurations.

For any k ∈ N?, we let dk = (d1, . . . , dk) (resp. d′k = (d′1, . . . , d′k)) be k consecutive cuts in
configuration 1 (resp. in configuration 2). We denote by Ak (resp. A′k) the set where dk (resp.
d′k) belong.

We show that for all k ∈ N?, there exists a coupling between Ak and A′k satisfying the
following property: any k-tuple dk is associated with a k-tuple d′k such that
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Figure 3.4: Scheme of configuration 1 (at the top) and 2 (at the bottom).

1. if dk separates [x, z] then d′k separates [0, z − x],

2. if dk does not separate [x, z] and d′k does not separate [0, z−x], then the length of the cell
containing [x, z] built with dk is higher than the one containing [0, z − x] built with d′k.

We call Hk this property. We now proceed by induction. For k = 1, we use the function g to
map A1 into A′1 such that:

g1(u) =
{
u if u > z
z − u if u ≤ z

Thus, for any d1 ∈ A1, if d1 separates [x, z], then d′1 = g1(d1) separates [0, z − x]. Besides,
the length of the cell containing [x, z] designed with the cut d1 is higher than that of the cell
containing [0, z − x] designed with the cut d′1. Consequently, H1 is true.

Now, take k > 1 and assume that Hk is true. Consequently, if dk separates [x, z] then
gk(dk) separates [0, z−x]. In that case, dk+1 separates [x, z] and gk+1(dk+1) separates [0, z−x].
Thus, in the rest of the proof, we assume that dk does not separate [x, z] and gk(dk) does not
separate [0, z−x]. Let [ak, bk] be the cell containing [x, z] built with cuts dk. Since the problem
is invariant by translation, we assume, without loss of generality, that [ak, bk] = [0, δk], where
δk = bk − ak and [x, z] = [xk, xk + µ] (see Figure 3.5).

Figure 3.5: Configuration 1a (at the top) and 1b (at the bottom).

In addition, according to Hk, the length of the cell built with dk is higher than the one built
with d′k. Thus, one can find λ ∈ (0, 1) such that d′k = λδk. This is summarized in Figure 3.6.

Thus, one can map [0, δk] into [0, λδk] with gk+1 defined as

gk+1(u) =
{
λu if u > xk + µ
λ(xk + µ− u) if u ≤ xk + µ

Note that, for all dk+1, the length of the cell containing [xk, xk + µ] designed with the cut dk+1
(configuration 1b) is bigger than the length of the cell containing [0, µ] designed with the cut
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Figure 3.6: Configuration 1b (at the top) and 2b (at the bottom).

d′k+1 = gk+1(dk+1) (configuration 2b). Besides, if dk+1 ∈ [xk, xk + µ] then gk+1(dk+1) ∈ [0, µ].
Consequently, the set of functions g1, . . . , gk+1 induce a mapping of Ak+1 into A′k+1 such that
Hk+1 holds. Thus, Technical Lemma 3.1 holds for p = 1.

To address the case where p > 1, note that

Kk(x, z) =
∑

k1,...,kp∑p

j=1 kj=k

k!
k1! . . . kp!

(1
p

)k p∏
m=1

Kkm(xm, zm)

≥
∑

k1,...,kp∑p

j=1 kj=k

k!
k1! . . . kp!

(1
p

)k p∏
m=1

Kkm(0, |zm − xm|)

≥ Kk(0, |z− x|),

which concludes the proof.

Technical Lemma 3.2. Take k ∈ N and consider a uniform random forest where each tree is
stopped at level k. For all x ∈ [0, 1], its connection function Kk(0, x) satisfies

Kk(0, x) = 1− x
k−1∑
j=0

(− ln x)j

j! ,

with the notational convention that the last sum is zero if k = 0.

Proof of Technical Lemma 3.2. The result is clear for k = 0. Thus, set k ∈ N? and consider a
uniform random forest where each tree is stopped at level k. Since the result is clear for x = 0,
take x ∈]0, 1] and let I = [0, x]. Thus

Kk(0, x) = P

[
0 Θ↔
k cuts

x

]
=
∫
z1 /∈I

∫
z2 /∈I

. . .

∫
zk /∈I

ν(dzk|zk−1)ν(dzk−1|zk−2) . . . ν(dz2|z1)ν(dz1),

where z1, . . . , zk are the positions of the k cuts (see Figure 3.7).
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Figure 3.7: Positions of cuts z1, . . . , zk and x with d = 1

We prove by induction that, for every integer `,∫
zk−` /∈I

. . .

∫
zk /∈I

ν(dzk|zk−1) . . . ν(dzk−`|zk−`−1)

= 1− x

zk−`−1

∑̀
j=0

[ln(zk−`−1/x)]j

j!

 .
Denote by H` this property. Since, given zk−1, zk is uniformly distributed over [0, zk−1], we have∫

zk /∈I
ν(dzk|zk−1) = 1− x

zk−1
.

ThusH0 is true. Now, fix ` > 0 and assume thatH` is true. Let u = zk−`−1/x. Thus, integrating
both sides of H`, we deduce,∫

zk−`−1 /∈I

∫
zk−` /∈I

. . .

∫
zk /∈I

ν(dzk|zk−1) . . . ν(dzk−`|zk−`−1)ν(dzk−`−1|zk−`−2)

=
∫
zk−`−1 /∈I

1− x

zk−`−1

∑̀
j=0

[ln(zk−`−1/x)]j

j!

 ν(dzk−`−1|zk−`−2)

=
∫ zk−`−2

x

1− x

zk−`−1

∑̀
j=0

[ln(zk−`−1/x)]j

j!

 dzk−`−1
zk−`−2

= x

zk−`−2

∫ zk−`−2/x

1

1− 1
u

∑̀
j=0

[ln(u)]j

j!

du.
Using integration by parts on the last term, we conclude that H`+1 is true. Thus, for all ` > 0,
H` is verified. Finally, using Hk−1 and the fact that z0 = 1, we conclude the proof.



Chapter 4

Random forests and kernel methods

Abstract Random forests are ensemble methods which grow trees as base learners and
combine their predictions by averaging. Random forests are known for their good practical
performance, particularly in high dimensional settings. On the theoretical side, several stud-
ies highlight the potentially fruitful connection between random forests and kernel methods.
In this paper, we work out in full details this connection. In particular, we show that by
slightly modifying their definition, random forests can be rewritten as kernel methods (called
KeRF for Kernel based on Random Forests) which are more interpretable and easier to an-
alyze. Explicit expressions of KeRF estimates for some specific random forest models are
given, together with upper bounds on their rate of consistency. We also show empirically
that KeRF estimates compare favourably to random forest estimates.

We would like to thank Arthur Pajot for his great help in the implementation of KeRF estimates.
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4.1 Introduction
Random forests are a class of learning algorithms used to solve pattern recognition problems.
As ensemble methods, they grow many trees as base learners and aggregate them to predict.
Growing many different trees from a single data set requires to randomize the tree building
process by, for example, sampling the data set. Thus, there exists a variety of random forests,
depending on how trees are built and how the randomness is introduced in the tree building
process.
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One of the most popular random forests is that of Breiman [2001] which grows trees based on
CART procedure [Classification and Regression Trees, Breiman et al., 1984] and randomizes both
the training set and the splitting directions. Breiman’s [2001] random forests have been under
active investigation during the last decade mainly because of their good practical performance
and their ability to handle high dimensional data sets. Moreover, they are easy to run since
they only depend on few parameters which are easily tunable [Liaw and Wiener, 2002, Genuer
et al., 2008]. They are acknowledged to be state-of-the-art methods in fields such as genomics
[Qi, 2012] and pattern recognition [Rogez et al., 2008], just to name a few.

However, even if random forests are known to perform well in many contexts, little is known
about their mathematical properties. Indeed, most authors study forests whose construction
does not depend on the data set. Although, consistency of such simplified models has been
addressed in the literature [e.g., Biau et al., 2008, Ishwaran and Kogalur, 2010, Denil et al.,
2013], these results do not adapt to Breiman’s forests whose construction strongly depends on
the whole training set. The latest attempts to study the original algorithm are by Mentch and
Hooker [2014a] and Wager [2014] who prove its asymptotic normality or by Scornet et al. [2015b]
who prove its consistency under appropriate assumptions.

Despite these works, several properties of random forests still remain unexplained. A promis-
ing way for understanding their complex mechanisms is to study the connection between forests
and kernel estimates, that is estimates mn which take the form

mn(x) =
∑n
i=1 YiKk(Xi,x)∑n
i=1Kk(Xi,x) , (4.1)

where {(Xi, Yi) : 1 ≤ i ≤ n} is the training set, (Kk)k is a sequence of kernel functions, and k (k ∈
N) is a parameter to be tuned. Unlike the most used Nadaraya-Watson kernels [Nadaraya, 1964,
Watson, 1964] which satisfy a homogeneous property of the form Kh(Xi,x) = K((x −Xi)/h),
kernels Kk are not necessarily of this form. Therefore, the analysis of kernel estimates defined
by (4.1) turns out to be more complicated and cannot be based on general results regarding
Nadaraya-Watson kernels.

Breiman [2000a] was the first to notice the link between forest and kernel methods, a link
which was later formalized by Geurts et al. [2006]. On the practical side, Davies and Ghahramani
[2014] highlight the fact that a specific kernel based on random forests can empirically outperform
state-of-the-art kernel methods. Another approach is taken by Lin and Jeon [2006] who establish
the connection between random forests and adaptive nearest neighbor, implying that random
forests can be seen as adaptive kernel estimates [see also Biau and Devroye, 2010]. The latest
study is by Arlot and Genuer [2014] who show that a specific random forest can be written
as a kernel estimate and who exhibit rates of consistency. However, despite these works, the
literature is relatively sparse regarding the link between forests and kernel methods.

Our objective in the present paper is to prove that a slight modification of random forest
procedures have explicit and simple interpretations in terms of kernel methods. Thus, the
resulting kernel based on random forest (called KeRF in the rest of the paper) estimates are more
amenable to mathematical analysis. They also appear to be empirically as accurate as random
forest estimates. To theoretically support these results, we also make explicit the expression of
some KeRF. We prove upper bounds on their rates of consistency, which compare favorably to
the existing ones.
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The paper is organized as follows. Section 2 is devoted to notations and to the definition of
KeRF estimates. The link between KeRF estimates and random forest estimates is made explicit
in Section 3. In Section 4, two KeRF estimates are presented and their consistency is proved
along with their rate of consistency. Section 5 contains experiments that highlight the good
performance of KeRF compared to their random forests counterparts. Proofs are postponed to
Section 6.

4.2 Notations and first definitions

4.2.1 Notations

Throughout the paper, we assume to be given a training sample Dn = {(X1, Y1), . . . , (Xn, Yn)}
of [0, 1]d× R-valued independent random variables distributed as the independent prototype pair
(X, Y ), where E[Y 2] < ∞. We aim at predicting the response Y , associated with the random
variable X, by estimating the regression function m(x) = E [Y |X = x]. In this context, we use
infinite random forests (see the definition below) to build an estimate m∞,n : [0, 1]d → R of m,
based on the data set Dn.

A random forest is a collection of M randomized regression trees [for an overview on tree
construction, see e.g., Chapter 20 in Györfi et al., 2002]. For the j-th tree in the family, the
predicted value at point x is denoted by mn(x,Θj), where Θ1, . . . ,ΘM are independent random
variables, distributed as a generic random variable Θ, independent of the sample Dn. This
random variable can be used to sample the training set or to select the candidate directions or
positions for splitting. The trees are combined to form the finite forest estimate

mM,n(x,Θ1, . . . ,ΘM ) = 1
M

M∑
j=1

mn(x,Θj).

By the law of large numbers, for all x ∈ [0, 1]d, almost surely, the finite forest estimate tends to
the infinite forest estimate

m∞,n(x) = EΘ [mn(x,Θ)] ,

where EΘ denotes the expectation with respect to Θ, conditionally on Dn.
As mentioned above, there is a large variety of forests, depending on how trees are grown

and how the random variable Θ influences the tree construction. For instance, tree construction
can be independent of Dn [Biau, 2012]. On the other hand, it can depend only on the Xi’s [Biau
et al., 2008] or on the whole training set [Cutler and Zhao, 2001, Geurts et al., 2006, Zhu et al.,
2012]. Throughout the paper, we use three important types of random forests to exemplify
our results: Breiman’s, centred and uniform forests. In Breiman’s original procedure, splits are
performed to minimize the variances within the two resulting cells. The algorithm stops when
each cell contains less than a small pre-specified number of points [typically between 1 and 5;
see Breiman, 2001, for details]. Centred forests are a simpler procedure which, at each node,
uniformly select a coordinate among {1, . . . , d} and performs splits at the center of the cell along
the pre-chosen coordinate. The algorithm stops when a full binary tree of level k is built (that
is, each cell is cut exactly k times), where k ∈ N is a parameter of the algorithm [see Breiman,
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2004, for details on the procedure]. Uniform forests are quite similar to centred forests except
that once a split direction is chosen, the split is drawn uniformly on the side of the cell, along
the preselected coordinate [see, e.g., Arlot and Genuer, 2014].

4.2.2 Kernel based on random forests (KeRF)

To be more specific, random forest estimates satisfy, for all x ∈ [0, 1]d,

mM,n(x,Θ1, . . . ,ΘM ) = 1
M

M∑
j=1

(
n∑
i=1

Yi1Xi∈An(x,Θj)

Nn(x,Θj)

)
,

where An(x,Θj) is the cell containing x, designed with randomness Θj and data set Dn, and

Nn(x,Θj) =
n∑
i=1
1Xi∈An(x,Θj)

is the number of data points falling in An(x,Θj). Note that, the weights Wi,j,n(x) of each
observation Yi defined by

Wi,j,n(x) =
1Xi∈An(x,Θj)

Nn(x,Θj)

depend on the number of observations Nn(x,Θj). Thus the contributions of observations that
are in cells with a high density of data points are smaller than that of observations which
belong to less populated cells. This is particularly true for non adaptive forests (i.e., forests
built independently of data) since the number of observations in each cell cannot be controlled.
Giving important weights to observations that are in low-density cells can potentially lead to
rough estimates. Indeed, as an extreme example, trees of non adaptive forests can contain empty
cells which leads to a substantial misestimation (since the prediction in empty cells is set, by
default, to zero).

In order to improve the random forest methods and compensate the misestimation induced
by random forest weights, a natural idea is to consider KeRF estimates defined, for all x ∈ [0, 1]d,
by

m̃M,n(x,Θ1, . . . ,ΘM ) = 1∑M
j=1Nn(x,Θj)

M∑
j=1

n∑
i=1

Yi1Xi∈An(x,Θj). (4.2)

Note that m̃M,n(x,Θ1, . . . ,ΘM ) is equal to the mean of the Yi’s falling in the cells containing x
in the forest. Thus, each observation is weighted by the number of times it appears in the trees
of the forests. Consequently, in this setting, an empty cell does not contribute to the prediction.

The proximity between KeRF estimates m̃M,n and random forest estimates will be thoroughly
discussed in Section 3. As for now, we focus on (4.2) and start by proving that it is indeed a
kernel estimate whose expression is given by Proposition 4.1.
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Proposition 4.1. Almost surely, for all x ∈ [0, 1]d, we have

m̃M,n(x,Θ1, . . . ,ΘM ) =
∑n
i=1 YiKM,n(x,Xi)∑n
`=1KM,n(x,X`)

, (4.3)

where

KM,n(x, z) = 1
M

M∑
j=1

1z∈An(x,Θj). (4.4)

We call KM,n the connection function of the M finite forest.
Proposition 4.1 states that KeRF estimates have a more interpretable form than random

forest estimates since their kernels are the connection functions of the forests. This connection
function can be seen as a geometrical characteristic of the cells in the random forest. Indeed,
fixing Xi, the quantity KM,n(x,Xi) is nothing but the empirical probability that Xi and x are
connected (i.e. in the same cell) in the M finite random forest. Thus, the connection function
is a natural way to build kernel functions from random forests, a fact that had already been
noticed by Breiman [2001]. Note that these kernel functions have the nice property of being
positive semi-definite, as proved by Davies and Ghahramani [2014].

A natural question is to ask what happens to KeRF estimates when the number of trees M
goes to infinity. To this aim, we define infinite KeRF estimates m̃∞,n by, for all x,

m̃∞,n(x) = lim
M→∞

m̃M,n(x,Θ1, . . . ,ΘM ). (4.5)

In addition, we say that an infinite random forest is discrete (resp. continuous) if its connection
function Kn is piecewise constant (resp. continuous). For example, Breiman forests and centred
forests are discrete but uniform forests are continuous. Denote by PΘ the probability with
respect to Θ, conditionally on Dn. Proposition 4.2 extends the results of Proposition 4.1 to the
case of infinite KeRF estimates.
Proposition 4.2. Consider an infinite discrete or continuous forest. Then, almost surely, for
all x, z ∈ [0, 1]d,

lim
M→∞

KM,n(x, z) = Kn(x, z),

where

Kn(x, z) = PΘ [z ∈ An(x,Θ)] .

We call Kn the connection function of the infinite random forest. Thus, for all x ∈ [0, 1]d, one
has

m̃∞,n(x) =
∑n
i=1 YiKn(x,Xi)∑n
`=1Kn(x,X`)

.

This lemma shows that infinite KeRF estimates are kernel estimates with kernel function
equal to Kn. Observing that Kn(x, z) is the probability that x and z are connected in the
infinite forest, the function Kn characterizes the shape of the cells in the infinite random forest.

Now that we know the expression of KeRF estimates, we are ready to study how close this
approximation is to random forest estimates. This link will be further work out in Section 4 for
centred and uniform KeRF and empirically studied in Section 5.
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4.3 Relation between KeRF and random forests

In this section, we investigate in which cases KeRF and forest estimates are close to each other.
To achieve this goal, we will need the following assumption.

(H4.1) (H1) Fix x ∈ [0, 1]d, and assume that Y ≥ 0 a.s.. Then, one of the following two
conditions holds:

(H1.1) There exist sequences (an), (bn) such that, a.s.,

an ≤ Nn(x,Θ) ≤ bn.

(H1.2) There exist sequences (εn), (an), (bn) such that, a.s.,

• 1 ≤ an ≤ EΘ [Nn(x,Θ)] ≤ bn,

• PΘ
[
an ≤ Nn(x,Θ) ≤ bn

]
≥ 1− εn.

(H1) assumes that the number of points in every cell of the forest can be bounded from
above and below. (H1.1) holds for finite forests for which the number of points in each cell
is controlled almost surely. Typically, (H1.1) is verified for adaptive random forests, if the
stopping rule is properly chosen. On the other hand, (H1.2) holds for infinite forests. Note
that the first condition EΘ [Nn(x,Θ)] ≥ 1 in (H1.2) is technical and is true if the level of each
tree is tuned appropriately. Several random forests which satisfy (H1) are discussed below.

Proposition 4.3 states that finite forest estimate mM,n and finite KeRF estimate m̃M,n are
close to each other assuming that (H1.1) holds.

Proposition 4.3. Assume that (H1.1) is satisfied. Thus, almost surely,∣∣∣∣mM,n(x,Θ1, . . . ,ΘM )
m̃M,n(x,Θ1, . . . ,ΘM ) − 1

∣∣∣∣ ≤ bn − an
an

,

with the convention that 0/0 = 1.

Since KeRF estimates are kernel estimates of the form (4.1), Proposition 4.3 stresses that
random forests are close to kernel estimates if the number of points in each cell is controlled.
As highlighted by the following discussion, the assumptions of Proposition 4.3 are satisfied for
some types of random forests.

Centred random forests of level k. For this model, whenever X is uniformly distributed
over [0, 1]d, each cell has a Lebesgue-measure of 2−k. Thus, fixing x ∈ [0, 1]d, according to the
law of the iterated logarithm, for all n large enough, almost surely,∣∣∣∣Nn(x,Θ)− n

2k

∣∣∣∣ ≤
√

2n log logn
2 .
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Consequently, (H1.1) is satisfied for an = n2−k−
√

2n log logn/2 and bn = n2−k+
√

2n log logn/2.
This yields, according to Proposition 4.3, almost surely,∣∣∣∣mM,n(x,Θ1, . . . ,ΘM )

m̃M,n(x,Θ1, . . . ,ΘM ) − 1
∣∣∣∣ ≤

√
2n log logn

n2−k −
√

2n log logn/2
.

Thus, choosing for example k = (log2 n)/3, centred KeRF estimates are asymptotically equiva-
lent to centred forest estimates as n→∞. The previous inequality can be extended to the case
where X has a density f satisfying c ≤ f ≤ C, for some constants 0 < c < C <∞. In that case,
almost surely, ∣∣∣∣mM,n(x,Θ1, . . . ,ΘM )

m̃M,n(x,Θ1, . . . ,ΘM ) − 1
∣∣∣∣ ≤
√

2n log logn+ (C − c)n/2k

nc2−k −
√

2n log logn/2
.

However, the right-hand term does not tend to zero as n → ∞, meaning that the uniform
assumption on X is crucial to prove the asymptotic equivalence of mM,n and m̃M,n in the case
of centred forests.

Breiman’s forests. Each leaf in Breiman’s trees contains a small number of points (typically
between 1 and 5). Thus, if each cell contains exactly one point (default settings in classification
problems), (H1.1) holds with an = bn = 1. Thus, according to Proposition 4.3, almost surely,

mM,n(x,Θ1, . . . ,ΘM ) = m̃M,n(x,Θ1, . . . ,ΘM ).

More generally, if the number of observations in each cell varies between 1 and 5, one can set
an = 1 and bn = 5. Thus, still by Proposition 4.3, almost surely,∣∣∣∣mM,n(x,Θ1, . . . ,ΘM )

m̃M,n(x,Θ1, . . . ,ΘM ) − 1
∣∣∣∣ ≤ 4.

Median forests of level k. In this model, each cell of each tree is split at the empirical
median of the observations belonging to the cell. The process is repeated until every cell is cut
exactly k times (where k ∈ N is a parameter chosen by the user). Thus, each cell contains the
same number of points ±2 [see, e.g., Biau and Devroye, 2013, for details], and, according to
Proposition 4.3, almost surely, ∣∣∣∣mM,n(x,Θ1, . . . ,ΘM )

m̃M,n(x,Θ1, . . . ,ΘM ) − 1
∣∣∣∣ ≤ 2

an
.

Consequently, if the level k of each tree is chosen such that an → ∞ as n → ∞, median KeRF
estimates are equivalent to median forest estimates.

The following lemma extends Proposition 4.3 to infinite KeRF and forest estimates.

Proposition 4.4. Assume that (H1.2) is satisfied. Thus, almost surely,

|m∞,n(x)− m̃∞,n(x)| ≤ bn − an
an

m̃∞,n(x) + nεn
(

max
1≤i≤n

Yi
)
.
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Considering inequalities provided in Proposition 4.4, we see that infinite KeRF estimates are
close to infinite random forest estimates if the number of observations in each cell is bounded
(via an and bn).

It is worth noticing that controlling the number of observations in each cell while obtaining a
simple partition shape is difficult to achieve. On the one hand, if the tree construction depends
on the training set, the algorithm can be stopped when each leaf contains exactly one point and
thus KeRF estimate is equal to random forest estimate. However, in that case, the probability
Kn(x, z) is very difficult to express since the geometry of each tree partitioning strongly depends
on the training set. On the other hand, if the tree construction is independent of the training set,
the probability Kn(x, z) can be made explicit in some cases, for example for centred forests (see
Section 5). However, the number of points in each cell is difficult to control (every leaf cannot
contain exactly one point with a non-adaptive cutting strategy) and thus KeRF estimate can be
far away from random forest estimate. Consequently, one cannot deduce an explicit expression
for random forest estimates from the explicit expression of KeRF estimates.

4.4 Two particular KeRF estimates
According to Proposition 4.2, infinite KeRF estimate m̃∞,n depends only on the connection
function Kn via the following equation

m̃∞,n(x) =
∑n
i=1 YiKn(x,Xi)∑n
`=1Kn(x,X`)

. (4.6)

To take one step further into the understanding of KeRF, we study in this section the connection
function of two specific infinite random forests. We focus on infinite KeRF estimates for two
reasons. Firstly, the expressions of infinite KeRF estimates are more amenable to mathematical
analysis since they do not depend on the particular trees used to build the forest. Secondly, the
prediction accuracy of infinite random forests is known to be better than that of finite random
forests [see, e.g., Scornet, 2014]. Therefore infinite KeRF estimates are likely to be more accurate
than finite KeRF estimates.

Practically, both infinite KeRF estimates and infinite random forest estimates can only be
approximated by Monte Carlo simulations. Here, we show that centred KeRF estimates have
an explicit expression, that is their connection function can be made explicit. Thus, infinite
centred KeRF estimates and infinite uniform KeRF estimates (up to an approximation detailed
below) can be directly computed using equation (4.6).

Centred KeRF As seen above, the construction of centred KeRF of level k is the same as for
centred forests of level k except that predictions are made according to equation (4.2). Centred
random forests are closely related to Breiman’s forests in a linear regression framework. Indeed,
in this context, splits that are performed at a low level of the trees are roughly located at the
middle of each cell. In that case, Breiman’s forests and centred forests are close to each other,
which justifies the interest for these simplified models, and thus for centred KeRF.

In the sequel, the connection function of the centred random forest of level k is denoted
by Kcc

k . This notation is justified by the fact that the construction of centred KeRF estimates
depends only on the size of the training set through the choice of k.
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Proposition 4.5. Let k ∈ N and consider an infinite centred random forest of level k. Then,
for all x, z ∈ [0, 1]d,

Kcc
k (x, z) =

∑
k1,...,kd∑d

`=1 k`=k

k!
k1! . . . kd!

(1
d

)k d∏
j=1

1d2kjxje=d2kj zje
.

Note that ties are broken by imposing that cells are of the form
∏d
i=1Ai where the Ai are

equal to ]ai, bi] or [0, bi], for all 0 < ai < bi ≤ 1. Figure 4.1 shows a graphical representation of
the function f defined as

fk : [0, 1]× [0, 1] → [0, 1]
z = (z1, z2) 7→ Kcc

k

(
(1

2 ,
1
2), z

)
.

Figure 4.1: Representations of f1, f2 and f5 in [0, 1]2

Denote by m̃cc
∞,n the infinite centred KeRF estimate, associated with the connection function

Kcc
k , defined as

m̃cc
∞,n(x) =

∑n
i=1 YiK

cc
k (x,Xi)∑n

`=1K
cc
k (x,X`)

.

To pursue the analysis of m̃cc
∞,n, we will need the following assumption on the regression model.

(H4.2) (H2) One has

Y = m(X) + ε,

where ε is a centred Gaussian noise, independent of X, with finite variance σ2 <∞. Moreover,
X is uniformly distributed on [0, 1]d and m is Lipschitz.

Our theorem states that infinite centred KeRF estimates are consistent whenever (H2) holds.
Moreover, it provides an upper bound on the rate of consistency of centred KeRF.

Theorem 4.1. Assume that (H2) is satisfied. Then, providing k → ∞ and n/2k → ∞, there
exists a constant C1 > 0 such that, for all n > 1, and for all x ∈ [0, 1]d,

E
[
m̃cc
∞,n(x)−m(x)

]2
≤ C1n

−1/(3+d log 2)(logn)2.
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Observe that centred KeRF estimates fail to reach minimax rate of consistency n−2/(d+2) over
the class of Lipschitz functions. A similar upper bound on the rate of consistency n−3/4d log 2+3 of
centred random forests was obtained by Biau [2012]. It is worth noticing that, for all d ≥ 9, the
upper bound on the rate of centred KeRF is sharper than that of centred random forests. This
theoretical result supports the fact that KeRF procedure has a better performance compared to
centred random forests. This will be supported by simulations in Section 5 (see Figure 4.5)

Uniform KeRF Recall that the infinite uniform KeRF estimates of level k are the same as
infinite uniform forest of level k except that predictions are computed according to equation (4.2).
Uniform random forests, first studied by Biau et al. [2008], remain under active investigation.
They are a nice modelling of Breiman forests, since with no a priori on the split location, we
can consider that splits are drawn uniformly on the cell edges. Other related versions of these
forests have been thoroughly investigated by Arlot and Genuer [2014] who compare the bias of
a single tree to that of the whole forest.

As for the connection function of centred random forests, we use the notational convention
Kuf
k to denote the connection function of uniform random forests of level k.

Proposition 4.6. Let k ∈ N and consider an infinite uniform random forest of level k. Then,
for all x ∈ [0, 1]d,

Kuf
k (0,x) =

∑
k1,...,kd∑d

`=1 k`=k

k!
k1! . . . kd!

(1
d

)k d∏
m=1

1− xm
km−1∑
j=0

(− ln xm)j

j!

 ,

with the convention
∑−1
j=0

(− lnxm)j
j! = 0.

Proposition 4.6 gives the explicit expression of Kuf
k (0,x). Figure 4.2 shows a representation

of the functions f1, f2 and f5 defined as

fk : [0, 1]× [0, 1] → [0, 1]
z = (z1, z2) 7→ Kuf

k

(
0,
∣∣z− (1

2 ,
1
2)
∣∣),

where |z− x| = (|z1 − x1|, . . . , |zd − xd|).

Figure 4.2: Representations of f1, f2 and f5 in dimension two

Unfortunately, the general expression of the connection function Kuf
k (x, z) is difficult to ob-

tain. Indeed, for d = 1, cuts are performed along a single axis, but the probability of connection
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between two points x and z does not depend only upon the distance |z − x| but rather on the
positions x and z, as stressed in the following Lemma.

Lemma 4.1. Let x, z ∈ [0, 1]. Then,

Kuf
1 (x, z) = 1− |z − x|,

Kuf
2 (x, z) = 1− |z − x|+ |z − x| log

(
z

1− x

)
.

A natural way to deal with this difficulty is to replace the connection function Kuf
k by the

function (x, z) → Kuf
k (0, |z − x|). Indeed, this is a simple manner to build an invariant-by-

translation version of the uniform kernel Kuf
k . The extensive simulations in Section 5 support

the fact that estimates of the form (4.6) built with these two kernels have similar prediction
accuracy. As for infinite centred KeRF estimates, we denote by m̃uf

∞,n the infinite uniform KeRF
estimates but built with the invariant-by-translation version of Kuf

k , namely

m̃uf
∞,n(x) =

∑n
i=1 YiK

uf
k (0, |Xi − x|)∑n

`=1K
uf
k (0, |X` − x|)

.

Our last theorem states the consistency of infinite uniform KeRF estimates along with an upper
bound on their rate of consistency.

Theorem 4.2. Assume that (H2) is satisfied. Then, providing k → ∞ and n/2k → ∞, there
exists a constant C1 > 0 such that, for all n > 1 and for all x ∈ [0, 1]d,

E
[
m̃uf
∞,n(x)−m(x)

]2
≤ C1n

−2/(6+3d log 2)(logn)2.

As for centred KeRF estimates, the rate of consistency does not reach the minimax rate
on the class of Lipschitz functions, and is actually worse than that of centred KeRF estimates,
whatever the dimension d is. Besides, centred KeRF estimates have better performance than
uniform KeRF estimates and this will be highlighted by simulations (Section 5).

Although centred and uniform KeRF estimates are kernel estimates of the form (4.1), the
usual tools used to prove consistency and to find rate of consistency of kernel methods cannot
be applied here [see, e.g., Chapter 5 in Györfi et al., 2002]. Indeed, the support of z 7→ Kcc

k (x, z)
and that of z 7→ Kuf

k (0, |z − x|) cannot be contained in a ball centred on x, whose diameter
tends to zero (see Figure 4.1 and 4.2). The proof of Theorem 4.1 and 4.2 are then based on the
previous work of Greblicki et al. [1984] who proved the consistency of kernels with unbounded
support. In particular, we use their bias/variance decomposition of kernel estimates to exhibit
upper bounds on the rate of consistency.

4.5 Experiments
Practically speaking, Breiman’s random forests are among the most widely used forest algo-
rithms. Thus a natural question is to know whether Breiman KeRF compare favourably to
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Breiman’s forests. In fact, as seen above, the two algorithms coincide whenever Breiman’s
forests are fully grown. But this is not always the case since by default, each cell of Breiman’s
forests contain between 1 and 5 observations.

We start this section by comparing Breiman KeRF and Breiman’s forest estimates for various
regression models described below. Some of these models are toy models (Model 1, 5-8).
Model 2 can be found in van der Laan et al. [2007] and Models 3-4 are presented in Meier
et al. [2009]. For all regression frameworks, we consider covariates X = (X1, . . . , Xd) that are
uniformly distributed over [0, 1]d. We also let X̃i = 2(Xi − 0.5) for 1 ≤ i ≤ d.

Model 1: n = 800, d = 50, Y = X̃2
1 + exp(−X̃2

2 )

Model 2: n = 600, d = 100, Y = X̃1X̃2 + X̃2
3 − X̃4X̃7 + X̃8X̃10 − X̃2

6 +N (0, 0.5)

Model 3: n = 600, d = 100, Y = − sin(2X̃1) + X̃2
2 + X̃3 − exp(−X̃4) +N (0, 0.5)

Model 4: n = 600, d = 100, Y = X̃1 + (2X̃2 − 1)2 + sin(2πX̃3)/(2− sin(2πX̃3)) + sin(2πX̃4) +
2 cos(2πX̃4) + 3 sin2(2πX̃4) + 4 cos2(2πX̃4) +N (0, 0.5)

Model 5: n = 700, d = 20, Y = 1
X̃1>0 + X̃3

2 + 1
X̃4+X̃6−X̃8−X̃9>1+X̃10

+ exp(−X̃2
2 ) +N (0, 0.5)

Model 6: n = 500, d = 30, Y =
∑10
k=1 1X̃3

k
<0 − 1N (0,1)>1.25

Model 7: n = 600, d = 300, Y = X̃2
1 + X̃2

2X̃3 exp(−|X̃4|) + X̃6 − X̃8 +N (0, 0.5)

Model 8: n = 500, d = 1000, Y = X̃1 + 3X̃2
3 − 2 exp(−X̃5) + X̃6

All numerical implementations have been performed using the free Python software, available
online at https://www.python.org/. For each experiment, the data set is divided into a training
set (80% of the data set) and a test set (the remaining 20%). Then, the empirical risk (L2 error)
is evaluated on the test set.

To start with, Figure 4.3 depicts the empirical risk of Breiman’s forests and Breiman
KeRF estimates for two regression models (the conclusions are similar for the remaining re-
gression models). Default settings were used for Breiman’s forests (minsamplessplit = 2 ,
maxfeatures = 0.333) and for Breiman KeRF, except that we did not bootstrap the data set.
Figure 4.3 puts in evidence that Breiman KeRF estimates behave similarly (in terms of empirical
risk) to Breiman forest estimates. It is also interesting to note that bootstrapping the data set
does not change the performance of the two algorithms.

Figure 4.4 (resp. Figure 4.5) shows the risk of uniform (resp. centred) KeRF estimates
compared to the risk of uniform (resp. centred) forest estimates (only two models shown). In
these two experiments, uniform and centred forests and their KeRF counterparts have been
grown in such a way that each tree is a complete binary tree of level k = blog2 nc. Thus, in
that case, each cell contains on average n/2k ' 1 observation. Once again, the main message of
Figure 4.4 is that the uniform KeRF accuracy is close to the uniform forest accuracy.

On the other hand, it turns out that the performance of centred KeRF and centred forests
are not similar (Figure 4.5). In fact, centred KeRF estimates are either comparable to centred
forest estimates (as, for example, in Model 2), or have a better accuracy (as, for example, in

https://www.python.org/
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Figure 4.3: Empirical risks of Breiman KeRF estimates and Breiman forest estimates.

Figure 4.4: Empirical risks of uniform KeRF and uniform forest.

Figure 4.5: Empirical risks of centred KeRF and centred forest.
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Model 1). A possible explanation for this phenomenon is that centred forests are non-adaptive
in the sense that their construction does not depend on the data set. Therefore, each tree is
likely to contain cells with unbalanced number of data points, which can result in random forest
misestimation. This undesirable effect vanishes using KeRF methods since they assign the same
weights to each observation.

The same series of experiments were conducted, but using bootstrap for computing both
KeRF and random forest estimates. The general finding is that the results are similar—Figure
4.6 and 4.7 depict the accuracy of corresponding algorithms for a selected choice of regression
frameworks.

Figure 4.6: Empirical risks of uniform KeRF and uniform forest (with bootstrap).

Figure 4.7: Empirical risks of centred KeRF and centred forests (with bootstrap).

An important aspect of infinite centred and uniform KeRF is that they can be explicitly
computed (see Proposition 4.5 and 4.6). Thus, we have plotted in Figure 4.8 the empirical risk
of both finite and infinite centred KeRF estimates for some examples (for n = 100 and d = 10).
We clearly see in this figure that the accuracy of finite centred KeRF tends to the accuracy of
infinite centred KeRF as M tends to infinity. This corroborates Proposition 4.2.
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Figure 4.8: Risks of finite and infinite centred KeRF.

The same comments hold for uniform KeRF (see Figure 4.9). Note however that, in that case,
the proximity between finite uniform KeRF and infinite uniform KeRF estimate strengthens the
approximation that has been made on infinite uniform KeRF in Section 4.

Figure 4.9: Risks of finite and infinite uniform KeRF.

The computation time for finite KeRF estimate is very acceptable for finite KeRF and
similar to that of random forest (Figure 4.3-4.5). However, the story is different for infinite
KeRF estimates. In fact, KeRF estimates can only be evaluated for low dimensional data sets
and small sample sizes. To see this, just note that the explicit formulation of KeRF involves a
multinomial distribution (Proposition 4.5 and 4.6). Each evaluation of the multinomial creates
computational burden when the dimensions (d and n) of the problems increases. For example,
in Figure 4.8 and 4.9, the computation time needed to compute infinite KeRF estimates ranges
between thirty minutes to 3 hours. As a matter of fact, infinite KeRF methods should be seen
as theoretical tools rather than a practical substitute for random forests.
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4.6 Proofs

Proof of Proposition 4.1. By definition,

m̃M,n(x,Θ1, . . . ,ΘM ) = 1∑M
j=1

∑n
i=1 1Xi∈An(x,Θj)

M∑
j=1

n∑
i=1

Yi1Xi∈An(x,Θj)

= M∑M
j=1

∑n
i=1 1Xi∈An(x,Θj)

n∑
i=1

YiKM,n(x,Xi).

Finally, observe that

1
M

M∑
j=1

n∑
i=1
1Xi∈An(x,Θj) =

n∑
i=1

KM,n(x,Xi),

which concludes the proof.

Proof of Proposition 4.2. We prove the result for d = 2. The other cases can be treated similarly.
For the moment, we assume the random forest to be continuous. Recall that, for all x, z ∈ [0, 1]2,
and for all M ∈ N,

KM,n(x, z) = 1
M

M∑
j=1

1z∈An(x,Θj).

According to the strong law of large numbers, almost surely, for all x, z ∈ Q2 ∩ [0, 1]2

lim
M→∞

KM,n(x, z) = Kn(x, z).

Set ε > 0 and x, z ∈ [0, 1]2 where x = (x(1), x(2)) and z = (z(1), z(2)). Assume, without loss of
generality, that x(1) < z(1) and x(2) < z(2). Let

Ax = {u ∈ [0, 1]2, u(1) ≤ x(1) and u(2) ≤ x(2)},
and Az = {u ∈ [0, 1]2, u(1) ≥ z(1) and u(2) ≥ z(2)}.

Choose x1 ∈ Ax∩Q2 (resp. z2 ∈ Az∩Q2) and take x2 ∈ [0, 1]2∩Q2 (resp. z1 ∈ [0, 1]2∩Q2) such
that x(1)

1 ≤ x(1) ≤ x(1)
2 and x(2)

1 ≤ x(2) ≤ x(2)
2 (resp. z(1)

1 ≤ z(1) ≤ z(1)
2 and z(2)

1 ≤ z(2) ≤ z(2)
2 , see

Figure 4.10).
Observe that, because of the continuity of Kn, one can choose x1,x2 close enough to x and

z2, z1 close enough to z such that

|Kn(x2,x1)− 1| ≤ ε,
|Kn(z1, z2)− 1| ≤ ε,

and |Kn(x1, z2)−Kn(x, z)| ≤ ε.
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Figure 4.10: Respective positions of x,x1,x2 and z, z1, z2

Bounding the difference between KM,n and Kn, we have

|KM,n(x, z)−Kn(x, z)| ≤ |KM,n(x, z)−KM,n(x1, z2)|
+ |KM,n(x1, z2)−Kn(x1, z2)|
+ |Kn(x1, z2)−Kn(x, z)| . (4.7)

To simplify notation, we let x Θm↔ z be the event where x and z are in the same cell in the
tree built with randomness Θj and dataset Dn. We also let x Θm= z be the complement event of
x Θm↔ z. Accordingly, the first term on the right side in equation (4.7) is bounded above by

|KM,n(x, z)−KM,n(x1, z2)| ≤ 1
M

M∑
m=1

∣∣∣∣1xΘm↔ z
− 1

x1
Θm↔ z2

∣∣∣∣
≤ 1
M

M∑
m=1

1
x1

Θm= x
+ 1

z2
Θm= z

(given the positions of x,x1, z, z2)

≤ 1
M

M∑
m=1

1
x1

Θm= x2
+ 1
M

M∑
m=1

1
z2

Θm= z1
, (4.8)

given the respective positions of x,x1,x2 and z, z1, z2. But, since x2, z1,x1, z2 ∈ Q2 ∩ [0, 1]2, we
deduce from inequation (4.8) that, for all M large enough,

|KM,n(x, z)−KM,n(x1, z2)| ≤ 1−Kn(x2,x1) + 1−Kn(z1, z2) + 2ε.

Combining the last inequality with equation (4.7), we obtain, for all M large enough,

|KM,n(x, z)−Kn(x, z)| ≤ 1−Kn(x2,x1) + 1−Kn(z1, z2)
+ |KM,n(x1, z2)−Kn(x1, z2)|
+ |Kn(x1, z2)−Kn(x, z)|+ 2ε
≤ 6ε.



94 Chapter 4. Random forests and kernel methods

Consequently, for any continuous random forest, almost surely, for all x, z ∈ [0, 1]2,

lim
M→∞

KM,n(x, z) = Kn(x, z).

The proof can be easily adapted to the case of discrete random forests. Thus, this complete the
first part of the proof. Next, observe that

lim
M→∞

∑n
i=1 YiKM,n(x,Xi)∑n
j=1KM,n(x,Xj)

=
∑n
i=1 YiKn(x,Xi)∑n
j=1Kn(x,Xj)

,

for all x satisfying
∑n
j=1Kn(x,Xj) 6= 0. Thus, almost surely for those x,

lim
M→∞

m̃M,n(x) = m̃∞,n(x). (4.9)

Now, if there exists any x such that
∑n
j=1Kn(x,Xj) = 0, then x is not connected with any

data points in any tree of the forest. In that case,
∑n
j=1 KM,n(x,Xj) = 0 and, by convention,

m̃∞,n(x) = m̃M,n(x) = 0. Finally, formula (4.9) holds for all x ∈ [0, 1]2.

Proof of Proposition 4.3. Fix x ∈ [0, 1]d and assume that, a.s., Y ≥ 0. By assumption (H1.1),
there exist sequences (an), (bn) such that, almost surely,

an ≤ Nn(x,Θ) ≤ bn.

To simplify notation, we let N̄M,n(x,Θ) = 1
M

∑M
j=1 Nn(x,Θj). Thus, almost surely,

|mM,n(x)− m̃M,n(x)| =
∣∣∣∣ n∑
i=1

Yi

(
1
M

M∑
m=1

1Xi∈An(x,Θm)
Nn(x,Θm)

)

−
n∑
i=1

Yi

(
1
M

M∑
m=1

1Xi∈An(x,Θm)

N̄M,n(x)

) ∣∣∣∣
≤ 1
M

n∑
i=1

Yi

M∑
m=1

1Xi∈An(x,Θm)

N̄M,n(x)
×
∣∣∣∣ N̄M,n(x)
Nn(x,Θm) − 1

∣∣∣∣
≤ bn − an

an
m̃M,n(x).

Proof of Proposition 4.4. Fix x ∈ [0, 1]d and assume that, almost surely, Y ≥ 0. By assumption
(H1.2), there exist sequences (an), (bn), (εn) such that, letting A be the event where

an ≤ Nn(x,Θ) ≤ bn,

we have, almost surely,

PΘ[A] ≥ 1− εn and 1 ≤ an ≤ EΘ [Nn(x,Θ)] ≤ bn.
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Therefore, a.s.,

|m∞,n(x)− m̃∞,n(x)|

=
∣∣∣∣ n∑
i=1

YiEΘ

[
1Xi∈An(x,Θ)
Nn(x,Θ)

]
−

n∑
i=1

YiEΘ

[
1Xi∈An(x,Θ)
EΘ [Nn(x,Θ)]

] ∣∣∣∣
=
∣∣∣∣ n∑
i=1

YiEΘ

[
1Xi∈An(x,Θ)
EΘ [Nn(x,Θ)]

(
EΘ [Nn(x,Θ)]
Nn(x,Θ) − 1

)
(1A + 1Ac)

]∣∣∣∣
≤ bn − an

an
m̃∞,n(x) +

(
max

1≤i≤n
Yi
)
EΘ

[∣∣∣1− Nn(x,Θ)
EΘ [Nn(x,Θ)]

∣∣∣1Ac]
≤ bn − an

an
m̃∞,n(x) + n

(
max

1≤i≤n
Yi
)
P[Ac].

Consequently, almost surely,

|m∞,n(x)− m̃∞,n(x)| ≤ bn − an
an

m̃∞,n(x) + nεn
(

max
1≤i≤n

Yi
)
.

Proof of Proposition 4.5. Assume for the moment that d = 1. Take x, z ∈ [0, 1] and assume,
without loss of generality, that x ≤ z. Then the probability that x and z be in the same cell,
after k cuts, is equal to

1d2kjxje=d2kj zje
.

To prove the result in the multivariate case, take x, z ∈ [0, 1]d. Since cuts are independent,
the probability that x and z are in the same cell after k cuts is given by the following multinomial

Kcc
k (x, z) =

∑
k1,...,kd∑d

`=1 k`=k

k!
k1! . . . kd!

d∏
j=1

(1
d

)kj
1d2kjxje=d2kj zje

.

To prove Theorem 4.1, we need to control the bias of the centred KeRF estimate, which is
done in Theorem 4.3.

Theorem 4.3. Let f be a L-Lipschitz function. Then, for all k,

sup
x∈[0,1]d

∣∣∣∣∣
∫

[0,1]d K
cc
k (x, z)f(z)dz1 . . . dzd∫

[0,1]d K
cc
k (x, z)dz1 . . . dzd

− f(x)
∣∣∣∣∣ ≤ Ld

(
1− 1

2d

)k
.

Proof of Theorem 4.3. Let x ∈ [0, 1]d and k ∈ N. Take f a L-Lipschitz function. In the rest of
the proof, for clarity reasons, we use the notation dz instead of dz1 . . . dzd. Thus,∣∣∣∣∣

∫
[0,1]d K

cc
k (x, z)f(z)dz∫

[0,1]d K
cc
k (x, z)dz

− f(x)
∣∣∣∣∣ ≤

∫
[0,1]d K

cc
k (x, z)|f(z)− f(x)|dz∫
[0,1]d K

cc
k (x, z)dz

.



96 Chapter 4. Random forests and kernel methods

Note that, ∫
[0,1]d

Kcc
k (x, z)|f(z)− f(x)|dz

≤ L
d∑
`=1

∫
[0,1]d

Kcc
k (x, z)|z` − x`|dz

≤ L
d∑
`=1

∫
[0,1]d

∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(1
d

)k ∏
m6=`

∫ 1

0
Kcc
km(xm, zm)dzm

×
∫ 1

0
Kcc
k`

(x`, z`)|z` − x`|dz`. (4.10)

The last integral is upper bounded by∫
[0,1]

Kcc
k`

(x`, z`)|x` − z`|dz` =
∫

[0,1]
1d2k`x`e=d2k`z`e|x` − z`|dz`

≤
(1

2

)k` ∫
[0,1]

1d2k`x`e=d2k`z`edz`

≤
(1

2

)k` ∫
[0,1]

Kcc
k`

(x`, z`)dz`. (4.11)

Therefore, combining inequalities (4.10) and (4.11), we obtain,∫
[0,1]d

Kcc
k (x, z)|f(z)− f(x)|dz

≤ L
d∑
`=1

∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(1
2

)k` (1
d

)k d∏
m=1

∫ 1

0
Kcc
km(xm, zm)dzm

≤ L
(1
d

)k d∑
`=1

∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(1
2

)k`+k
, (4.12)

since, simple calculations show that, for all xm ∈ [0, 1] and for all km ∈ N,∫ 1

0
Kcc
km(xm, zm)dzm =

∫
[0,1]

1d2kmxme=d2kmzmedzm =
(1

2

)km
. (4.13)

Consequently, we get from inequality (4.12) that∫
[0,1]d K

cc
k (x, z)|f(z)− f(x)|dz∫
[0,1]d K

cc
k (x, z)dz ≤ L

(1
d

)k d∑
`=1

∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(1
2

)k`
.
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Taking the first term of the sum, we obtain(1
d

)k ∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(1
2

)k1

=
k∑

k1=0

( 1
2d

)k1 (
1− 1

d

)k−k1 k!
k1!(k − k1)!

≤
(

1− 1
2d

)k
.

Finally, ∫
[0,1]d K

cc
k (x, z)|f(z)− f(x)|dz∫
[0,1]d K

cc
k (x, z)dz ≤ Ld

(
1− 1

2d

)k
.

Proof of Theorem 4.1. Let x ∈ [0, 1]d, ‖m‖∞ = sup
x∈[0,1]d

|m(x)| and recall that

m̃cc
∞,n(x) =

∑n
i=1 YiK

cc
k (x,Xi)∑n

i=1K
cc
k (x,Xi)

.

Thus, letting

An(x) = 1
n

n∑
i=1

(
YiK

cc
k (x,Xi)

E
[
Kcc
k (x,X)

] − E [Y Kcc
k (x,X)]

E
[
Kcc
k (x,X)

] ) ,
Bn(x) = 1

n

n∑
i=1

(
Kcc
k (x,Xi)

E
[
Kcc
k (x,X)

] − 1
)
,

and Mn(x) = E [Y Kcc
k (x,X)]

E
[
Kcc
k (x,X)

] ,
the estimate m̃cc

∞,n(x) can be rewritten as

m̃cc
∞,n(x) = Mn(x) +An(x)

1 +Bn(x) ,

which leads to

m̃cc
∞,n(x)−m(x) = Mn(x)−m(x) +An(x)−Bn(x)m(x)

1 +Bn(x) .

According to Theorem 4.3, we have

|Mn(x)−m(x)| =
∣∣∣∣∣E [m(X)Kcc

k (x,X)]
E
[
Kcc
k (x,X)

] + E [εKcc
k (x,X)]

E
[
Kcc
k (x,X)

] −m(x)
∣∣∣∣∣

≤
∣∣∣∣∣E [m(X)Kcc

k (x,X)]
E
[
Kcc
k (x,X)

] −m(x)
∣∣∣∣∣

≤ C1

(
1− 1

2d

)k
,
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where C1 = Ld. Take α ∈]0, 1/2]. Let Cα(x) be the event on which
{
|An(x)|, |Bn(x)| ≤ α

}
. On

the event Cα(x), we have

|m̃cc
∞,n(x)−m(x)|2 ≤ 8|Mn(x)−m(x)|2 + 8|An(x)−Bn(x)m(x)|2

≤ 8C2
1

(
1− 1

2d

)2k
+ 8α2(1 + ‖m‖∞)2.

Thus,

E[|m̃cc
∞,n(x)−m(x)|21Cα(x)] ≤ 8C2

1

(
1− 1

2d

)2k
+ 8α2(1 + ‖m‖∞)2. (4.14)

Consequently, to find an upper bound on the rate of consistency of m̃cc
∞,n, we just need to upper

bound

E
[
|m̃cc
∞,n(x)−m(x)|21Ccα(x)

]
≤ E

[
| max

1≤i≤n
Yi +m(x)|21Ccα(x)

]
(since m̃cc

∞,n is a local averaging estimate)

≤ E
[
|2‖m‖∞ + max

1≤i≤n
εi|21Ccα(x)

]
≤
(
E

[
2‖m‖∞ + max

1≤i≤n
εi

]4
P [Ccα(x)]

)1/2

(by Cauchy-Schwarz inequality)

≤
((

16‖m‖4∞ + 8E
[

max
1≤i≤n

εi
]4)

P [Ccα(x)]
)1/2

.

Simple calculations on Gaussian tails show that one can find a constant C > 0 such that for all
n,

E
[

max
1≤i≤n

εi
]4
≤ C(logn)2.

Thus, there exists C2 such that, for all n > 1,

E
[
|m̃cc
∞,n(x)−m(x)|21Ccα(x)

]
≤ C2(logn)(P [Ccα(x)])1/2. (4.15)

The last probability P [Ccα(x)] can be upper bounded by using Chebyshev’s inequality. Indeed,
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with respect to An(x),

P
[
|An(x)| > α

]
≤ 1
nα2E

[
Y Kcc

k (x,X)
E
[
Kcc
k (x,X)

] − E [Y Kcc
k (x,X)]

E
[
Kcc
k (x,X)

] ]2

≤ 1
nα2

1
(E
[
Kcc
k (x,X)

]
)2E

[
Y 2Kcc

k (x,X)2
]

≤ 2
nα2

1
(E
[
Kcc
k (x,X)

]
)2

(
E

[
m(X)2Kcc

k (x,X)2
]

+ E
[
ε2Kcc

k (x,X)2
])

≤ 2(‖m‖2∞ + σ2)
nα2

E [Kcc
k (x,X)]

(E
[
Kcc
k (x,X)

]
)2

(since sup
x,z∈[0,1]d

Kcc
k (x, z) ≤ 1)

≤ 2M2
1

α2
2k

n
(according to inequality (4.13)),

where M2
1 = ‖m‖2∞ + σ2. Meanwhile with respect to Bn(x), we obtain, still by Chebyshev’s

inequality,

P
[
|Bn(x)| > α

]
≤ 1
nα2E

[
Kcc
k (x,Xi)

E
[
Kcc
k (x,X)

]]2

≤ 1
nα2

1
E
[
Kcc
k (x,X)

]
(since sup

x,z∈[0,1]d
Kcc
k (x, z) ≤ 1)

≤ 2k

nα2 .

Thus, the probability of Cα(x) is given by

P
[
Cα(x)

]
≥ 1− P

(
|An(x)| ≥ α

)
− P

(
|Bn(x)| ≥ α

)
≥ 1− 2k

n

2M2
1

α2 −
2k

nα2

≥ 1− 2k(2M2
1 + 1)

nα2 .

Consequently, according to inequality (4.15), we obtain

E
[
|m̃cc
∞,n(x)−m(x)|21Ccα(x)

]
≤ C2(logn)

(2k(2M2
1 + 1)

nα2

)1/2
.
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Then using inequality (4.14),

E
[
m̃cc
∞,n(x)−m(x)

]2
≤ E

[
|m̃cc
∞,n(x)−m(x)|21Cα(x)

]
+ E

[
|m̃cc
∞,n(x)−m(x)|21Ccα(x)

]
≤ 8C2

1

(
1− 1

2d

)2k
+ 8α2(1 + ‖m‖∞)2 + C2(logn)

(2k(2M2
1 + 1)

nα2

)1/2

Optimizing the right hand side in α, we get

E
[
m̃cc
∞,n(x)−m(x)

]2
≤ 8C2

1

(
1− 1

2d

)2k
+ C3

((logn)22k

n

)1/3
,

for some constant C3 > 0. The last expression is minimized for

k = C4 + 1
log 2 + 3

d

log
(

n

(logn)2

)
,

where C4 =
(

1
d + log 2

3

)−1
log

(
C3d log 2

24C2
1

)
. Consequently, there exists a constant C5 such that, for

all n > 1,

E
[
m̃cc
∞,n(x)−m(x)

]2
≤ C5n

− 1
d log 2+3 (logn)2.

Proof of Lemma 4.1. Let x, z ∈ [0, 1] such that x < z. The first statement comes from the fact
that splits are drawn uniformly over [0, 1]. To address the second one, denote by Z1 (resp. Z2)
the position of the first (resp. second) split used to build the cell containing [x, z]. Observe that,
given Z1 = z1, Z2 is uniformly distributed over [z1, 1] (resp. [0, z1]) if z1 ≤ x (resp. z1 ≥ z).
Thus, we have

Kuf
2 (x, z) =

∫ x

z1=0

(∫ x

z2=z1

1
1− z1

dz1dz2 +
∫ 1

z2=z

1
1− z1

dz1dz2

)
+
∫ 1

z1=z

(∫ x

z2=0

1
1− z1

dz1dz2 +
∫ z1

z2=z

1
1− z1

dz1dz2

)
.

The first term takes the form∫ x

0

1
z1

(∫ x

z1
dz2

)
dz1 =

∫ x

0

x− z1
1− z1

dz1

= x− (1− x) log(1− x).

Similarly, one has ∫ x

0

∫ 1

z

1
1− z1

dz1dz2 = (1− z) log(1− x),∫ 1

z

∫ z1

z

1
z1

dz1dz2 = (1− z) + z log z,∫ 1

z

∫ x

0

1
z1

dz1dz2 = −x log z.
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Consequently,

Kuf
2 (x, z) = x− (1− x) log(1− x) + (1− z) log(1− x)

− x log z + (1− z) + z log z

= 1− (z − x) + (z − x) log
(

z

1− x

)
.

Proof of Proposition 4.6. The result is proved in Technical Proposition 2 in Scornet [2014].

To prove Theorem 4.2, we need to control the bias of uniform KeRF estimates, which is done
in Theorem 4.4.

Theorem 4.4. Let f be a L-Lipschitz function. Then, for all k,

sup
x∈[0,1]d

∣∣∣∣∣∣
∫

[0,1]d K
uf
k (0, |z− x|)f(z)dz1 . . . dzd∫

[0,1]d K
uf
k (0, |z− x|)dz1 . . . dzd

− f(x)

∣∣∣∣∣∣ ≤ Ld22d+1

3

(
1− 1

3d

)k
.

Proof of Theorem 4.4. Let x ∈ [0, 1]d and k ∈ N. Let f be a L-Lipschitz function. In the rest
of the proof, for clarity reasons, we use the notation dz instead of dz1 . . . dzd. Thus,

∣∣∣∣∣∣
∫

[0,1]d K
uf
k (0, |z− x|)f(z)dz∫

[0,1]d K
uf
k (0, |z− x|)dz

− f(x)

∣∣∣∣∣∣ ≤
∫

[0,1]d K
uf
k (0, |z− x|)|f(z)− f(x)|dz∫
[0,1]d K

uf
k (0, |z− x|)dz

.
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Note that,∫
[0,1]d

Kuf
k (0, |z− x|)|f(z)− f(x)|dz

≤ L
d∑
`=1

∫
[0,1]d

Kuf
k (0, |z− x|)|z` − x`|dz

≤ L
d∑
`=1

∫
[0,1]d

∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(1
d

)k d∏
m=1

Kuf
km

(0, |zm − xm|)|z` − x`|dz

≤ L
d∑
`=1

∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(1
d

)k ∏
m 6=`

∫ 1

0
Kuf
km

(0, |zm − xm|)dzm

×
∫ 1

0
Kuf
k`

(0, |z` − x`|)|z` − x`|dz`

≤ L
d∑
`=1

∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(2
3

)kl+1 (1
d

)k d∏
m=1

∫ 1

0
Kuf
km

(0, |zm − xm|)dzm

(according to the second statement of Lemma 4.2, see below)

≤ L

2k−d
d∑
`=1

∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(2
3

)k`+1 (1
d

)k
, (4.16)

according to the first statement of Lemma 4.2. Still by Lemma 4.2 and using inequality (4.16),
we have, ∫

[0,1]d K
uf
k (0, |z− x|)|f(z)− f(x)|dz∫
[0,1]d K

uf
k (0, |z− x|)dz

≤ L22d+1

3

d∑
`=1

∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(2
3

)k` (1
d

)k
.

Taking the first term of the sum, we obtain

∑
k1,...,kd∑d

j=1 kj=k

k!
k1! . . . kd!

(2
3

)k1 (1
d

)k
=

k∑
k1=0

( 2
3d

)k1 (
1− 1

d

)k−k1 k!
k1!(k − k1)!

≤
(

1− 1
3d

)k
.
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Finally, ∫
[0,1]d K

uf
k (0, |z− x|)|f(z)− f(x)|dz∫
[0,1]d K

uf
k (0, |z− x|)dz

≤ L22d+1

3

(
1− 1

3d

)k
.

Proof of Theorem 4.2. Let x ∈ [0, 1]d, ‖m‖∞ = sup
x∈[0,1]d

|m(x)| and recall that

muf
∞,n(x) =

∑n
i=1 YiK

uf
k (0, |Xi − x|)∑n

i=1K
uf
k (0, |Xi − x|)

.

Thus, letting

An(x) = 1
n

n∑
i=1

(
YiK

uf
k (0, |Xi − x|)

E
[
Kuf
k (0, |X− x|)

] − E[Y Kuf
k (0, |X− x|)

]
E
[
Kuf
k (0, |X− x|)

] ) ,
Bn(x) = 1

n

n∑
i=1

(
Kuf
k (0, |Xi − x|)

E
[
Kuf
k (0, |X− x|)

] − 1
)
,

and Mn(x) =
E
[
Y Kuf

k (0, |X− x|)
]

E
[
Kuf
k (0, |X− x|)

] ,
the estimate muf

∞,n(x) can be rewritten as

muf
∞,n(x) = Mn(x) +An(x)

1 +Bn(x) ,

which leads to

muf
∞,n(x)−m(x) = Mn(x)−m(x) +An(x)−Bn(x)m(x)

1 +Bn(x) .

Note that, according to Theorem 4.4, we have

|Mn(x)−m(x)| =
∣∣∣∣∣E[m(X)Kuf

k (0, |X− x|)]
E[Kuf

k (0, |X− x|)]
+ E[εKuf

k (0, |X− x|)]
E[Kuf

k (0, |X− x|)]
−m(x)

∣∣∣∣∣
≤
∣∣∣∣∣E[m(X)Kuf

k (0, |X− x|)]
E[Kuf

k (0, |X− x|)]
−m(x)

∣∣∣∣∣
≤ C1

(
1− 1

3d

)k
,

where C1 = L22d+1/3. Take α ∈]0, 1/2]. Let Cα(x) be the event on which
{
|An(x)|, |Bn(x)| ≤ α

}
.

On the event Cα(x), we have

|muf
∞,n(x)−m(x)|2 ≤ 8|Mn(x)−m(x)|2 + 8|An(x)−Bn(x)m(x)|2

≤ 8C2
1

(
1− 1

3d

)2k
+ 8α2(1 + ‖m‖∞)2.
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Thus,

E[|muf
∞,n(x)−m(x)|21Cα(x)] ≤ 8C2

1

(
1− 1

3d

)2k
+ 8α2(1 + ‖m‖∞)2. (4.17)

Consequently, to find an upper bound on the rate of consistency of muf
∞,n, we just need to upper

bound

E
[
|m̃uf
∞,n(x)−m(x)|21Ccα(x)

]
≤ E

[
| max

1≤i≤n
Yi +m(x)|21Ccα(x)

]
(since m̃uf

∞,n is a local averaging estimate)

≤ E
[
|2‖m‖∞ + max

1≤i≤n
εi|21Ccα(x)

]
≤
(
E

[
2‖m‖∞ + max

1≤i≤n
εi

]4
P [Ccα(x)]

)1/2

(by Cauchy-Schwarz inequality)

≤
((

16‖m‖4∞ + 8E
[

max
1≤i≤n

εi
]4)

P [Ccα(x)]
)1/2

.

Simple calculations on Gaussian tails show that one can find a constant C > 0 such that for all
n,

E
[

max
1≤i≤n

εi
]4
≤ C(logn)2.

Thus, there exists C2 such that, for all n > 1,

E
[
|m̃uf
∞,n(x)−m(x)|21Ccα(x)

]
≤ C2(logn)(P [Ccα(x)])1/2. (4.18)

The last probability P [Ccα(x)] can be upper bounded by using Chebyshev’s inequality. Indeed,
with respect to An(x),

P
[
|An(x)| > α

]
≤ 1
nα2E

[
Y Kuf

k (0, |X− x|)
E[Kuf

k (0, |X− x|)]
−
E[Y Kuf

k (0, |X− x|)]
E[Kuf

k (0, |X− x|)]

]2

≤ 1
nα2

1
(E[Kuf

k (0, |X− x|)])2
E
[
Y 2Kuf

k (0, |X− x|)2
]

≤ 2
nα2

1
(E[Kuf

k (0, |X− x|)])2

(
E[m(X)2Kuf

k (0, |X− x|)2]

+ E[ε2Kuf
k (0, |X− x|)2]

)
,
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which leads to

P
[
|An(x)| > α

]
≤ 2(‖m‖2∞ + σ2)

nα2
E[Kuf

k (0, |X− x|)]
(E[Kuf

k (0, |X− x|)])2

(since sup
x,z∈[0,1]d

Kuf
k (0, |z− x|) ≤ 1)

≤ M2
1

α2
2k

n
(according to the first statement of Lemma 4.2),

where M2
1 = 2d+1(‖m‖2∞+σ2). Meanwhile with respect to Bn(x), we have, still by Chebyshev’s

inequality,

P
[
|Bn(x)| > α

]
≤ 1
nα2E

[
Kuf
k (0, |Xi − x|)

E[Kuf
k (0, |X− x|)]

]2

≤ 1
nα2

1
E[Kuf

k (0, |X− x|)]

≤ 2k+d

nα2 .

Thus, the probability of Cα(x) is given by

P
[
Cα(x)

]
≥ 1− P

(
|An(x)| ≥ α

)
− P

(
|Bn(x)| ≥ α

)
≥ 1− 2k

n

M2
1

α2 −
2k+d

nα2

≥ 1− 2k(M2
1 + 2d)
nα2 .

Consequently, according to inequality (4.18), we obtain

E
[
|m̃uf
∞,n(x)−m(x)|21Ccα(x)

]
≤ C2(logn)

(2k(M2
1 + 2d)
nα2

)1/2
.

Then using inequality (4.17),

E
[
m̃uf
∞,n(x)−m(x)

]2
≤ E

[
|m̃uf
∞,n(x)−m(x)|21Cα(x)

]
+ E

[
|m̃uf
∞,n(x)−m(x)|21Ccα(x)

]
≤ 8C2

1

(
1− 1

3d

)2k
+ 8α2(1 + ‖m‖∞)2 + C2(logn)

(2k(M2
1 + 2d)
nα2

)1/2
.

Optimizing the right hand side in α, we get

E
[
m̃uf
∞,n(x)−m(x)

]2
≤ 8C2

1

(
1− 1

3d

)2k
+ C3

((logn)22k

n

)1/3
,
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for some constant C3 > 0. The last expression is minimized for

k = C4 + 1
log 2 + 2

d

log
(

n

(logn)2

)
,

where C4 = −3
(

log 2 + 2
d

)−1
log

(
dC3 log 2

16C2
1

)
. Thus, there exists a constant C5 > 0 such that, for

all n > 1,

E
[
m̃uf
∞,n(x)−m(x)

]2
≤ Cn−2/(6+3d log 2)(logn)2.

Lemma 4.2. For all k ∈ N and x ∈ [0, 1],

(i) (1
2

)kl+1
≤
∫ 1

0
Kuf
kl

(0, |zl − xl|)dz ≤
(1

2

)kl−1
.

(ii) ∫
[0,1]

Kuf
kl

(0, |zl − xl|)|xl − zl|dzl ≤
(2

3

)kl+1 ∫
[0,1]

Kuf
kl

(0, |zl − xl|)dzl.

Proof of Lemma 4.2. Let kl ∈ N and xl ∈ [0, 1]. We start by proving (i). According to Propo-
sition 4.6, the connection function of uniform random forests of level kl takes the form∫

[0,1]
Kuf
kl

(0, |zl − xl|)dzl =
∫ ∞
− log xl

e−2u
∞∑
j=kl

uj

j! du+
∫ ∞
− log(1−xl)

e−2u
∞∑
j=kl

uj

j! du

=
∞∑
j=kl

(1
2

)j+1 ∫ ∞
−2 log xl

e−u
uj

j! du

+
∞∑
j=kl

(1
2

)j+1 ∫ ∞
−2 log(1−xl)

e−u
uj

j! du

=
∞∑
j=kl

(1
2

)j+1
x2
l

j∑
i=0

(−2 log xl)i

i!

+
∞∑
j=kl

(1
2

)j+1
(1− xl)2

j∑
i=0

(−2 log(1− xl))i

i! .

Therefore, ∫
[0,1]

Kuf
kl

(0, |zl − xl|)dzl ≤
(1

2

)kl−1
,
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and ∫
[0,1]

Kuf
kl

(0, |zl − xl|)dzl ≥
(
x2
l + (1− xl)2

)(1
2

)kl
≥
(1

2

)kl+1
.

Regarding the second statement of Lemma 4.2, we have∫
[0,1]

Kuf
kl

(0, |zl − xl|)|xl − zl|dzl

=
∫

[0,1]
|xl − zl|2

∞∑
j=kl

(− log |xl − zl|)j

j! dzl

=
∫
zl≤xl

(xl − zl)2
∞∑
j=kl

(− log |xl − zl|)j

j! dzl

+
∫
zl>xl

(zl − xl)2
∞∑
j=kl

(− log |xl − zl|)j

j! dzl

=
∫

[0,xl]
v2
∞∑
j=kl

(− log v)j

j! dv +
∫

[0,1−xl]
u2

∞∑
j=kl

(− log u)j

j! du

=
∫ ∞
− log(xl)

e−3w
∞∑
j=kl

wj

j! dw +
∫ ∞
− log(1−xl)

e−3w
∞∑
j=kl

wj

j! dw

= 2
3

∫ ∞
−3 log(xl)/2

e−2w
∞∑
j=kl

(2v/3)j

j! dv + 2
3

∫ ∞
−3 log(1−xl)/2

e−2v
∞∑
j=kl

(2v/3)j

j! dv

≤
(2

3

)kl+1
∫ ∞
− log(xl)

e−2w
∞∑
j=kl

vj

j! dv +
∫ ∞
− log(1−xl)

e−2v
∞∑
j=kl

vj

j! dv


≤
(2

3

)kl+1 ∫
[0,1]

Kuf
kl

(0, |zl − xl|)dzl.





Chapter 5

Consistency of random forests

Abstract Random forests are a learning algorithm proposed by Breiman [2001] that
combines several randomized decision trees and aggregates their predictions by averaging.
Despite its wide usage and outstanding practical performance, little is known about the
mathematical properties of the procedure. This disparity between theory and practice orig-
inates in the difficulty to simultaneously analyze both the randomization process and the
highly data-dependent tree structure. In the present paper, we take a step forward in forest
exploration by proving a consistency result for Breiman’s [2001] original algorithm in the
context of additive regression models. Our analysis also sheds an interesting light on how
random forests can nicely adapt to sparsity.

We greatly thank two referees for valuable comments and insightful suggestions. This work was sup-
ported by the European Research Council [SMAC-ERC-280032].
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5.1 Introduction

Random forests are an ensemble learning method for classification and regression that constructs
a number of randomized decision trees during the training phase and predicts by averaging the
results. Since its publication in the seminal paper of Breiman [2001], the procedure has become
a major data analysis tool, that performs well in practice in comparison with many standard
methods. What has greatly contributed to the popularity of forests is the fact that they can
be applied to a wide range of prediction problems and have few parameters to tune. Aside
from being simple to use, the method is generally recognized for its accuracy and its ability
to deal with small sample sizes, high-dimensional feature spaces, and complex data structures.
The random forest methodology has been successfully involved in many practical problems,
including air quality prediction (winning code of the EMC data science global hackathon in
2012, see http://www.kaggle.com/c/dsg-hackathon), chemoinformatics [Svetnik et al., 2003],
ecology [Prasad et al., 2006, Cutler et al., 2007], 3D object recognition [Shotton et al., 2011],
and bioinformatics [Díaz-Uriarte and de Andrés, 2006], just to name a few. In addition, many
variations on the original algorithm have been proposed to improve the calculation time while
maintaining good prediction accuracy [see, e.g., Geurts et al., 2006, Amaratunga et al., 2008].
Breiman’s forests have also been extended to quantile estimation [Meinshausen, 2006], survival
analysis [Ishwaran et al., 2008], and ranking prediction [Clémençon et al., 2013].

On the theoretical side, the story is less conclusive and, regardless of their extensive use in
practical settings, little is known about the mathematical properties of random forests. To date,
most studies have concentrated on isolated parts or simplified versions of the procedure. The
most celebrated theoretical result is that of Breiman [2001], which offers an upper bound on the
generalization error of forests in terms of correlation and strength of the individual trees. This
was followed by a technical note [Breiman, 2004], that focuses on a stylized version of the original
algorithm. A critical step was subsequently taken by Lin and Jeon [2006], who established lower
bounds for non-adaptive forests (i.e., independent of the training set). They also highlighted
an interesting connection between random forests and a particular class of nearest neighbor
predictors that was further worked out by Biau and Devroye [2010]. In recent years, various
theoretical studies [e.g., Biau et al., 2008, Ishwaran and Kogalur, 2010, Biau, 2012, Genuer,
2012, Zhu et al., 2012] have been performed, analyzing consistency of simplified models, and
moving ever closer to practice. Recent attempts towards narrowing the gap between theory
and practice are by Denil et al. [2013], who proves the first consistency result for online random
forests, and by Wager [2014] and Mentch and Hooker [2014a] who study the asymptotic sampling
distribution of forests.

The difficulty to properly analyze random forests can be explained by the black-box nature
of the procedure, which is actually a subtle combination of different components. Among the
forest essential ingredients, both bagging [Breiman, 1996] and the Classification And Regression
Trees (CART)-split criterion [Breiman et al., 1984] play a critical role. Bagging (a contraction
of bootstrap-aggregating) is a general aggregation scheme which proceeds by generating sub-
samples from the original data set, constructing a predictor from each resample and deciding
by averaging. It is one of the most effective computationally intensive procedures to improve on
unstable estimates, especially for large, high-dimensional data sets where finding a good model
in one step is impossible because of the complexity and scale of the problem [Bühlmann and Yu,
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2002, Kleiner et al., 2012, Wager et al., 2013]. As for the CART-split selection, it is originated
from the most influential CART algorithm of Breiman et al. [1984], and is used in the construc-
tion of the individual trees to choose the best cuts perpendicular to the axes. At each node of
each tree, the best cut is selected by optimizing the CART-split criterion, based on the notion
of Gini impurity (classification) and prediction squared error (regression).

Yet, while bagging and the CART-splitting scheme play a key role in the random forest
mechanism, both are difficult to analyze, thereby explaining why theoretical studies have con-
sidered so far simplified versions of the original procedure. This is often done by simply ignoring
the bagging step and by replacing the CART-split selection by a more elementary cut protocol.
Besides, in Breiman’s forests, each leaf (that is, a terminal node) of the individual trees contains
a fixed pre-specified number of observations (this parameter, called nodesize in the R package
randomForests, is usually chosen between 1 and 5). There is also an extra parameter in the
algorithm which allows to control the total number of leaves (this parameter is called maxnode
in the R package and has, by default, no effect on the procedure). The combination of these
various components makes the algorithm difficult to analyze with rigorous mathematics. As a
matter of fact, most authors focus on simplified, data-independent procedures, thus creating a
gap between theory and practice.

Motivated by the above discussion, we study in the present paper some asymptotic properties
of Breiman’s [2001] algorithm in the context of additive regression models. We prove the L2

consistency of random forests, which gives a first basic theoretical guarantee of efficiency for this
algorithm. Up to our knowledge, this is the first consistency result for Breiman’s [2001] original
procedure. Our approach rests upon a detailed analysis of the behavior of the cells generated by
CART-split selection as the sample size grows. It turns out that a good control of the regression
function variation inside each cell, together with a proper choice of the total number of leaves
(Theorem 5.1) or a proper choice of the subsampling rate (Theorem 5.2) are sufficient to ensure
the forest consistency in a L2 sense. Also, our analysis shows that random forests can adapt
to a sparse framework, when the ambient dimension p is large (independent of n), but only a
smaller number of coordinates carry out information.

The paper is organized as follows. In Section 2, we introduce some notations and describe
the random forest method. The main asymptotic results are presented in Section 3 and further
discussed in Section 4. Section 5 is devoted to the main proofs, and technical results are gathered
in the supplemental article [Scornet et al., 2015a].

5.2 Random forests

The general framework is L2 regression estimation, in which an input random vector X ∈ [0, 1]p
is observed, and the goal is to predict the square integrable random response Y ∈ R by estimating
the regression function m(x) = E[Y |X = x]. To this aim, we assume given a training sample
Dn = (X1, Y1), . . . , (Xn, Yn) of [0, 1]p × R-valued independent random variables distributed as
the independent prototype pair (X, Y ). The objective is to use the data set Dn to construct an
estimate mn : [0, 1]p → R of the function m. In this respect, we say that a regression function
estimate mn is L2 consistent if E[mn(X) −m(X)]2 → 0 as n → ∞ (where the expectation is
over X and Dn).
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A random forest is a predictor consisting of a collection ofM randomized regression trees. For
the j-th tree in the family, the predicted value at the query point x is denoted by mn(x; Θj ,Dn),
where Θ1, . . . ,ΘM are independent random variables, distributed as a generic random variable
Θ and independent of Dn. In practice, this variable is used to resample the training set prior
to the growing of individual trees and to select the successive candidate directions for splitting.
The trees are combined to form the (finite) forest estimate

mM,n(x; Θ1, . . . ,ΘM ,Dn) = 1
M

M∑
j=1

mn(x; Θj ,Dn). (5.1)

Since in practice we can choose M as large as possible, we study in this paper the property of
the infinite forest estimate obtained as the limit of (5.1) when the number of trees M grows to
infinity:

m∞,n(x;Dn) = EΘ [mn(x; Θ,Dn)] ,

where EΘ denotes expectation with respect to the random parameter Θ, conditional on Dn. This
operation is justified by the law of large numbers, which asserts that, almost surely, conditional
on Dn,

lim
M→∞

mM,n(x; Θ1, . . . ,ΘM ,Dn) = m∞,n(x;Dn)

[see, e.g., Breiman, 2001, Scornet, 2014, for details]. In the sequel, to lighten notation, we will
simply write m∞,n(x) instead of m∞,n(x; Dn).

In Breiman’s [2001] original forests, each node of a single tree is associated with a hyper-
rectangular cell. At each step of the tree construction, the collection of cells forms a partition
of [0, 1]p. The root of the tree is [0, 1]p itself, and each tree is grown as explained in Algorithm
4.

This algorithm has three parameters:

1. mtry ∈ {1, . . . , p}, which is the number of pre-selected directions for splitting;

2. an ∈ {1, . . . , n}, which is the number of sampled data points in each tree;

3. tn ∈ {1, . . . , an}, which is the number of leaves in each tree.

By default, in the original procedure, the parameter mtry is set to p/3, an is set to n (resampling
is done with replacement), and tn = an. However, in our approach, resampling is done without
replacement and the parameters an and tn can be different from their default values.

In a word, the algorithm works by growing M different trees as follows. For each tree, an
data points are drawn at random without replacement from the original data set; then, at each
cell of every tree, a split is chosen by maximizing the CART-criterion (see below); finally, the
construction of every tree is stopped when the total number of cells in the tree reaches the value
tn (therefore, each cell contains exactly one point in the case tn = an).
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Algorithm 4: Breiman’s random forest predicted value at x.
Input: Training set Dn, number of trees M > 0, mtry ∈ {1, . . . , p}, an ∈ {1, . . . , n},

tn ∈ {1, . . . , an}, and x ∈ [0, 1]p.
Output: Prediction of the random forest at x.

1 for j = 1, . . . ,M do
2 Select an points, without replacement, uniformly in Dn.
3 Set P0 = {[0, 1]p} the partition associated with the root of the tree.
4 For all 1 ≤ ` ≤ an, set P` = ∅.
5 Set nnodes = 1 and level = 0.
6 while nnodes < tn do
7 if Plevel = ∅ then
8 level = level + 1
9 else

10 Let A be the first element in Plevel.
11 if A contains exactly one point then
12 Plevel ← Plevel\{A}
13 Plevel+1 ← Plevel+1 ∪ {A}
14 else
15 Select uniformly, without replacement, a subsetMtry ⊂ {1, . . . , p} of

cardinality mtry.
16 Select the best split in A by optimizing the CART-split criterion along the

coordinates inMtry (see details below).
17 Cut the cell A according to the best split. Call AL and AR the two

resulting cell.
18 Plevel ← Plevel\{A}
19 Plevel+1 ← Plevel+1 ∪ {AL} ∪ {AR}
20 nnodes = nnodes + 1
21 end
22 end
23 end
24 Compute the predicted value mn(x; Θj ,Dn) at x equal to the average of the Yi’s

falling in the cell of x in partition Plevel ∪ Plevel+1.
25 end
26 Compute the random forest estimate mM,n(x; Θ1, . . . ,ΘM ,Dn) at the query point x

according to (5.1).
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We note that the resampling step in Algorithm 4 (line 2) is done by choosing an out of n
points (with an ≤ n) without replacement. This is slightly different from the original algorithm,
where resampling is done by bootstrapping, that is by choosing n out of n data points with
replacement.

Selecting the points “without replacement” instead of “with replacement” is harmless—in
fact, it is just a means to avoid mathematical difficulties induced by the bootstrap [see, e.g.,
Efron, 1982, Politis et al., 1999].

On the other hand, letting the parameters an and tn depend upon n offers several degrees
of freedom which opens the route for establishing consistency of the method. To be precise, we
will study in Section 3 the random forest algorithm in two different regimes. The first regime is
when tn < an, which means that trees are not fully developed. In that case, a proper tuning of
tn ensures the forest’s consistency (Theorem 5.1). The second regime occurs when tn = an, i.e.
when trees are fully grown. In that case, consistency results from an appropriate choice of the
subsample rate an/n (Theorem 5.2).

So far, we have not made explicit the CART-split criterion used in Algorithm 4. To properly
define it, we let A be a generic cell and Nn(A) be the number of data points falling in A. A cut
in A is a pair (j, z), where j is a dimension in {1, . . . , p} and z is the position of the cut along
the j-th coordinate, within the limits of A. We let CA be the set of all such possible cuts in
A. Then, with the notation Xi = (X(1)

i , . . . ,X(p)
i ), for any (j, z) ∈ CA, the CART-split criterion

[Breiman et al., 1984] takes the form

Ln(j, z) = 1
Nn(A)

n∑
i=1

(Yi − ȲA)21Xi∈A

− 1
Nn(A)

n∑
i=1

(Yi − ȲAL1X(j)
i <z

− ȲAR1X(j)
i ≥z

)21Xi∈A, (5.2)

where AL = {x ∈ A : x(j) < z}, AR = {x ∈ A : x(j) ≥ z}, and ȲA (resp., ȲAL , ȲAR) is the
average of the Yi’s belonging to A (resp., AL, AR), with the convention 0/0 = 0. At each cell
A, the best cut (j?n, z?n) is finally selected by maximizing Ln(j, z) overMtry and CA, that is

(j?n, z?n) ∈ arg max
j∈Mtry
(j,z)∈CA

Ln(j, z).

To remove ties in the argmax, the best cut is always performed along the best cut direction j?n,
at the middle of two consecutive data points.

5.3 Main results
We consider an additive regression model satisfying the following properties:

(H5.1) The response Y follows

Y =
p∑
j=1

mj(X(j)) + ε,
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where X = (X(1), . . . ,X(p)) is uniformly distributed over [0, 1]p, ε is an independent centered
Gaussian noise with finite variance σ2 > 0, and each component mj is continuous.

Additive regression models, which extend linear models, were popularized by Stone [1985] and
Hastie and Tibshirani [1986]. These models, which decompose the regression function as a sum
of univariate functions, are flexible and easy to interpret. They are acknowledged for providing a
good trade-off between model complexity and calculation time, and were accordingly extensively
studied for the last thirty years. Additive models also play an important role in the context
of high-dimensional data analysis and sparse modelling, where they are successfully involved in
procedures such as the Lasso and various aggregation schemes [for an overview, see, e.g., Hastie
et al., 2009]. Although random forests fall in the family of non parametric procedures, it turns
out that the analysis of their properties is facilitated within the framework of additive models.

Our first result assumes that the total number of leaves tn in each tree tends to infinity
slower than the number of selected data points an.
Theorem 5.1. Assume that (H5.1) is satisfied. Then, provided an → ∞, tn → ∞ and
tn(log an)9/an → 0, random forests are consistent, i.e.,

lim
n→∞

E [m∞,n(X)−m(X)]2 = 0.

Noteworthy, Theorem 5.1 still holds with an = n. In that case, the subsampling step plays
no role in the consistency of the method. Indeed, controlling the depth of the trees via the
parameter tn is sufficient to bound the forest error. We note in passing that an easy adaptation
of Theorem 5.1 shows that the CART algorithm is consistent under the same assumptions.

The term (log an)9 originates from the Gaussian noise and allows to control the noise tail.
In the easier situation where the Gaussian noise is replaced by a bounded random variable, it is
easy to see that the term (log an)9 turns into log an, a term which accounts for the complexity
of the tree partition.

Let us now examine the forest behavior in the second regime, where tn = an (i.e., trees are
fully grown) and, as before, subsampling is done at the rate an/n. The analysis of this regime
turns out to be more complicated, and rests upon assumption (H5.2) below. We denote by
Zi = 1

X Θ↔Xi

the indicator that Xi falls in the same cell as X in the random tree designed with
Dn and the random parameter Θ. Similarly, we let Z ′j = 1

XΘ′↔Xj

, where Θ′ is an independent
copy of Θ. Accordingly, we define

ψi,j(Yi, Yj) = E
[
ZiZ

′
j

∣∣X,Θ,Θ′,X1, . . . ,Xn, Yi, Yj
]

and ψi,j = E
[
ZiZ

′
j

∣∣X,Θ,Θ′,X1, . . . ,Xn

]
.

Finally, for any random variables W1, W2, Z, we denote by Corr(W1, W2|Z) the conditional
correlation coefficient (whenever it exists).
(H5.2) Let Zi,j = (Zi, Z ′j). Then, one of the following two conditions holds:

(a) One has

lim
n→∞

(log an)2p−2(logn)2E

[
max
i,j
i 6=j

|ψi,j(Yi, Yj)− ψi,j |
]2

= 0.
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(b) There exist a constant C > 0 and a sequence (γn)n → 0 such that, almost surely,

max
`1,`2=0,1

|Corr(Yi −m(Xi),1Zi,j=(`1,`2)|Xi,Xj , Yj)|
P1/2[Zi,j = (`1, `2)|Xi,Xj , Yj

] ≤ γn,

and

max
`1=0,1

|Corr
(
(Yi −m(Xi))2,1Zi=`1 |Xi

)
|

P1/2[Zi = `1|Xi
] ≤ C.

Despite their technical aspect, statements (H5.2a) and (H5.2b) have simple interpretations.
To understand the meaning of (H5.2a), let us replace the Gaussian noise by a bounded random
variable. A close inspection of Lemma 5.4 shows that (H5.2a) may be simply replaced by

lim
n→∞

E

[
max
i,j
i 6=j

|ψi,j(Yi, Yj)− ψi,j |
]2

= 0.

Therefore, (H5.2a) means that the influence of two Y-values on the probability of connection
of two couples of random points tends to zero as n→∞.

As for assumption (H5.2b), it holds whenever the correlation between the noise and the
probability of connection of two couples of random points vanishes fast enough, as n → ∞.
Note that, in the simple case where the partition is independent of the Yi’s, the correlations in
(H5.2b) are zero, so that (H5.2) is trivially satisfied. It is also verified in the noiseless case,
that is, when Y = m(X). However, in the most general context, the partitions strongly depend
on the whole sample Dn and, unfortunately, we do not know whether (H5.2) is satisfied or not.

Theorem 5.2. Assume that (H5.1) and (H5.2) are satisfied and let tn = an. Then, provided
an →∞ and an logn/n→ 0, random forests are consistent, i.e.,

lim
n→∞

E [m∞,n(X)−m(X)]2 = 0.

Up to our knowledge, apart from the fact that bootstrapping is replaced by subsampling,
Theorem 5.1 and Theorem 5.2 are the first consistency results for Breiman’s [2001] forests.
Indeed, most models studied so far are designed independently of Dn and are, consequently, an
unrealistic representation of the true procedure. In fact, understanding Breiman’s random forest
behavior deserves a more involved mathematical treatment. Section 4 below offers a thorough
description of the various mathematical forces in action.

Our study also sheds some interesting light on the behavior of forests when the ambient
dimension p is large but the true underlying dimension of the model is small. To see how,
assume that the additive model (H5.1) satisfies a sparsity constraint of the form

Y =
S∑
j=1

mj(X(j)) + ε,

where S < p represents the true, but unknown, dimension of the model. Thus, among the p
original features, it is assumed that only the first (without loss of generality) S variables are
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informative. Put differently, Y is assumed to be independent of the last (p−S) variables. In this
dimension reduction context, the ambient dimension p can be very large, but we believe that
the representation is sparse, i.e., that few components of m are non-zero. As such, the value S
characterizes the sparsity of the model: the smaller S, the sparser m.

Proposition 5.1 below shows that random forests nicely adapt to the sparsity setting by
asymptotically performing, with high probability, splits along the S informative variables.

In this proposition, we set mtry = p and, for all k, we denote by j1,n(X), . . . , jk,n(X) the first
k cut directions used to construct the cell containing X, with the convention that jq,n(X) =∞
if the cell has been cut strictly less than q times.

Proposition 5.1. Assume that (H5.1) is satisfied. Let k ∈ N? and ξ > 0. Assume that there is
no interval [a, b] and no j ∈ {1, . . . , S} such that mj is constant on [a, b]. Then, with probability
1− ξ, for all n large enough, we have, for all 1 ≤ q ≤ k,

jq,n(X) ∈ {1, . . . , S}.

This proposition provides an interesting perspective on why random forests are still able to
do a good job in a sparse framework. Since the algorithm selects splits mostly along informative
variables, everything happens as if data were projected onto the vector space generated by the S
informative variables. Therefore, forests are likely to only depend upon these S variables, which
supports the fact that they have good performance in sparse framework.

It remains that a substantial research effort is still needed to understand the properties of
forests in a high dimensional setting, when p = pn may be substantially larger than the sample
size. Unfortunately, our analysis does not carry over to this context. In particular, if high-
dimensionality is modelled by letting pn →∞, then assumption (H5.2a) may be too restrictive
since the term (log an)2p−2 will diverge at a fast rate.

5.4 Discussion
One of the main difficulties in assessing the mathematical properties of Breiman’s [2001] forests
is that the construction process of the individual trees strongly depends on both the Xi’s and
the Yi’s. For partitions that are independent of the Yi’s, consistency can be shown by relatively
simple means via Stone’s [1977] theorem for local averaging estimates [see also Györfi et al.,
2002, Chapter 6]. However, our partitions and trees depend upon the Y -values in the data.
This makes things complicated, but mathematically interesting too. Thus, logically, the proof
of Theorem 5.2 starts with an adaptation of Stone’s [1977] theorem tailored for random forests,
whereas the proof of Theorem 5.1 is based on consistency results of data-dependent partitions
developed by Nobel [1996].

Both theorems rely on Proposition 5.2 below which stresses an important feature of the
random forest mechanism. It states that the variation of the regression function m within a cell
of a random tree is small provided n is large enough. To this aim, we define, for any cell A, the
variation of m within A as

∆(m,A) = sup
x,x′∈A

|m(x)−m(x′)|.
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Furthermore, we denote by An(X,Θ) the cell of a tree built with random parameter Θ that
contains the point X.

Proposition 5.2. Assume that (H5.1) holds. Then, for all ρ, ξ > 0, there exists N ∈ N? such
that, for all n > N ,

P [∆(m,An(X,Θ)) ≤ ξ] ≥ 1− ρ.

It should be noted that in the standard, Y -independent analysis of partitioning regression
function estimates, the variance is controlled by letting the diameters of the tree cells tend to
zero in probability. Instead of such a geometrical assumption, Proposition 5.2 ensures that the
variation of m inside a cell is small, thereby forcing the approximation error of the forest to
asymptotically approach zero.

While Proposition 5.2 offers a good control of the approximation error of the forest in both
regimes, a separated analysis is required for the estimation error. In regime 1 (Theorem 5.1),
the parameter tn allows to control the structure of the tree. This is in line with standard tree
consistency approaches [see, e.g., Chapter 20 in Devroye et al., 1996]. Things are different for
the second regime (Theorem 5.2), in which individual trees are fully grown. In that case, the
estimation error is controlled by forcing the subsampling rate an/n to be o(1/ logn), which is a
more unusual requirement and deserves some remarks.

At first, we note that the logn term in Theorem 5.2 is used to control the Gaussian noise ε.
Thus, if the noise is assumed to be a bounded random variable, then the logn term disappears,
and the condition reduces to an/n→ 0. The requirement an logn/n→ 0 guarantees that every
single observation (Xi, Yi) is used in the tree construction with a probability that becomes small
with n. It also implies that the query point x is not connected to the same data point in a
high proportion of trees. If not, the predicted value at x would be too much influenced by one
single pair (Xi, Yi), making the forest inconsistent. In fact, the proof of Theorem 5.2 reveals
that the estimation error of a forest estimate is small as soon as the maximum probability of
connection between the query point and all observations is small. Thus, the assumption on
the subsampling rate is just a convenient way to control these probabilities, by ensuring that
partitions are dissimilar enough (i.e. by ensuring that x is connected with many data points
through the forest). This idea of diversity among trees was introduced by Breiman [2001], but
is generally difficult to analyse. In our approach, the subsampling is the key component for
imposing tree diversity.

Theorem 5.2 comes at the price of assumption (H5.2), for which we do not know if it
is valid in all generality. On the other hand, Theorem 5.2, which mimics almost perfectly
the algorithm used in practice, is an important step towards understanding Breiman’s random
forests. Contrary to most previous works, Theorem 5.2 assumes that there is only one observation
per leaf of each individual tree. This implies that the single trees are eventually not consistent,
since standard conditions for tree consistency require that the number of observations in the
terminal nodes tends to infinity as n grows [see, e.g., Devroye et al., 1996, Györfi et al., 2002].
Thus, the random forest algorithm aggregates rough individual tree predictors to build a provably
consistent general architecture.

It is also interesting to note that our results (in particular Lemma 5.3) cannot be directly
extended to establish the pointwise consistency of random forests, that is, for almost all x ∈
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[0, 1]p,

lim
n→∞

E
[
m∞,n(x)−m(x)

]2 = 0.

Fixing x ∈ [0, 1]p, the difficulty results from the fact that we do not have a control on the
diameter of the cell An(x,Θ), whereas, since the cells form a partition of [0, 1]p, we have a
global control on their diameters. Thus, as highlighted by Wager [2014], random forests can
be inconsistent at some fixed point x ∈ [0, 1]p, particularly near the edges, while being L2

consistent.
Let us finally mention that all results can be extended to the case where ε is a heteroscedastic

and sub-Gaussian noise, with for all x ∈ [0, 1]p, V[ε|X = x] ≤ σ′2, for some constant σ′2. All
proofs can be readily extended to match this context, at the price of easy technical adaptations.

5.5 Proof of Theorem 5.1 and Theorem 5.2

For the sake of clarity, proofs of the intermediary results are gathered in in the supplemental
article [Scornet et al., 2015a]. We start with some notations.

5.5.1 Notations

In the sequel, to clarify the notations, we will sometimes write d = (d(1), d(2)) to represent a cut
(j, z).

Recall that, for any cell A, CA is the set of all possible cuts in A. Thus, with this notation,
C[0,1]p is just the set of all possible cuts at the root of the tree, that is, all possible choices
d = (d(1), d(2)) with d(1) ∈ {1, . . . , p} and d(2) ∈ [0, 1].

More generally, for any x ∈ [0, 1]p, we call Ak(x) the collection of all possible k ≥ 1 con-
secutive cuts used to build the cell containing x. Such a cell is obtained after a sequence of
cuts dk = (d1, . . . , dk), where the dependency of dk upon x is understood. Accordingly, for any
dk ∈ Ak(x), we let A(x,dk) be the cell containing x built with the particular k-tuple of cuts
dk. The proximity between two elements dk and d′k in Ak(x) will be measured via

‖dk − d′k‖∞ = sup
1≤j≤k

max
(
|d(1)
j − d

′(1)
j |, |d

(2)
j − d

′(2)
j |

)
.

Accordingly, the distance d∞ between dk ∈ Ak(x) and any A ⊂ Ak(x) is

d∞(dk,A) = inf
z∈A
‖dk − z‖∞.

Remember that An(X,Θ) denotes the cell of a tree containing X and designed with ran-
dom parameter Θ. Similarly, Ak,n(X,Θ) is the same cell but where only the first k cuts
are performed (k ∈ N? is a parameter to be chosen later). We also denote by d̂k,n(X,Θ) =
(d̂1,n(X,Θ), . . . , d̂k,n(X,Θ)) the k cuts used to construct the cell Ak,n(X,Θ).

Recall that, for any cell A, the empirical criterion used to split A in the random forest
algorithm is defined in (5.2). For any cut (j, z) ∈ CA, we denote the following theoretical version
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of Ln(·, ·) by

L?(j, z) = V[Y |X ∈ A]− P[X(j) < z |X ∈ A] V[Y |X(j) < z,X ∈ A]
− P[X(j) ≥ z |X ∈ A] V[Y |X(j) ≥ z,X ∈ A].

Observe that L?(·, ·) does not depend upon the training set and that, by the strong law of large
numbers, Ln(j, z) → L?(j, z) almost surely as n → ∞ for all cuts (j, z) ∈ CA. Therefore, it is
natural to define the best theoretical split (j?, z?) of the cell A as

(j?, z?) ∈ arg min
(j,z)∈CA
j∈Mtry

L?(j, z).

In view of this criterion, we define the theoretical random forest as before, but with consecutive
cuts performed by optimizing L?(·, ·) instead of Ln(·, ·). We note that this new forest does
depend on Θ through Mtry, but not on the sample Dn. In particular, the stopping criterion
for dividing cells has to be changed in the theoretical random forest; instead of stopping when
a cell has a single training point, we impose that each tree of the theoretical forest is stopped
at a fixed level k ∈ N?. We also let A?k(X,Θ) be a cell of the theoretical random tree at
level k, containing X, designed with randomness Θ, and resulting from the k theoretical cuts
d?k(X,Θ) = (d?1(X,Θ), . . . , d?k(X,Θ)). Since there can exist multiple best cuts at, at least, one
node, we call A?k(X,Θ) the set of all k-tuples d?k(X,Θ) of best theoretical cuts used to build
A?k(X,Θ).

We are now equipped to prove Proposition 5.2. For clarity reasons, the proof has been
divided in three steps. Firstly, we study in Lemma 5.1 the theoretical random forest. Then we
prove in Lemma 5.3 (via Lemma 5.2), that theoretical and empirical cuts are close to each other.
Proposition 5.2 is finally established as a consequence of Lemma 5.1 and Lemma 5.3. Proofs of
these lemmas are to be found in the supplemental article [Scornet et al., 2015a].

5.5.2 Proof of Proposition 5.2

We first need a lemma which states that the variation of m(X) within the cell A?k(X,Θ) where
X falls, as measured by ∆(m,A?k(X,Θ)), tends to zero.

Lemma 5.1. Assume that (H5.1) is satisfied. Then, for all x ∈ [0, 1]p,

∆(m,A?k(x,Θ))→ 0, almost surely, as k →∞.

The next step is to show that cuts in theoretical and original forests are close to each other.
To this aim, for any x ∈ [0, 1]p and any k-tuple of cuts dk ∈ Ak(x), we define

Ln,k(x,dk) = 1
Nn(A(x,dk−1))

n∑
i=1

(Yi − ȲA(x,dk−1))21Xi∈A(x,dk−1)

− 1
Nn(A(x,dk−1))

n∑
i=1

(
Yi − ȲAL(x,dk−1)1

X
(d(1)
k

)
i <d

(2)
k

− ȲAR(x,dk−1)1
X

(d(1)
k

)
i ≥d(2)

k

)2
1Xi∈A(x,dk−1),
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where AL(x,dk−1) = A(x,dk−1) ∩ {z : z(d(1)
k

) < d
(2)
k } and AR(x,dk−1) = A(x,dk−1) ∩ {z :

z(d(1)
k

) ≥ d
(2)
k }, and where we use the convention 0/0 = 0 when A(x,dk−1) is empty. Besides,

we let A(x,d0) = [0, 1]p in the previous equation. The quantity Ln,k(x,dk) is nothing but the
criterion to maximize in dk to find the best k-th cut in the cell A(x,dk−1). Lemma 5.2 below
ensures that Ln,k(x, ·) is stochastically equicontinuous, for all x ∈ [0, 1]p. To this aim, for all
ξ > 0, and for all x ∈ [0, 1]p, we denote by Aξk−1(x) ⊂ Ak−1(x) the set of all (k − 1)-tuples
dk−1 such that the cell A(x,dk−1) contains a hypercube of edge length ξ. Moreover, we let
Āξk(x) = {dk : dk−1 ∈ Aξk−1(x)} equipped with the norm ‖dk‖∞.

Lemma 5.2. Assume that (H5.1) is satisfied. Fix x ∈ [0, 1]p, k ∈ N?, and let ξ > 0. Then
Ln,k(x, ·) is stochastically equicontinuous on Āξk(x), that is, for all α, ρ > 0, there exists δ > 0
such that

lim
n→∞

P

 sup
‖dk−d′k‖∞≤δ
dk,d′k∈Ā

ξ
k
(x)

|Ln,k(x,dk)− Ln,k(x,d′k)| > α

 ≤ ρ.
Lemma 5.2 is then used in Lemma 5.3 to assess the distance between theoretical and empirical

cuts.

Lemma 5.3. Assume that (H5.1) is satisfied. Fix ξ, ρ > 0 and k ∈ N?. Then there exists
N ∈ N? such that, for all n ≥ N ,

P
[
d∞(d̂k,n(X,Θ),A?k(X,Θ)) ≤ ξ

]
≥ 1− ρ.

We are now ready to prove Proposition 5.2. Fix ρ, ξ > 0. Since almost sure convergence
implies convergence in probability, according to Lemma 5.1, there exists k0 ∈ N? such that

P
[
∆(m,A?k0(X,Θ)) ≤ ξ

]
≥ 1− ρ. (5.3)

By Lemma 5.3, for all ξ1 > 0, there exists N ∈ N? such that, for all n ≥ N ,

P
[
d∞(d̂k0,n(X,Θ),A?k0(X,Θ)) ≤ ξ1

]
≥ 1− ρ. (5.4)

Since m is uniformly continuous, we can choose ξ1 sufficiently small such that, for all x ∈ [0, 1]p,
for all dk0 ,d′k0

satisfying d∞(dk0 ,d′k0
) ≤ ξ1, we have∣∣∆(m,A(x,dk0))−∆(m,A(x,d′k0))

∣∣ ≤ ξ. (5.5)

Thus, combining inequalities (5.4) and (5.5), we obtain

P
[ ∣∣∆(m,Ak0,n(X,Θ))−∆(m,A?k0(X,Θ))

∣∣ ≤ ξ] ≥ 1− ρ. (5.6)

Using the fact that ∆(m,A) ≤ ∆(m,A′) whenever A ⊂ A′, we deduce from (5.3) and (5.6) that,
for all n ≥ N ,

P [∆(m,An(X,Θ)) ≤ 2ξ] ≥ 1− 2ρ.

This concludes the proof of Proposition 5.2.
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5.5.3 Proof of Theorem 5.1

We still need some additional notations. The partition obtained with the random variable Θ
and the data set Dn is denoted by Pn(Dn,Θ), which we abbreviate as Pn(Θ). We let

Πn(Θ) = {P((x1, y1), . . . , (xn, yn),Θ) : (xi, yi) ∈ [0, 1]p ×R}

be the family of all achievable partitions with random parameter Θ. Accordingly, we let

M(Πn(Θ)) = max {Card(P) : P ∈ Πn(Θ)}

be the maximal number of terminal nodes among all partitions in Πn(Θ). Given a set zn1 =
{z1, . . . , zn} ⊂ [0, 1]p, Γ(zn1 ,Πn(Θ)) denotes the number of distinct partitions of zn1 induced by
elements of Πn(Θ), that is, the number of different partitions {zn1 ∩ A : A ∈ P} of zn1 , for
P ∈ Πn(Θ). Consequently, the partitioning number Γn(Πn(Θ)) is defined by

Γn(Πn(Θ)) = max {Γ(zn1 ,Πn(Θ)) : z1, . . . , zn ∈ [0, 1]p} .

Let (βn)n be a positive sequence, and define the truncated operator Tβn by{
Tβnu = u if |u| < βn
Tβnu = sign(u)βn if |u| ≥ βn.

Hence, Tβnmn(X,Θ), YL = TLY and Yi,L = TLYi are defined unambiguously. We let Fn(Θ) be
the set of all functions f : [0, 1]p → R piecewise constant on each cell of the partition Pn(Θ).
(Notice that Fn(Θ) depends on the whole data set.) Finally, we denote by In,Θ the set of
indices of the data points that are selected during the subsampling step. Thus the tree estimate
mn(x,Θ) satisfies

mn(·,Θ) ∈ argmin
f∈Fn(Θ)

1
an

∑
i∈In,Θ

|f(Xi)− Yi|2.

The proof of Theorem 5.1 is based on ideas developed by Nobel [1996], and worked out in
Theorem 10.2 in Györfi et al. [2002]. This theorem, tailored for our context, is recalled below
for the sake of completeness.

Theorem 5.3. [Györfi et al., 2002] Let mn and Fn(Θ) be as above. Assume that

(i) lim
n→∞

βn =∞,

(ii) lim
n→∞

E

[
inf

f∈Fn(Θ)
‖f‖∞≤βn

EX [f(X)−m(X)]2
]

= 0,

(iii) For all L > 0,

lim
n→∞

E

[
sup

f∈Fn(Θ)
‖f‖∞≤βn

∣∣∣ 1
an

∑
i∈In,Θ

[
f(Xi)− Yi,L

]2 − E
[
f(X)− YL

]2∣∣∣] = 0.
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Then

lim
n→∞

E [Tβnmn(X,Θ)−m(X)]2 = 0.

Statement (ii) (resp. statement (iii)) allows us to control the approximation error (resp. the
estimation error) of the truncated estimate. Since the truncated estimate Tβnmn is piecewise
constant on each cell of the partition Pn(Θ), Tβnmn belongs to the set Fn(Θ). Thus, the term
in (ii) is the classical approximation error.

We are now equipped to prove Theorem 5.1. Fix ξ > 0 and note that we just have to check
statements (i)− (iii) of Theorem 5.3 to prove that the truncated estimate of the random forest
is consistent. Throughout the proof, we let βn = ‖m‖∞ + σ

√
2(log an)2. Clearly, statement (i)

is true.

Approximation error To prove (ii), let

fn,Θ =
∑

A∈Pn(Θ)
m(zA)1A,

where zA ∈ A is an arbitrary point picked in cell A. Since, according to (H5.1), ‖m‖∞ < ∞,
for all n large enough such that βn > ‖m‖∞, we have

E inf
f∈Fn(Θ)
‖f‖∞≤βn

EX [f(X)−m(X)]2 ≤ E inf
f∈Fn(Θ)
‖f‖∞≤‖m‖∞

EX [f(X)−m(X)]2

≤ E
[
fΘ,n(X)−m(X)

]2
(since fΘ,n ∈ Fn(Θ))

≤ E
[
m(zAn(X,Θ))−m(X)

]2
≤ E

[
∆(m,An(X,Θ))

]2
≤ ξ2 + 4‖m‖2∞P

[
∆(m,An(X,Θ)) > ξ

]
.

Thus, using Proposition 5.2, we see that, for all n large enough,

E inf
f∈Fn(Θ)
‖f‖∞≤βn

EX [f(X)−m(X)]2 ≤ 2ξ2.

This establishes (ii).
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Estimation error To prove statement (iii), fix L > 0. Then, for all n large enough such that
L < βn,

PX,Dn

 sup
f∈Fn(Θ)
‖f‖∞≤βn

∣∣∣∣∣∣ 1
an

∑
i∈In,Θ

[
f(Xi)− Yi,L

]2 − E[f(X)− YL
]2∣∣∣∣∣∣ > ξ


≤ 8 exp

[
log Γn(Πn(Θ)) + 2M(Πn(Θ)) log

(
333eβ2

n

ξ

)
− anξ

2

2048β4
n

]
[according to Theorem 9.1 in Györfi et al., 2002]

≤ 8 exp
[
− an
β4
n

(
ξ2

2048 −
β4
n log Γn(Πn)

an
− 2β4

nM(Πn)
an

log
(

333eβ2
n

ξ

))]
.

Since each tree has exactly tn terminal nodes, we have M(Πn(Θ)) = tn and simple calculations
show that

Γn(Πn(Θ)) ≤ (dan)tn .

Hence,

P

 sup
f∈Fn(Θ)
‖f‖∞≤βn

∣∣∣∣∣∣ 1
an

∑
i∈In,Θ

[
f(Xi)− Yi,L

]2 − E[f(X)− YL
]2∣∣∣∣∣∣ > ξ


≤ 8 exp

(
−anCξ,n

β4
n

)
,

where

Cξ,n = ξ2

2048 − 4σ4 tn(log(dan))9

an
− 8σ4 tn(log an)8

an
log

(
666eσ2(log an)4

ξ

)

→ ξ2

2048 , as n→∞,

by our assumption. Finally, observe that

sup
f∈Fn(Θ)
‖f‖∞≤βn

∣∣∣∣∣∣ 1
an

∑
i∈In,Θ

[
f(Xi)− Yi,L

]2 − E[f(X)− YL
]2∣∣∣∣∣∣ ≤ 2(βn + L)2,
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which yields, for all n large enough,

E

[
sup

f∈Fn(Θ)
‖f‖∞≤βn

∣∣∣ 1
an

an∑
i=1

[
f(Xi)− Yi,L

]2 − E[f(X)− YL
]2∣∣∣] ≤ ξ

+ 2(βn + L)2P

[
sup

f∈Fn(Θ)
‖f‖∞≤βn

∣∣∣ 1
an

an∑
i=1

[
f(Xi)− Yi,L

]2 − E[f(X)− YL
]2∣∣∣ > ξ

]

≤ ξ + 16(βn + L)2 exp
(
−anCξ,n

β4
n

)
≤ 2ξ.

Thus, according to Theorem 5.3,

E
[
Tβnmn(X,Θ)−m(X)

]2 → 0.

Untruncated estimate It remains to show the consistency of the non truncated random
forest estimate, and the proof will be complete. For that purpose, note that, for all n large
enough,

E
[
m∞,n(X)−m(X)

]2 = E
[
EΘ[mn(X,Θ)]−m(X)

]2
≤ E

[
mn(X,Θ)−m(X)

]2
(by Jensen’s inequality)

≤ E
[
mn(X,Θ)− Tβnmn(X,Θ)

]2
+ E

[
Tβnmn(X,Θ)−m(X)

]2
≤ E

[[
mn(X,Θ)− Tβnmn(X,Θ)

]2
1mn(X,Θ)≥βn

]
+ ξ

≤ E
[
m2
n(X,Θ)1mn(X,Θ)≥βn

]
+ ξ

≤ E
[
E
[
m2
n(X,Θ)1mn(X,Θ)≥βn |Θ

]]
+ ξ.

Since |mn(X,Θ)| ≤ ‖m‖∞ + max
1≤i≤n

|εi|, we have

E
[
m2
n(X,Θ)1mn(X,Θ)≥βn |Θ

]
≤ E

[
(2‖m‖2∞ + 2 max

1≤i≤an
ε2
i )1 max

1≤i≤an
εi≥σ

√
2(log an)2

]
≤ 2‖m‖2∞P

[
max

1≤i≤an
εi ≥ σ

√
2(log an)2]

+ 2
(
E
[

max
1≤i≤an

ε4
i

]
P
[

max
1≤i≤an

εi ≥ σ
√

2(log an)2])1/2
.

It is easy to see that

P
[

max
1≤i≤an

εi ≥ σ
√

2(log an)2] ≤ a1−log an
n

2
√
π(log an)2 .
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Finally, since the εi’s are centered i.i.d. Gaussian random variables, we have, for all n large
enough,

E
[
m∞,n(X)−m(X)

]2 ≤ 2‖m‖2∞a1−log an
n

2
√
π(log an)2 + ξ + 2

(
3anσ4 a1−log an

n

2
√
π(log an)2

)1/2

≤ 3ξ.

This concludes the proof of Theorem 5.1.

5.5.4 Proof of Theorem 5.2

Recall that each cell contains exactly one data point. Thus, letting

Wni(X) = EΘ
[
1Xi∈An(X,Θ)

]
,

the random forest estimate m∞,n may be rewritten as

m∞,n(X) =
n∑
i=1

Wni(X)Yi.

We have in particular that
∑n
i=1Wni(X) = 1. Thus,

E [m∞,n(X)−m(X)]2 ≤ 2E
[
n∑
i=1

Wni(X)(Yi −m(Xi))
]2

+ 2E
[
n∑
i=1

Wni(X)(m(Xi)−m(X))
]2

def= 2In + 2Jn.

Approximation error Fix α > 0. To upper bound Jn, note that by Jensen’s inequality,

Jn ≤ E
[
n∑
i=1
1Xi∈An(X,Θ)(m(Xi)−m(X))2

]

≤ E
[
n∑
i=1
1Xi∈An(X,Θ)∆2(m,An(X,Θ))

]
≤ E

[
∆2(m,An(X,Θ))

]
.

So, by definition of ∆(m,An(X,Θ))2,

Jn ≤ 4‖m‖2∞E[1∆2(m,An(X,Θ))≥α] + α

≤ α(4‖m‖2∞ + 1),

for all n large enough, according to Proposition 5.2.
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Estimation error To bound In from above, we note that

In = E

 n∑
i,j=1

Wni(X)Wnj(X)(Yi −m(Xi))(Yj −m(Xj))


= E

[∑
i=1

W 2
ni(X)(Yi −m(Xi))2

]
+ I ′n,

where

I ′n = E

∑
i,j
i 6=j

1
X Θ↔Xi

1
XΘ′↔Xj

(Yi −m(Xi))(Yj −m(Xj))

 .
The term I ′n, which involves the double products, is handled separately in Lemma 5.4 below.
According to this lemma, and by assumption (H5.2), for all n large enough,

|I ′n| ≤ α.

Consequently, recalling that εi = Yi −m(Xi), we have, for all n large enough,

|In| ≤ α+ E
[
n∑
i=1

W 2
ni(X)(Yi −m(Xi))2

]

≤ α+ E
[

max
1≤`≤n

Wn`(X)
n∑
i=1

Wni(X)ε2
i

]

≤ α+ E
[

max
1≤`≤n

Wn`(X) max
1≤i≤n

ε2
i

]
. (5.7)

Now, observe that in the subsampling step, there are exactly
(an−1
n−1

)
choices to pick a fixed

observation Xi. Since x and Xi belong to the same cell only if Xi is selected in the subsampling
step, we see that

PΘ
[
X Θ↔ Xi

]
≤
(an−1
n−1

)(an
n

) = an
n
,

where PΘ denotes the probability with respect to Θ, conditional on X and Dn. So,

max
1≤i≤n

Wni(X) ≤ max
1≤i≤n

PΘ
[
X Θ↔ Xi

]
≤ an

n
. (5.8)

Thus, combining inequalities (5.7) and (5.8), for all n large enough,

|In| ≤ α+ an
n
E

[
max

1≤i≤n
ε2
i

]
.
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The term inside the brackets is the maximum of n χ2-squared distributed random variables.
Thus, for some positive constant C,

E

[
max

1≤i≤n
ε2
i

]
≤ C logn

[see, e.g., Chapter 1 in Boucheron et al., 2013]. We conclude that, for all n large enough,

In ≤ α+ C
an logn

n
≤ 2α.

Since α was arbitrary, the proof is complete.

Lemma 5.4. Assume that (H5.2) is satisfied. Then, for all ε > 0, and all n large enough,
|I ′n| ≤ α.

Proof of Lemma 5.4. Firstly, assume that (H5.2b) is verified. Thus, we have for all `1, `2 ∈
{0, 1},

Corr(Yi −m(Xi),1Zi,j=(`1,`2)|Xi,Xj , Yj)

=
E
[
(Yi −m(Xi))1Zi,j=(`1,`2)

]
V1/2[Yi −m(Xi)|Xi,Xj , Yj

]
V1/2[1Zi,j=(`1,`2)|Xi,Xj , Yj

]
=

E
[
(Yi −m(Xi))1Zi,j=(`1,`2)|Xi,Xj , Yj

]
σ
(
P
[
Zi,j = (`1, `2)|Xi,Xj , Yj

]
− P

[
Zi,j = (`1, `2)|Xi,Xj , Yj

]2)1/2
≥
E
[
(Yi −m(Xi))1Zi,j=(`1,`2)|Xi,Xj , Yj

]
σP1/2[Zi,j = (`1, `2)|Xi,Xj , Yj

] ,

where the first equality comes from the fact that, for all `1, `2 ∈ {0, 1},

Cov(Yi −m(Xi),1Zi,j=(`1,`2)|Xi,Xj , Yj)
= E

[
(Yi −m(Xi))1Zi,j=(`1,`2)|Xi,Xj , Yj

]
,

since E[Yi −m(Xi)|Xi,Xj , Yj ] = 0. Thus, noticing that, almost surely,

E
[
Yi −m(Xi)

∣∣∣Zi,j ,Xi,Xj , Yj
]

=
2∑

`1,`2=1

E
[
(Yi −m(Xi))1Zi,j=(`1,`2)|Xi,Xj , Yj

]
P
[
Zi,j = (`1, `2)|Xi,Xj , Yj

] 1Zi,j=(`1,`2)

≤ 4σ max
`1,`2=0,1

|Corr(Yi −m(Xi),1Zi,j=(`1,`2)|Xi,Xj , Yj)|
P1/2[Zi,j = (`1, `2)|Xi,Xj , Yj

]
≤ 4σγn,

we conclude that the first statement in (H5.2b) implies that, almost surely,

E
[
Yi −m(Xi)

∣∣∣Zi,j ,Xi,Xj , Yj
]
≤ 4σγn.
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Similarly, one can prove that second statement in assumption (H5.2b) implies that, almost
surely,

E

[
|Yi −m(Xi)|2

∣∣∣Xi,1X Θ↔Xi

]
≤ 4Cσ2.

Returning to the term I ′n, and recalling that Wni(X) = EΘ[1
X Θ↔Xi

], we obtain

I ′n = E

∑
i,j
i 6=j

1
X Θ↔Xi

1
XΘ′↔Xj

(Yi −m(Xi))(Yj −m(Xj))


=
∑
i,j
i 6=j

E

[
E

[
1

X Θ↔Xi

1
XΘ′↔Xj

(Yi −m(Xi))(Yj −m(Xj))

∣∣∣∣∣Xi,Xj , Yi,1X Θ↔Xi

,1
XΘ′↔Xj

]]

=
∑
i,j
i 6=j

E

[
1

X Θ↔Xi

1
XΘ′↔Xj

(Yi −m(Xi))

× E
[
Yj −m(Xj)|Xi,Xj , Yi,1X Θ↔Xi

,1
XΘ′↔Xj

] ]
.

Therefore, by assumption (H5.2b),

|I ′n| ≤ 4σγn
∑
i,j
i 6=j

E

[
1

X Θ↔Xi

1
XΘ′↔Xj

|Yi −m(Xi)|
]

≤ γn
n∑
i=1
E

[
1

X Θ↔Xi

|Yi −m(Xi)|
]

≤ γn
n∑
i=1
E

[
1

X Θ↔Xi

E

[
|Yi −m(Xi)|

∣∣∣Xi,1X Θ↔Xi

] ]

≤ γn
n∑
i=1
E

[
1

X Θ↔Xi

E1/2
[
|Yi −m(Xi)|2

∣∣∣Xi,1X Θ↔Xi

] ]
≤ 2σC1/2γn.

This proves the result, provided (H5.2b) is true. Let us now assume that (H5.2a) is verified.
The key argument is to note that a data point Xi can be connected with a random point X
if (Xi, Yi) is selected via the subsampling procedure and if there is no other data points in the
hyperrectangle defined by Xi and X. Data points Xi satisfying the latter geometrical property
are called Layered Nearest Neighbor [LNN, see, e.g., Barndorff-Nielsen and Sobel, 1966]. The
connection between LNN and random forests has been first observed by Lin and Jeon [2006],
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and latter worked out by Biau and Devroye [2010]. It is known, in particular, that the number of
LNN Lan(X) among an data points uniformly distributed on [0, 1]p satisfies, for some constant
C1 > 0 and for all n large enough,

E
[
L4
an(X)

]
≤ anP

[
X Θ↔

LNN
Xj
]

+ 16a2
nP
[
X Θ↔

LNN
Xi
]
P
[
X Θ↔

LNN
Xj
]

≤ C1(log an)2d−2, (5.9)

[see, e.g., Barndorff-Nielsen and Sobel, 1966, Bai et al., 2005]. Thus, we have

I ′n = E

∑
i,j
i 6=j

1
X Θ↔Xi

1
XΘ′↔Xj

1
Xi

Θ↔
LNN

X
1

Xj
Θ′↔

LNN
X

(Yi −m(Xi))(Yj −m(Xj))

 .
Consequently,

I ′n = E

[∑
i,j
i 6=j

(Yi −m(Xi))(Yj −m(Xj))1Xi
Θ↔

LNN
X
1

Xj
Θ′↔

LNN
X

× E
[
1

X Θ↔Xi

1
XΘ′↔Xj

∣∣X,Θ,Θ′,X1, . . . ,Xn, Yi, Yj
]]
,

where Xi
Θ↔

LNN
X is the event where Xi is selected by the subsampling and is also a LNN of X.

Next, with notations of assumption (H5.2),

I ′n = E

[∑
i,j
i 6=j

(Yi −m(Xi))(Yj −m(Xj))1Xi
Θ↔

LNN
X
1

Xj
Θ′↔

LNN
X

× ψi,j(Yi, Yj)
]

= E

[∑
i,j
i 6=j

(Yi −m(Xi))(Yj −m(Xj))1Xi
Θ↔

LNN
X
1

Xj
Θ′↔

LNN
X
ψi,j

]

+ E
[∑
i,j
i 6=j

(Yi −m(Xi))(Yj −m(Xj))1Xi
Θ↔

LNN
X
1

Xj
Θ′↔

LNN
X

× (ψi,j(Yi, Yj)− ψi,j)
]
.
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The first term is easily seen to be zero since

E

[∑
i,j
i 6=j

(Yi −m(Xi))(Yj −m(Xj))1Xi
Θ↔

LNN
X
1

Xj
Θ′↔

LNN
X
ψ(X,Θ,Θ′,X1, . . . ,Xn)

]

=
∑
i,j
i 6=j

E

[
1

Xi
Θ↔

LNN
X
1

Xj
Θ′↔

LNN
X
ψi,j

× E
[
(Yi −m(Xi))(Yj −m(Xj))

∣∣X,X1, . . . ,Xn,Θ,Θ′
]]

= 0.

Therefore,

|I ′n| ≤ E
[∑
i,j
i 6=j

|Yi −m(Xi)||Yj −m(Xj)|1Xi
Θ↔

LNN
X
1

Xj
Θ′↔

LNN
X

× |ψi,j(Yi, Yj)− ψi,j |
]

≤ E
[

max
1≤`≤n

|Yi −m(Xi)|2 max
i,j
i 6=j

|ψi,j(Yi, Yj)− ψi,j |

×
∑
i,j
i 6=j

1
Xi

Θ↔
LNN

X
1

Xj
Θ′↔

LNN
X

]
.

Now, observe that ∑
i,j
i 6=j

1
Xi

Θ↔
LNN

X
1

Xj
Θ′↔

LNN
X
≤ L2

an(X),

Consequently,

|I ′n| ≤ E1/2
[
L4
an(X) max

1≤`≤n
|Yi −m(Xi)|4

]

× E1/2
[

max
i,j
i 6=j

|ψi,j(Yi, Yj)− ψi,j |
]2

. (5.10)

Simple calculations reveal that there exists C1 > 0 such that, for all n,

E
[

max
1≤`≤n

|Yi −m(Xi)|4
]
≤ C1(logn)2. (5.11)
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Thus, by inequalities (5.9) and (5.11), the first term in (5.10) can be upper bounded as follows:

E1/2
[
L4
an(X) max

1≤`≤n
|Yi −m(Xi)|4

]

= E1/2
[
L4
an(X)E

[
max

1≤`≤n
|Yi −m(Xi)|4

∣∣X,X1, . . . ,Xn
]]

≤ C ′(logn)(log an)d−1.

Finally,

|I ′n| ≤ C ′(log an)d−1(logn)α/2E1/2
[

max
i,j
i 6=j

|ψi,j(Yi, Yj)− ψi,j |
]2

,

which tends to zero by assumption.

5.6 Technical results

5.6.1 Proof of Lemma 1

Technical Lemma 5.1. Assume that (H5.1) is satisfied and that L? ≡ 0 for all cuts in some
given cell A. Then the regression function m is constant on A.

Proof of Technical Lemma 5.1. We start by proving the result in dimension p = 1. Letting
A = [a, b] (0 ≤ a < b ≤ 1), and recalling that Y = m(X) + ε, one has

L?(1, z) = V [Y |X ∈ A]− P [a ≤ X ≤ z |X ∈ A]V [Y |a ≤ X ≤ z]
− P [z ≤ X ≤ b |X ∈ A]V [Y |z < X ≤ b]

= − 1
(b− a)2

(∫ b

a
m(t)dt

)2

+ 1
(b− a)(z − a)

(∫ z

a
m(t)dt

)2

+ 1
(b− a)(b− z)

(∫ b

z
m(t)dt

)2

.

Let C =
∫ b
a m(t)dt and M(z) =

∫ z
a m(t)dt. Simple calculations show that

L?(1, z) = 1
(z − a)(b− z)

(
M(z)− C z − a

b− a

)2
.

Therefore, since L? ≡ 0 on CA by assumption, we obtain

M(z) = C
z − a
b− a

.

This proves that M(z) is linear in z, and that m is therefore constant on [a, b].
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Let us now examine the general multivariate case, where A = Πp
j=1[aj , bj ] ⊂ [0, 1]p. From

the univariate analysis, we know that, for all 1 ≤ j ≤ p, there exists a constant Cj such that∫ b1

a1
. . .

∫ bp

ap
m(x)dx1 . . . dxj−1dxj+1 . . . dxp = Cj .

Since m is additive this implies that, for all j and all xj ,

mj(xj) = Cj −
∫ b1

a1
. . .

∫ bp

ap

∑
` 6=j

m`(x`)dx1 . . . dxj−1dxj+1 . . . dxp ,

which does not depend upon xi. This shows that m is constant on A.

Proof of Lemma 1 Take ξ > 0 and fix x ∈ [0, 1]p. Let θ be a realization of the random
variable Θ. Since m is uniformly continuous, the result is clear if diam(A?k(x, θ)) tends to
zero as k tends to infinity. Thus, in the sequel, it is assumed that diam(A?k(x, θ)) does not
tend to zero. In that case, since (A?k(x, θ))k is a decreasing sequence of compact sets, there exist
a∞(x, θ) = (a(1)

∞ (x, θ), . . . ,a(p)
∞ (x, θ)) ∈ [0, 1]p and b∞(x, θ) = (b(1)

∞ (x, θ), . . . ,b(p)
∞ (x, θ)) ∈ [0, 1]p

such that
∞⋂
k=1

A?k(x, θ) =
p∏
j=1

[a(j)
∞ (x, θ),b(j)

∞ (x, θ)]

def= A?∞(x, θ).

Since diam(A?k(x, θ)) does not tend to zero, there exists an index j′ such that a(j′)
∞ (x, θ) <

b(j′)
∞ (x, θ) (i.e., the cell A?∞(x, θ) is not reduced to one point). Let A?k(x, θ)

def=
∏p
j=1

[a(j)
k (x, θ),b(j)

k (x, θ)] be the cell containing x at level k. If the criterion L? is identically zero for
all cuts in A?∞(x, θ) then m is constant on A?∞(x, θ) according to Lemma 5.1. This implies that
∆(m,A?∞(x, θ)) = 0. Thus, in that case, since m is uniformly continuous,

lim
k→∞

∆(m,A?k(x, θ)) = ∆(m,A?∞(x, θ)) = 0.

Let us now show by contradiction that L? is almost surely necessarily null on the cuts of A?∞(x, θ).
In the rest of the proof, for all k ∈ N?, we let L?k be the criterion L? used in the cell A?k(x, θ),
that is

L?k(d) = V[Y |X ∈ A?k(x, θ)]
− P[X(j) < z |X ∈ A?k(x, θ)] V[Y |X(j) < z,X ∈ A?k(x, θ)]
− P[X(j) ≥ z |X ∈ A?k(x, θ)] V[Y |X(j) ≥ z,X ∈ A?k(x, θ)],

for all d = (j, z) ∈ CA?
k
(x,θ). If L?∞ is not identically zero, then there exists a cut d∞(x, θ) in

CA?∞(x,θ) such that L?(d∞(x, θ)) = c > 0. Fix ξ > 0. By the uniform continuity of m, there
exists δ1 > 0 such that

sup
‖w−w′‖∞≤δ1

|m(w)−m(w′)| ≤ ξ .



134 Chapter 5. Consistency of random forests

Since A?k(x, θ) ↓ A?∞(x, θ), there exists k0 such that, for all k ≥ k0,

max (‖ak(x, θ)− a∞(x, θ)‖∞, ‖bk(x, θ)− b∞(x, θ)‖∞) ≤ δ1 . (5.12)

Observe that, for all k ∈ N?, V[Y |X ∈ A?k+1(x, θ)] < V[Y |X ∈ A?k(x, θ)]. Thus,

L?k := sup
d∈CAk(x,θ)

d(1)∈Mtry

L?k(d) ≤ ξ . (5.13)

From inequality (5.12), we deduce that∣∣E[m(X)|X ∈ A?k(x, θ)]− E[m(X)|X ∈ A?∞(x, θ)]
∣∣ ≤ ξ.

Consequently, there exists a constant C > 0 such that, for all k ≥ k0 and all cuts d ∈ CA?∞(x,θ),

|L?k(d)− L?∞(d)| ≤ Cξ2. (5.14)

Let k1 ≥ k0 be the first level after k0 at which the direction d(1)
∞ (x, θ) is amongst themtry selected

coordinates. Almost surely, k1 <∞. Thus, by the definition of d∞(x, θ) and inequality (5.14),

c− Cξ2 ≤ L?∞(d∞(x, θ))− Cξ2 ≤ L?k(d∞(x, θ)),

which implies that c− Cξ2 ≤ L?k. Hence, using inequality (5.13), we have

c− Cξ2 ≤ L?k ≤ ξ,

which is absurd, since c > 0 is fixed and ξ is arbitrarily small. Thus, by Lemma 5.1, m is
constant on A?∞(x, θ). This implies that ∆(m,A?k(x,Θ)) → 0 as k →∞.

5.6.2 Proof of Lemma 2

We start by proving Lemma 2 in the case k = 1, i.e., when the first cut is performed at the root
of a tree. Since in that case Ln,1(x, ·) does not depend on x, we simply write Ln,1(·) instead of
Ln,1(x, ·).

Proof of Lemma 2 in the case k = 1. Fix α, ρ > 0. Observe that if two cuts d1, d2 satisfy ‖d1 −
d2‖∞ < 1, then the cut directions are the same, i.e., d(1)

1 = d
(1)
2 . Using this fact and symmetry

arguments, we just need to prove Lemma 2 when the cuts are performed along the first dimension.
In other words, we only need to prove that

lim
n→∞

P

[
sup

|x1−x2|≤δ
|Ln,1(1, x1)− Ln,1(1, x2)| > α

]
≤ ρ/p. (5.15)
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Preliminary results Letting Zi = max1≤i≤n |εi|, simple calculations show that

P [Zi ≥ t] = 1− exp
(
n ln

(
1− 2P [ε1 ≥ t]

))
.

The last probability can be upper bounded by using the following standard inequality on Gaus-
sian tail:

P [ε1 ≥ t] ≤
σ

t
√

2π
exp

(
− t2

2σ2

)
.

Consequently, there exists a constant Cρ > 0 and N1 ∈ N? such that, with probability 1− ρ, for
all n > N1,

max
1≤i≤n

|εi| ≤ Cρ
√

logn . (5.16)

Besides, by simple calculations on Gaussian tail, for all n ∈ N?, we have

P

[∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣ ≥ α
]
≤ σ

α
√
n

exp
(
−α

2n

2σ2

)
.

Since there are, at most, n2 sets of the form {i : Xi ∈ [an, bn]} for 0 ≤ an < bn ≤ 1, we
deduce from the last inequality and the union bound, that there exists N2 ∈ N? such that, with
probability 1−ρ, for all n > N2 and all 0 ≤ an < bn ≤ 1 satisfying Nn([an, bn]× [0, 1]p−1) >

√
n,∣∣∣ 1

Nn([an, bn]× [0, 1]p−1)
∑

i:Xi∈[an,bn]
×[0,1]p−1

εi
∣∣∣ ≤ α. (5.17)

By the Glivenko-Cantelli theorem, there exists N3 ∈ N? such that, with probability 1 − ρ, for
all 0 ≤ a < b ≤ 1, and all n > N3,

(b− a− δ2)n ≤ Nn([a, b]× [0, 1]p−1) ≤ (b− a+ δ2)n. (5.18)

Throughout the proof, we assume to be on the event where assertions (5.16)-(5.18) hold, which
occurs with probability 1− 3ρ, for all n > N , where N = max(N1, N2, N3).

Take x1, x2 ∈ [0, 1] such that |x1 − x2| ≤ δ and assume, without loss of generality, that
x1 < x2. In the remainder of the proof, we will need the following quantities (see Figure 5.1 for
an illustration in dimension two):

AL,
√
δ = [0,

√
δ]× [0, 1]p−1

AR,
√
δ = [1−

√
δ, 1]× [0, 1]p−1

AC,
√
δ = [

√
δ, 1−

√
δ]× [0, 1]p−1.

Similarly, we define 

AL,1 = [0, x1]× [0, 1]p−1

AR,1 = [x1, 1]× [0, 1]p−1

AL,2 = [0, x2]× [0, 1]p−1

AR,2 = [x2, 1]× [0, 1]p−1

AC = [x1, x2]× [0, 1]p−1.
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Figure 5.1: Illustration of the notation in dimension p = 2.

Recall that, for any cell A, ȲA is the mean of the Yi’s falling in A and Nn(A) is the number of
data points in A. To prove (5.15), five cases are to be considered, depending upon the positions
of x1 and x2. We repeatedly use the decomposition

Ln,1(1, x1)− Ln,1(1, x2) = J1 + J2 + J3,

where

J1 = 1
n

∑
i:X(1)

i <x1

(Yi − ȲAL,1)2 − 1
n

∑
i:X(1)

i <x1

(Yi − ȲAL,2)2,

J2 = 1
n

∑
i:X(1)

i ∈[x1,x2]

(Yi − ȲAR,1)2 − 1
n

∑
i:X(1)

i ∈[x1,x2]

(Yi − ȲAL,2)2,

and J3 = 1
n

∑
i:X(1)

i ≥x2

(Yi − ȲAR,1)2 − 1
n

∑
i:X(1)

i ≥x2

(Yi − ȲAR,2)2.

First case Assume that x1, x2 ∈ AC,√δ. Since Nn(AL,2) > Nn(AL,√δ) >
√
n for all n > N ,

we have, according to inequalities (5.17),

|ȲAL,2 | ≤ ‖m‖∞ + α and |ȲAR,1 | ≤ ‖m‖∞ + α.



5.6. Technical results 137

Therefore

|J2| = 2
∣∣ȲAL,2 − ȲAR,1∣∣× 1

n

∣∣∣∣ ∑
i:X(1)

i ∈[x1,x2]

(
Yi −

ȲAL,2 + ȲAR,1
2

) ∣∣∣∣
≤ 4(‖m‖∞ + α)

(
(‖m‖∞ + α)Nn(AC)

n
+ 1
n

∣∣∣∣ ∑
i:X(1)

i ∈[x1,x2]

m(Xi)
∣∣∣∣

+ 1
n

∣∣∣∣ ∑
i:X(1)

i ∈[x1,x2]

εi

∣∣∣∣
)

≤ 4(‖m‖∞ + α)
(

(δ + δ2)(‖m‖∞ + α) + ‖m‖∞(δ + δ2)

+ 1
n

∣∣∣∣ ∑
i:X(1)

i ∈[x1,x2]

εi

∣∣∣∣
)
.

If Nn(AC) ≥
√
n, we obtain

1
n

∣∣∣∣ ∑
i:X(1)

i ∈[x1,x2]

εi

∣∣∣∣ ≤ 1
Nn(AC)

∣∣∣∣ ∑
i:X(1)

i ∈[x1,x2]

εi

∣∣∣∣ ≤ α (
according to (5.17)

)

or, if Nn(AC) <
√
n, we have

1
n

∣∣∣∣ ∑
i:X(1)

i ∈[x1,x2]

εi

∣∣∣∣ ≤ Cρ
√

logn√
n

(
according to (5.16)

)
.

Thus, for all n large enough,

|J2| ≤ 4(‖m‖∞ + α)
(

(δ + δ2)(2‖m‖∞ + α) + α

)
. (5.19)
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With respect to J1, observe that

|ȲAL,1 − ȲAL,2 | =
∣∣∣∣∣ 1
Nn(AL,1)

∑
i:X(1)

i <x1

Yi −
1

Nn(AL,2)
∑

i:X(1)
i <x2

Yi

∣∣∣∣∣
≤
∣∣∣∣∣ 1
Nn(AL,1)

∑
i:X(1)

i <x1

Yi −
1

Nn(AL,2)
∑

i:X(1)
i <x1

Yi

∣∣∣∣∣
+
∣∣∣∣∣ 1
Nn(AL,2)

∑
i:X(1)

i ∈[x1,x2]

Yi

∣∣∣∣∣
≤
∣∣∣∣∣1− Nn(AL,1)

Nn(AL,2)

∣∣∣∣∣× 1
Nn(AL,1) ×

∣∣∣∣∣ ∑
i:X(1)

i <x1

Yi

∣∣∣∣∣
+ 1
Nn(AL,2)

∣∣∣∣∣ ∑
i:X(1)

i ∈[x1,x2]

Yi

∣∣∣∣∣.
Since Nn(AL,2)−Nn(AL,1) ≤ n(δ + δ2), we obtain

1− Nn(AL,1)
Nn(AL,2) ≤

n(δ + δ2)
Nn(AL,2) ≤

δ + δ2
√
δ − δ2

≤ 4
√
δ,

for all δ small enough, which implies that

|ȲAL,1 − ȲAL,2 | ≤
4
√
δ

Nn(AL,1)

∣∣∣∣∣ ∑
i:X(1)

i <x1

Yi

∣∣∣∣∣
+ Nn(AL,1)
Nn(AL,2) ×

1
Nn(AL,1)

∣∣∣∣∣ ∑
i:X(1)

i ∈[x1,x2]

Yi

∣∣∣∣∣
≤ 4
√
δ(‖m‖∞ + α) + Nn(AL,1)

Nn(AL,2)(‖m‖∞δ + α)

≤ 5(‖m‖∞
√
δ + α).

Thus,

|J1| =
∣∣∣∣∣ 1n ∑

i:X(1)
i <x1

(Yi − ȲAL,1)2 − 1
n

∑
i:X(1)

i <x1

(Yi − ȲAL,2)2
∣∣∣∣∣

=
∣∣∣∣∣(ȲAL,2 − ȲAL,1)× 2

n

∑
i:X(1)

i <x1

(
Yi −

ȲAL,1 + ȲAL,2
2

) ∣∣∣∣∣
≤ |ȲAL,2 − ȲAL,1 |

2

≤ 25(‖m‖∞
√
δ + α)2. (5.20)
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The term J3 can be bounded with the same arguments.
Finally, by (5.19) and (5.20), for all n > N , and all δ small enough, we conclude that

|Ln(1, x1)− Ln(1, x2)| ≤ 4(‖m‖∞ + α)
(

(δ + δ2)(2‖m‖∞ + α) + α

)
+ 25(‖m‖∞

√
δ + α)2

≤ α.

Second case Assume that x1, x2 ∈ AL,√δ. With the same arguments as above, one proves
that

|J1| ≤ max
(
4(
√
δ + δ2)(‖m‖∞ + α)2, α

)
,

|J2| ≤ max(4(‖m‖∞ + α)(2δ‖m‖∞ + 2α), α),
|J3| ≤ 25(‖m‖∞

√
δ + α)2.

Consequently, for all n large enough,

|Ln(1, x1)− Ln(1, x2)| = J1 + J2 + J3 ≤ 3α.

The other cases {x1, x2 ∈ AR,√δ}, {x1, x2 ∈ AL,√δ × AC,√δ}, and {x1, x2 ∈ AC,√δ × AR,√δ}
can be treated in the same way. Details are omitted.

Proof of Lemma 2. We proceed similarly as in the proof of the case k = 1. Here, we establish
the result for k = 2 and p = 2 only. Extensions are easy and left to the reader.

Preliminary results Fix ρ > 0. At first, it should be noted that there exists N1 ∈ N? such
that, with probability 1−ρ, for all n > N0 and all An = [a(1)

n , b
(1)
n ]× [a(2)

n , b
(2)
n ] ⊂ [0, 1]2 satisfying

Nn(An) >
√
n, we have ∣∣∣ 1

Nn(An)
∑

i:Xi∈An
εi
∣∣∣ ≤ α, (5.21)

and
1

Nn(An)
∑

i:Xi∈An
ε2
i ≤ σ̃2, (5.22)

where σ̃2 is a positive constant, depending only on ρ. Inequality (5.22) is a straightforward
consequence of the following inequality [see, e.g., Laurent and Massart, 2000], which is valid for
all n ∈ N?:

P
[
χ2(n) ≥ 5n

]
≤ exp(−n).

Throughout the proof, we assume to be on the event where assertions (5.16), (5.18), (5.21)-
(5.22) hold, which occurs with probability 1 − 3ρ, for all n large enough. We also assume that
d1 = (1, x1) and d2 = (2, x2) (see Figure 5.2). The other cases can be treated similarly.
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Figure 5.2: An example of cells in dimension p = 2.

Main argument Let d′1 = (1, x′1) and d′2 = (2, x′2) be such that |x1−x′1| < δ and |x2−x′2| < δ.
Then the CART-split criterion Ln,2 writes

Ln(d1, d2) = 1
Nn(AR,1)

∑
i

(Yi − ȲAR,1)21X(1)
i >x1

− 1
Nn(AR,1)

∑
i:X(2)

i >x2

(Yi − ȲAH,2)21X(1)
i >x1

− 1
Nn(AR,1)

∑
i:X(2)

i ≤x2

(Yi − ȲAB,2)21X(1)
i >x1

.

Clearly,

Ln(d1, d2)− Ln(d′1, d′2) = Ln(d1, d2)− Ln(d′1, d2) + Ln(d′1, d2)− Ln(d′1, d′2).
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We have (Figure 5.2):

Ln(d1, d2)− Ln(d′1, d2) =
[

1
Nn(AR,1)

∑
i:X(2)

i >x2

(Yi − ȲAH,2)21X(1)
i >x1

− 1
Nn(A′R,1)

∑
i:X(2)

i >x2

(Yi − ȲA′H,2)21X(1)
i >x′1

]

+
[

1
Nn(AR,1)

∑
i:X(2)

i ≤x2

(Yi − ȲAB,2)21X(1)
i >x1

− 1
Nn(A′R,1)

∑
i:X(2)

i ≤x2

(Yi − ȲA′B,2)21X(1)
i >x′1

]
def= A1 +B1.

The term A1 can be rewritten as A1 = A1,1 +A1,2 +A1,3, where

A1,1 = 1
Nn(AR,1)

∑
i:X(2)

i >x2

(Yi − ȲAH,2)21X(1)
i >x′1

− 1
Nn(AR,1)

∑
i:X(2)

i >x2

(Yi − ȲA′H,2)21X(1)
i >x′1

,

A1,2 = 1
Nn(AR,1)

∑
i:X(2)

i >x2

(Yi − ȲA′H,2)21X(1)
i >x′1

− 1
Nn(A′R,1)

∑
i:X(2)

i >x2

(Yi − ȲA′H,2)21X(1)
i >x′1

,

and A1,3 = 1
Nn(AR,1)

∑
i:X(2)

i >x2

(Yi − ȲAH,2)21X(1)
i ∈[x1,x′1].

Easy calculations show that

A1,1 =
Nn(A′H,2)
Nn(AR,1) (ȲA′H,2 − ȲAH,2)2,

which implies, with the same arguments as in the proof for k = 1, that A1,1 → 0 as n → ∞.
With respect to A1,2 and A1,3, we write

max(A1,2, A1,3) ≤ max(Cρ
logn√
n
, 2(σ̃2 + 4‖m‖2∞ + α2)

√
δ

ξ
).

Thus, A1,2 → 0 and A1,3 → 0 as n → ∞. Collecting bounds, we conclude that A1 → 0. One
proves with similar arguments that B1 → 0 and, consequently, that Ln(d′1, d2) − Ln(d′1, d′2) →
0.
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5.6.3 Proof of Lemma 3

We prove by induction that, for all k, with probability 1−ρ, for all ξ > 0 and all n large enough,

d∞(d̂k,n(X,Θ),A?k(X,Θ)) ≤ ξ.

Call this property Hk. Fix k > 1 and assume that Hk−1 is true. For all dk−1 ∈ Ak−1(X), let

d̂k,n(dk−1) ∈ arg min
dk

Ln(X,dk−1, dk),

and

d?k(dk−1) ∈ arg min
dk

L?(X,dk−1, dk),

where the minimum is evaluated, as usual, over {dk ∈ CA(X,dk−1) : d(1)
k ∈ Mtry}. Fix ρ > 0. In

the rest of the proof, we assume Θ to be fixed and we omit the dependence on Θ.

Preliminary result We momentarily consider x ∈ [0, 1]p. Note that, for all dk−1,

Ln(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d̂k,n(dk−1))
≤ Ln(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d

?
k(dk−1))

(by definition of d?k(dk−1))
≤ Ln(x,dk−1, d

?
k(dk−1))− L?(x,dk−1, d

?
k(dk−1))

(by definition of d̂k,n(dk−1)).

Thus, ∣∣∣Ln(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d
?
k(dk−1))

∣∣∣
≤ max

( ∣∣∣Ln(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d̂k,n(dk−1))
∣∣∣ ,∣∣∣Ln(x,dk−1, d

?
k(dk−1))− L?(x,dk−1, d

?
k(dk−1))

∣∣∣)
≤ sup

dk

|Ln(x,dk−1, dk)− L?(x,dk−1, dk)| .

Moreover,

|L?(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d
?
k(dk−1))|

≤ |L?(x,dk−1, d̂k,n(dk−1))− Ln(x,dk−1, d̂k,n(dk−1))|
+ |Ln(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d

?
k(dk−1))|

≤ 2 sup
dk

|Ln(x,dk−1, dk)− L?(x,dk−1, dk)|

= 2 sup
dk

|Ln(x,dk)− L?(x,dk)|. (5.23)
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Let Āξk(x) = {dk : dk−1 ∈ Aξk−1(x)}. So, taking the supremum on both sides of (5.23) leads to

sup
dk−1∈Aξk−1(x)

|L?(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d
?
k(dk−1))|

≤ 2 sup
dk∈Āξk(x)

|Ln(x,dk)− L?(x,dk)|. (5.24)

By Lemma 3, for all ξ′ > 0, one can find δ > 0 such that, for all n large enough,

P

[
sup

x∈[0,1]p
sup

‖dk−d′k‖∞≤δ
dk,d′k∈Ā

ξ
k
(x)

|Ln(x,dk)− Ln(x,d′k)| ≤ ξ′
]
≥ 1− ρ. (5.25)

Now, let G be a regular grid of [0, 1]p whose grid step equal to ξ/2. Note that, for all x ∈ G,
Āξk(x) is compact. Thus, for all x ∈ G, there exists a finite subset Cδ,x = {cj,x : 1 ≤ j ≤ p} such
that, for all dk ∈ Āξk(x), d∞(dk, Cδ,x) ≤ δ. Set ξ′ > 0. Observe that, since the subset ∪x∈GCδ,x
is finite, one has, for all n large enough,

sup
x∈G

sup
cj,x∈Cδ,x

|Ln(x, cj,x)− L?(x, cj,x)| ≤ ξ′. (5.26)

Hence, for all n large enough,

sup
x∈G

sup
dk∈Āξk(x)

|Ln(x,dk)− L?(x,dk)| ≤ sup
x∈G

sup
dk∈Āξk(x)

(
|Ln(x,dk)− Ln(x, cj,x)|

+ |Ln(x, cj,x)− L?(x, cj,x)|+ |L?(x, cj,x)− L?(x,dk)|
)
,

where cj,x satisfies ‖cj,x−dk‖∞ ≤ δ. Using inequalities (5.25) and (5.26), with probability 1−ρ,
we obtain, for all n large enough,

sup
x∈G

sup
dk∈Āξk(x)

|Ln(x,dk)− L?(x,dk)| ≤ 3ξ′.

Finally, by inequality (5.24), with probability 1− ρ, for all n large enough,

sup
x∈G

sup
dk−1∈Aξk−1(x)

|L?(x,dk−1, d̂k,n(dk−1))− L?(x,dk−1, d
?
k(dk−1))| ≤ 6ξ′. (5.27)

Hereafter, to simplify, we assume that, for any given (k − 1)-tuple of theoretical cuts, there
is only one theoretical cut at level k, and leave the general case as an easy adaptation. Thus,
we can define unambiguously

d?k(dk−1) = arg min
dk

L?(dk−1, dk).
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Fix ξ′′ > 0. From inequality (5.27), by evoking the equicontinuity of Ln and the compactness of
U = {(x,dk−1) : x ∈ G,dk−1 ∈ Aξk−1(x)}, we deduce that, with probability 1− ρ, for all n large
enough,

sup
(x,dk−1)∈U

d∞
(
d̂k,n(dk−1), d?k(dk−1)

)
≤ ξ′′. (5.28)

Besides,

P
[
(X, d̂k−1,n(X)) ∈ U

]
= E

[
P
[
(X, d̂k−1,n(X)) ∈ U|Dn

]]
≥ 1− 2k−1ξ. (5.29)

In the rest of the proof, we consider ξ ≤ ρ/2k−1, which, by inequalities (5.28) and (5.29), leads
to

P
[

sup
(x,dk−1)∈U

d∞
(
d̂k,n(dk−1), d?k(dk−1)

)
≤ ξ′′, (X, d̂k−1,n(X)) ∈ U

]
≥ 1− 2ρ.

This implies, with probability 1− 2ρ, for all n large enough,

d∞
(
d̂k,n(d̂k−1,n), d?k(d̂k−1,n)

)
≤ ξ′′. (5.30)

Main argument Now, using triangle inequality,

d∞
(
d̂k,n(d̂k−1,n),A?k

)
≤ d∞

(
d̂k,n(d̂k−1,n), d?k(d̂k−1,n)

)
+ d∞

(
d?k(d̂k−1,n),A?k

)
. (5.31)

Thus, we just have to show that d∞(d?k(d̂k−1,n),A?k)→ 0 in probability as n→∞, and the proof
will be complete. To avoid confusion, we let {d?,ik−1 : i ∈ I} be the set of best first (k − 1)-th
theoretical cuts (which can be either countable or not). With this notation, d?k(d

?,i
k−1) is the k-th

theoretical cuts given that the (k − 1) previous ones are d?,ik−1. For simplicity, let

Li,?(x, dk) = L?k(x,d
?,i
k−1, dk) and L̂?(x, dk) = L?k(x, d̂k−1,n, dk).

As before,

d?k(d
?,i
k−1) ∈ arg min

dk

Li,?(x, dk) and d?k(d̂k−1,n) ∈ arg min
dk

L̂?(x, dk).

Clearly, the result will be proved if we establish that,

inf
i∈I

d∞(d?k(d̂k−1,n), d?k(d
?,i
k−1))→ 0, in probability, as n→∞.

Note that, for all x ∈ G, Āξk(x) is compact. Thus, for all x ∈ G, there exists a finite subset
C′δ,x = {c′j,x : 1 ≤ j ≤ p} such that, for all dk, d∞(dk, C′δ,x) ≤ δ. Hence, with probability 1− ρ,
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for all n large enough,

|L̂?(x, dk)− Li,?(x, dk)| ≤ |L̂?(x, dk)− L̂?(x, c′j,x)|
+ |L̂?(x, c′j,x)− Li,?(x, c′j,x)|
+ |Li,?(x, c′j,x)− Li,?(x, dk)|

≤ 2ξ′ + |L̂?(x, c′j,x)− Li,?(x, c′j,x)|
(by the continuity of L?k).

Therefore, as in inequality (5.24), with probability 1− ρ, for all i and all n large enough,

|Li,?(x, d?k(d̂k−1,n))−Li,?(x, d?k(d
?,i
k−1))| ≤ 2 sup

dk

|L̂?(x, dk)− Li,?(x, dk)|

≤ 4ξ′ + 2 max
j
|L̂?(x, c′j,x)− Li,?(x, c′j,x)|.

Taking the infimum over all i, we obtain

inf
i
|Li,?(x, d?k(d̂k−1,n))−Li,?(x, d?k(d

?,i
k−1))| ≤ 4ξ′

+ 2 inf
i

max
j
|L̂?(x, c′j,x)− Li,?(x, c′j,x)|. (5.32)

Introduce ω, the modulus of continuity of L?k:

ω(x, δ) = sup
‖d−d′‖∞≤δ

|L?k(x,d)− L?k(x,d′)|.

Observe that, since L?k(x, ·) is uniformly continuous, ω(δ) → 0 as δ → 0. Hence, for all n large
enough,

inf
i

max
j
|L̂?(x, c′j,x)− Li,?(x, c′j,x)|

= inf
i

max
j
|L?k(x, d̂k−1,n, c

′
j,x)− L?k(x,d

?,i
k−1, c

′
j,x)|

≤ inf
i
ω(x, ‖d̂k−1,n − d?,ik−1‖∞)

≤ ξ′, (5.33)

since, by assumption Hk−1, infi ‖d̂k−1,n−d?,ik−1‖∞ → 0. Therefore, combining (5.32) and (5.33),
with probability 1− ρ, for all n large enough,

inf
i
|Li,?(X, d?k(d̂k−1,n))− Li,?(X, d?k(d

?,i
k−1))| ≤ 6ξ.

Finally, by Technical Lemma 5.2 below, with probability 1− ρ, for all n large enough,

inf
i
d∞(d?k(d̂k−1,n), d?k(d

?,i
k−1)) ≤ ξ′′. (5.34)

Plugging inequality (5.34) and (5.30) into (5.31), we conclude that, with probability 1− 3ρ, for
all n large enough,

d∞
(
d̂k,n(d̂k−1,n),A?k

)
≤ 2ξ′′,

which proves Hk. Property H1 can be proved in the same way.
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Technical Lemma 5.2. For all δ, ρ > 0, there exists ξ > 0 such that, if, with probability 1− ρ,

inf
i
|Li,?(X, d?k(d̂k−1,n))− Li,?(X, d?k(d

?,i
k−1))| ≤ ξ,

then, with probability 1− ρ,

inf
i
d∞(d?k(d̂k−1,n), d?k(d

?,i
k−1)) ≤ δ. (5.35)

Proof of Technical Lemma 5.2. Fix ρ > 0. Note that, for all δ > 0, there exists ξ > 0 such that,

inf
x∈[0,1]p

inf
i

inf
y:d∞(y,d?k(d?,i

k−1))≥δ
|L?k(x,d

?,i
k−1, d

?
k(d

?,i
k−1))− L?k(x,d

?,i
k−1, y)| ≥ ξ.

To see this, assume that one can find δ > 0 such that, for all ξ > 0, there exist iξ, yξ,xξ satisfying

|L?k(xξ,d
?,iξ
k−1, d

?
k(d

?,iξ
k−1))− L?k(xξ,d

?,iξ
k−1, yξ)| ≤ ξ,

with d∞(yξ, d?k(d
?,iξ
k−1)) ≥ δ. Recall that {d?,ik−1 : i ∈ N}, {d?k(d

?,i
k−1) : i ∈ N} are compact. Then,

letting ξp = 1/p, we can extract three sequences d?,ipk−1 → dk−1, d?k(d
?,ip
k−1) → dk and yξip → y as

p→∞ such that

L?k(dk−1, dk) = L?k(dk−1, y), (5.36)

and d∞(y, dk) ≥ δ. Since we assume that given the (k − 1)-th first cuts dk−1, there is only one
best cut dk, equation (5.36) implies that y = dk, which is absurd.

Now, to conclude the proof, fix δ > 0 and assume that, with probability 1− ρ,

inf
i
d∞(d?k(d

?,i
k−1), d?k(d̂k−1,n)) ≥ δ.

Thus, with probability 1− ρ,

inf
i
|Li,?(X, d?k(d̂k−1,n))− Li,?(X, d?k(d

?,i
k−1))|

= inf
i
|L?k(X,d

?,i
k−1, d

?
k(d̂k−1,n))− L?k(X,d

?,i
k−1, d

?
k)|

≥ inf
x∈[0,1]p

inf
i

inf
d∞(y,d?

k
(d?,i
k−1))≥δ

|L?k(x,d
?,i
k−1, y)− L?k(x,d

?,i
k−1, d

?
k)|

≥ ξ,

which, by contraposition, concludes the proof.

Proof of Proposition 1. Fix k ∈ N? and ρ, ξ > 0. According to Lemma 3, with probability 1−ρ,
for all n large enough, there exists a sequence of theoretical first k cuts d?k(X,Θ) such that

d∞(d?k(X,Θ), d̂k,n(X,Θ)) ≤ ξ. (5.37)

This implies that, with probability 1 − ρ, for all n large enough and all 1 ≤ j ≤ k, the j-th
empirical cut d̂j,n(X,Θ) is performed along the same coordinate as d?j (X,Θ).

Now, for any cell A, since the regression function is not constant on A, one can find a
theoretical cut d?A on A such that L?(d?A) > 0. Thus, the cut d?A is made along an informative
variable, in the sense that it is performed along one of the first S variables. Consequently, for
all X,Θ and for all 1 ≤ j ≤ k, each theoretical cut d?j (X,Θ) is made along one of the first S
coordinates. The proof is then a consequence of inequality (5.37).



Chapter 6

Kernel bilinear regression for
toxicogenetics

Abstract We propose a new model to predict the response of human cell lines exposed to
various chemicals, based on molecular characterizations of the cell’s genome and transcrip-
tome. We demonstrate the relevance of the method on the recent DREAM8 Toxicogenetics
challenge.
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6.1 Introduction

The response to drugs and environmental factors varies between individuals. Understanding
the genetic basis for this variability and being able to identify individuals prone to adverse side
effects will play an increasingly important role with the development of personalized medicines,
and could contribute to the definition of appropriate regulatory limits for environmental health
protection. Toxicogenetics is the name of the field that aims at understanding the genetic basis
for individual differences in response to potential toxicants. It builds on the fast progress in
our ability to genotype individuals and more generally to measure a multitude of potential
biomarkers, such as mutations or gene expression, which may be useful predictors of response.

Recent efforts to systematically characterize the molecular portraits of individuals and to
assess their response to various chemicals have started to generate rich collections of data, paving
the way to systematic analysis in order to decipher the molecular basis for response variability
and to develop predictive models of individual response. For example, a consortium of teams
from the University of North Carolina (UNC), the National Institutes of Environmental Health
Sciences (NIEHS), and the National Center for Advancing Translational Sciences (NCATS)
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have recently generated a large population-scale toxicity screen, testing more than 150 drugs
and environmental chemicals on almost a thousand cell lines derived from individuals with well-
characterized genotype and transcriptome (see more details below). These data were recently
released as part of a challenge whose goal was to derive a model to predict the response of new
individuals to the various chemicals.

In this paper we present a machine-learning based model to solve this toxicogenetics chal-
lenge. The model implements a kernel bilinear regression, providing a principled way to integrate
heterogeneous data such as genotype and transcriptome, and to leverage informations across the
different chemicals tested, in a computationally efficient framework. In the rest of this paper we
provide a brief description of this model and study its empirical performance on the data from
the DREAM8 Toxicogenetics challenge, where it was among the best performers.

6.2 The kernel bilinear regression model

Let X and Y denote abstract vector space to represent, respectively, cell lines and chemicals.
For example, if each cell line is characterized by a measure of d genetic markers, then we may
take X = Rd to represent each cell line as a vector of markers, but to keep generality we will
simply assume that X and Y are endowed with positive definite kernels, respectively KX and
KY . Given a set of n cell lines x1, . . . , xn ∈ X and p chemicals y1, . . . , yp ∈ Y, we assume
that a quantitative measure of toxicity response zi,j ∈ R has been measured when cell line xi
is exposed to chemical yj , for i = 1, . . . , n and j = 1, . . . , p. Our goal is to estimate, from this
data, a function h : X × Y → R to predict the response h(x, y) if a cell line x is exposed to a
chemical y.

We propose to model the response with a simple bilinear regression model of the form:

Z = f(X,Y ) + b(Y ) + ε , (6.1)

where f is a bilinear function, b is a chemical-specific bias term and ε is some Gaussian noise.
We add the chemical-specific bias term to adjust for the large differences in absolute toxicity
response values between chemicals, while the bilinear term f(X,Y ) can capture some patterns
of variations between cell lines shared by different chemicals. We will only focus on the problem
of predicting the action of known and tested chemicals on new cell lines, meaning that we will
not try to estimate b(Y ) on new cell lines.

If x and y are finite dimensional vectors, then the bilinear term f(x, y) has the simple form
x>My for some matrixM , with Frobenius norm ‖M‖2 = Tr(M>M). The natural generalization
of this bilinear model to possibly infinite-dimensional spaces X and Y is to consider a function
f in the product reproducing kernel Hilbert space H associated to the product kernel KXKY ,
with Hilbert-Schmitt norm ‖f‖2. To estimate model (6.1), we solve a standard ridge regression
problem:

min
f∈H,b∈Rp

n∑
i=1

p∑
j=1

(f(xi, yj) + bj − zij)2 + λ‖f‖2 , (6.2)

where λ is a regularization parameter to be optimized. As shown in the next theorem, (6.2)
has an analytical solution. Note that 1n refers to the n-dimensional vector of ones, Diag(u) for
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a vector u ∈ Rn refers to the n × n diagonal matrix whose diagonal is u, and A ◦ B for two
matrices of the same size refers to their Hadamard (or entrywise) product.

Theorem 6.1. Let Z ∈ Rn×p be the response matrix, and KX ∈ Rn×n and KY ∈ Rp×p be the
kernel Gram matrices of the n cell lines and p chemicals, with respective eigenvalue decompo-
sitions KX = UXDXU

>
X and KY = UYDY U

>
Y . Let γ = U>X1n and S ∈ Rn×p be defined by

Sij = 1/
(
λ+Di

XD
j
Y

)
, where Di

X (resp. Di
Y ) denotes the i-th diagonal term of DX (resp. DY ).

Then the solution (f∗, b∗) of (6.2) is given by

b∗ = UYDiag
(
S>γ◦2

)−1 (
S> ◦

(
U>Y Z

>UX
))
γ (6.3)

and
∀(x, y) ∈ X × Y , f∗(x, y) =

n∑
i=1

p∑
j=1

α∗i,jKX(xi, x)KY (yi, y) , (6.4)

where
α∗ = UX

(
S ◦

(
U>X

(
Z − 1nb∗>

)
UY
))
U>Y . (6.5)

The most computationally expensive part to compute b∗ and α∗ from (6.3) and (6.5) is the
eigenvalue decomposition ofKX andKY , and we only need to manipulate matrices of size smaller
than n× n or p× p. The computational complexity of the method is therefore O(max(n, p)3),
and the memory requirement O(max(n, p)2).

Proof. By the representer theorem, we know that there exists a matrix α ∈ Rn×p such that the
solution f ∈ H of (6.2) can be expanded as:

∀(x, y) ∈ X × Y , f(x, y) =
n∑
i=1

p∑
j=1

αi,jKX(xi, x)KY (yi, y) . (6.6)

Plugging back (6.4) into (6.2) and using the fact that ‖ f ‖2 = Tr(α>KXαKY ) leads to the
problem:

min
α∈Rn×p,b∈Rp

Tr
(
(KXαKY + 1nb> − Z)>(KXαKY + 1nb> − Z) + λα>KXαKY

)
, (6.7)

where Tr(M) is the trace of the square matrixM . This is a convex, quadratic program in α and
b, so we can solve it by setting its gradient to zero. The gradient in α and b are respectively:

∂α = 2KX

(
KXαKY + λα+ 1nb> − Z

)
KY , (6.8)

∂b = 2
(
nb+KY α

>KX1n − Z>1n
)
. (6.9)

The gradient in α (6.8) is null if and only if

KXαKY + λα+ 1nb> − Z = ε , with KXεKY = 0 . (6.10)

Note that although different α may satisfy (6.10) (with different ε), they all define the same
function f through (6.6), since the original problem (6.2) is strictly convex in f and has therefore
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a unique solution. We can therefore only focus on the solution corresponding to ε = 0 in (6.10),
leading to

KXαKY + λα = Z − 1nb> . (6.11)

Multiplying on the left by U>X and on the right by UY leads to

DXU
>
XαUYDY + λU>XαUY = U>X

(
Z − 1nb>

)
UY .

The (i, j)-th entry of the l.h.s. matrix is
(
Di
XD

j
Y + λ

) (
U>XαUY

)
i,j
, so by denoting Si,j =(

Di
XD

j
Y + λ

)−1
as in Theorem 6.1 we get:

U>XαUY = S ◦
(
U>X

(
Z − 1nb>

)
UY
)
,

leading to
α = UX

(
S ◦

(
U>X

(
Z − 1nb>

)
UY
))
U>Y . (6.12)

The gradient in b (6.9) is null if and only if

nb+KY α
>KX1n − Z>1n = 0 . (6.13)

However, (6.11) leads to

KY α
>KX1n + λα>1n = Z>1n − b1>n 1n = Z>1n − nb (6.14)

which combined with (6.13) gives α>1n = 0. Applying this condition to (6.12) gives

UY
(
S> ◦

(
U>Y

(
Z> − b1>n

)
UX
))
U>X1n = 0 .

Multiplying on the left by U>Y and using the notation γ = U>X1n, this is equivalent to(
S> ◦

(
U>Y Z

>UX
))
γ =

(
S> ◦

(
U>Y bγ

>
))
γ (6.15)

Now, if we denote c = U>Y b, then we see that the i-th entry of the vector
(
S> ◦

(
cγ>

))
γ is:

[(
S> ◦

(
cγ>

))
γ
]
i

=
n∑
j=1

Sji(ciγj)γj = ci

n∑
j=1

Sjiγ
2
j = ci

[
S>γ◦2

]
i
,

meaning (
S> ◦

(
cγ>

))
γ = Diag

(
S>γ◦2

)
c . (6.16)

Plugging (6.16) into (6.15) we get

Diag
(
S>γ◦2

)
U>Y b =

(
S> ◦

(
U>Y Z

>UX
))
γ ,

which finally gives
b = UYDiag

(
S>γ◦2

)−1 (
S> ◦

(
U>Y Z

>UX
))
γ .
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6.3 Data

We test our model on the data of the DREAM 8 Toxicogenetics challenge1, a joint crowdsourcing
initiative of Sage Bionetworks, DREAM and scientists at UNC, NIEHS and NCATS to assess
the possibility of developing predictive models in toxicogenetics. The effect of 156 chemical
compounds was tested on 884 lymphoblastoid cell lines derived from participants in the 1000
Genomes Project and representing 9 distinct geographic subpopulations. The toxicity response
was measured in terms of EC10, i.e., the concentration in chemical compound at which the
intracellular ATP content is decreased by 10 percent. Participants had access to a subset of
these data, corresponding to 106 chemicals tested 487 cell lines. The challenge we focus on
was to predict the effect of these 106 chemicals on the 397 cell lines that were not given to the
participants.

For each cell line we have access to three covariates (population, batch and sex), to DNA
variation profiles (approximately 1.3 million single nucleotide polymorphisms or SNPs), and to
gene expression levels by RNA sequencing for a subset of the cell lines (46 256 transcripts). Each
chemical also came with a set of structural attributes obtained by standard chemoinformatics
methodologies, including 160 descriptors based on the Chemistry Development Kit (CDK) and
9272 descriptors based on the Simplex Representation of Molecular Structure (SIRMS). In ad-
dition, we computed for each chemical 881 binary descriptors encoding the presence or absence
of 881 substructures defined in the PubChem database Chen et al. [2009], and 1554 descrip-
tors describing the ability of the chemicals to interact with 1554 human proteins known to be
potential targets for drugs and xenobiotics Yamanishi et al. [2011].

To use these various, heterogeneous data in our kernel bilinear regression model, we trans-
formed them into positive definite kernels for cell lines and chemicals. For each vector repre-
sentation, we computed a linear kernel, 10 Gaussian RBF kernels with different bandwidths,
and an average Gaussian RBF kernel; for the discrete cell lines covariates, we just computed
linear kernels; we also added a standard graph kernel based on walks on the 2D structure of
molecules [Mahé et al., 2005]. In addition, we tested various multitask kernels to leverage in-
formation across the chemicals [Evgeniou et al., 2005]: we made 11 kernels by interpolating
linearly between the Dirac kernel (amounting to performing linear regression independently for
the different chemicals) and the constant kernel (amounting to learning a single model for all
chemicals). We also tried an empirical kernel equal to the empirical correlation matrix between
the toxicity level of the different chemicals on the training cell lines. Finally, for both cell lines
and chemicals, we defined an integrated kernel as the average of all other kernels. In total, we
created 29 cell line kernels and 48 chemical kernels

6.4 Results

We first test the 29×48 combinations of cell line and chemical kernels by 5-fold cross-validation
(over the cell lines) repeated 10 times on the 106 chemicals and 487 cell lines available during
the challenge. Note that only 192 cell lines out of 487 had RNA-seq information; for cell lines
missing RNA-seq information, we replaced any RNA-seq-based kernel by the Dirac kernel. We

1https://www.synapse.org/#!Synapse:syn1761567

https://www.synapse.org/#!Synapse:syn1761567
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Figure 6.1: Mean CI for each combination of cell line kernel (vertical axis) and chemical kernel
(horizontal axis), by cross-validation over the full set of 487 cell lines (left) or on the limited set
of 192 cell lines with RNA-seq information (right).

assess the performance of prediction in terms of concordance index (CI) per chemical, averaged
over the chemicals. A random prediction leads to a CI of 0.5, while a CI of 1 means that we
have perfectly ranked the cell lines in terms of response to the chemical.

Figure 6.1 gives an overview of the performance reached by different combinations of kernels,
with or without taking into account cell lines with missing RNA-seq data, while Figure 6.2 sum-
marizes the average performance of each individual kernel. A first, disappointing observation is
that the overall performance barely reaches CI = 0.54, an observation shared by participants
and organizers of the challenge: this is a difficult problem. This being said, we observe clear dif-
ferences between the performance of different kernels, particularly for cell lines kernels. The best
performance is reached by the kernel based on covariates, in particular the batch information.
This suggests that a batch effect was present in the data, but raises questions on the capacity
of this kernel to generalize well to new cell lines. After the batch effect, we notice the relatively
good performance of population information, captured either by the "population" covariate, or
kernels based on SNP. The performance of RNA-seq was disappointing. Interestingly, the inte-
grated kernel gave the best results besides those based on batch effects, suggesting it may be a
robust and powerful way to integrated various informations. On the chemical side, we saw much
less influence of kernels. We were disappointed by the fact that none of the chemical descriptors
seemed to bring any performance improvement, and by the fact that the Dirac kernel (referred
to as Kmultitask1 in the plots), corresponding to fitting regression models independently for
each chemical, gave the best results. However, when we examined experiments where the batch
effect was less pronounced (such as the right panel of Figure 6.1), we noticed that the empirical
kernel seemed to give good performance in many cases, raising hopes that the problem could
benefit from some multitask strategy.

This was confirmed at the real DREAM8 Toxicogenetics challenge, where we had to predict
the toxicity response of 397 new cell lines exposed to the 106 chemicals. We submitted 4
predictions with different kernels, among which the combination of integrated cell line kernel
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Figure 6.2: Average CI reached by each cell line kernel (left) and each chemical kernel (right).
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with empirical chemical kernel performed best, with an overall rank of 2nd out of 100 submitted
models.



Conclusions and perspectives

The aim of this thesis was to provide some theoretical results on random forests, in order to
narrow the gap between theory and practice. Clearly random forests used in practice are built
with a finite number of trees, whereas an infinite number of trees compose the forests analyzed
in theory. In Chapter 3, we have made explicit the link between finite and infinite forest
estimates by establishing their limiting distribution and proving that their errors are similar.
This work is closely related to that of Mentch and Hooker [2014a] who exhibited the limiting
distribution of finite random forests estimate, where both the number of trees and the number
of observations tend to infinity. Wager [2014] also proved that the variance of random forests
can be estimated via the Jackkniffe estimate, therefore allowing to build confidence intervals
for random forest predictions. All in all, these results support the fact that theory on infinite
forests can be straightforwardly extended to finite forests.

In the second part of Chapter 3, we studied quantile forests to highlight the benefits
of random forests compared to individual trees. It is known that random forests reduce the
estimation error (and, in some cases, the approximation error) of individual trees. In this context,
we demonstrated that aggregating inconsistent quantile trees leads to a consistent forest. The
analysis shows that quantile forest consistency results from an appropriate subsampling strategy.
Since quantile forests are relatively simple to study compared to Breiman’s forests, a starting
point for further research could be to derive rate of convergence for quantile forests to show:

(i) whether quantile forests reach minimax rate of convergence for some class of regression
functions;

(ii) whether fully developed quantile forests exhibit better performance than pruned quantile
forests (no theoretical results shows the benefit of fully developed random forests).

In Chapter 4, we highlighted the fact that random forests can be seen as kernel estimates,
up to a small modification of the algorithm. The corresponding kernels exhibit similar effi-
ciency as their random forest counterparts while being much more interpretable. Kernels were
made explicit for two purely random forests. A future line of research would be to inspect the
performance of methods (SVM, Gaussian processes...) that use previous kernels as input.

Unfortunately, we did not succeed in making Breiman’s forest kernels explicit (since
Breiman’s forest construction depends on the whole data set) and finding a closed form for
Breiman’s kernel does not seem to be a reasonable future goal. However, we should be able
to simulate Breiman’s kernel and thus empirically study their properties, particularly how they
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depend on the positions Xi and on the labels Yi, how they are related to purely random forest
kernels (described in Chapter 4), and how they are affected by a particular resampling strategy
(bootstrap and subsampling).

We proved in Chapter 5 the consistency of pruned and unpruned Breiman forests. Re-
moving assumption (H5.2) in Theorem 5.2 would be a substantial improvement, although it
would require to overcome technical difficulties related to the structure of CART partitioning.
Nonetheless, there are other feasible avenues for further research regarding Breiman’s forests:

(i) A complete analysis of the CART splitting criterion remains to be done. In particular, it
would be very interesting to determine how the concentration of the empirical splits (near
the optimal split) depends on the space dimension or the model noise, therefore leading
to a better understanding of the splitting procedure.

(ii) Our proofs do not extend to the bootstrap resampling case whereas it is the original
resampling scheme proposed by Breiman. It turns out that bootstrap distribution is
not the same as the initial data distribution therefore making the original procedure far
more complicated to investigate. We should empirically compute the weights Wni(x) in
Breiman’s forests that use bootstrap, to see if they are uniformly distributed among the
Layered Nearest Neighbor of the query point x. If this is the case, theory developed by
Biau and Devroye [2010] would support the fact that random forests are consistent, even
when bootstrap is applied.

(iii) The fact that Theorem 5.1 and 5.2 do not provide the rate of consistency for Breiman’s
forests is disappointing. However our proof cannot be straightforwardly adapted to that
aim. Upper bounding the rate of consistency could be possible in some particular regression
model. As a consequence, the bound dependency on the ambient dimension p would help
to understand how the random forest procedures are influenced by the space dimension.
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Résumé
Cette thèse est consacrée aux forêts aléatoires, une méthode d’apprentissage non paramétrique
introduite par Breiman en 2001. Très répandues dans le monde des applications, les forêts aléa-
toires possèdent de bonnes performances et permettent de traiter efficacement de grands volumes
de données. Cependant, la théorie des forêts ne permet pas d’expliquer à ce jour l’ensemble des
bonnes propriétés de l’algorithme. Après avoir dressé un état de l’art des résultats théoriques ex-
istants, nous nous intéressons en premier lieu au lien entre les forêts infinies (analysées en théorie)
et les forêts finies (utilisées en pratique). Nous proposons en particulier une manière de choisir
le nombre d’arbres pour que les erreurs des forêts finies et infinies soient proches. D’autre part,
nous étudions les forêts quantiles, un type d’algorithme proche des forêts de Breiman. Dans ce
cadre, nous démontrons l’intérêt d’agréger des arbres : même si chaque arbre de la forêt quantile
est inconsistant, grâce à un sous-échantillonnage adapté, la forêt quantile est consistante. Dans
un deuxième temps, nous prouvons que les forêts aléatoires sont naturellement liées à des estima-
teurs à noyau que nous explicitons. Des bornes sur la vitesse de convergence de ces estimateurs
sont également établies. Nous démontrons, dans une troisième approche, deux théorèmes sur la
consistance des forêts de Breiman élaguées et complètement développées. Dans ce dernier cas,
nous soulignons, comme pour les forêts quantiles, l’importance du sous-échantillonnage dans la
consistance de la forêt. Enfin, nous présentons un travail indépendant portant sur l’estimation
de la toxicité de certains composés chimiques.

Mots-clefs: Estimation non-paramétrique, régression, forêt aléatoire, méthodes à noyau,
consistance, arbre de régression, agrégation.

Abstract
This is devoted to a nonparametric estimation method called random forests, introduced by
Breiman in 2001. Extensively used in a variety of areas, random forests exhibit good empirical
performance and can handle massive data sets. However, the mathematical forces driving the
algorithm remain largely unknown. After reviewing theoretical literature, we focus on the link
between infinite forests (theoretically analyzed) and finite forests (used in practice) aiming at
narrowing the gap between theory and practice. In particular, we propose a way to select the
number of trees such that the errors of finite and infinite forests are similar. On the other hand,
we study quantile forests, a type of algorithms close in spirit to Breiman’s forests. In this context,
we prove the benefit of trees aggregation: while each tree of quantile forest is not consistent,
with a proper subsampling step, the forest is. Next, we show the connection between forests and
some particular kernel estimates, which can be made explicit in some cases. We also establish
upper bounds on the rate of convergence for these kernel estimates. Then we demonstrate
two theorems on the consistency of both pruned and unpruned Breiman forests. We stress the
importance of subsampling to demonstrate the consistency of the unpruned Breiman’s forests.
At last, we present the results of a Dreamchallenge whose goal was to predict the toxicity of
several compounds for several patients based on their genetic profile.

Keywords: random forest, kernel methods, consistency, aggregation.
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