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Erwan Scornet (Ecole Polytechnique)

StatLearn - 5th April 2023

E. Scornet StatLearn - 5th April 2023 1 / 78



Why do we need interpretability?

Machine learning is used for decision support.

Predicting is not enough

Understanding predictions is vital

for Machine learning to be accepted (sensible applications in health, justice, defense)

To improve algorithms (e.g., detect unfairness and try to correct it)

Keywords: trust, transparency, accountability, fairness, ethics.

NIPS2017 debate: Interpretability is necessary for Machine learning

https://www.youtube.com/watch?v=93Xv8vJ2acI
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Interpretable Models

No agreement about a rigorous definition of interpretability
(Lipton, 2016; Doshi-Velez and Kim, 2017; Murdoch et al., 2019)

Minimum requirements for interpretability
1 Simplicity (Murdoch et al., 2019)
2 Stability (Yu, 2013)
3 Predictivity (Breiman, 2001b)
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Existing Approaches

Black-box models

E.g. Neural networks, Random forests

Combined with post-processing
E.g. variable importance

sensitivity analysis
local linearization

Interpretable models

E.g. decision trees, decision rules

X (2) < 1.2 X (2) ≥ 1.2

X (1) < 6.2

X (1) ≥ 6.2

X (1) < 0.3

X (1) ≥ 0.3

Hard to operationalize

Unstable
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Outline

1 Interpretability

2 Random Forests
Decision Trees
Random forests
Out-of-bag error
Variable importance

3 Post-hoc methods: Sobol indices
MDA definition
MDA convergence
Sobol-MDA

4 A first interpretable approach: SIRUS
Algorithm
Stability property

5 Conclusion
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Decision trees

Decision tree: a tool to help you taking a decision via asking a sequence of questions.

E. Scornet StatLearn - 5th April 2023 6 / 78



Decision trees

Decision tree: a tool to help you taking a decision via asking a sequence of questions.

A first example - Should you (re)watch the videos on decision trees?

E. Scornet StatLearn - 5th April 2023 6 / 78



Decision trees

Decision tree: a tool to help you taking a decision via asking a sequence of questions.

A first example - Should you (re)watch the videos on decision trees?

E. Scornet StatLearn - 5th April 2023 6 / 78



Decision trees
A first example - Should you (re)watch the videos on decision trees?

→ Such a tree comes from common sense or from domain experts.
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Decision trees

Can we collect data to automatically create a decision tree, without domain experts?

MedInc ≤ 5.035
squared_error = 1.332

samples = 20640
value = 2.069

MedInc ≤ 3.074
squared_error = 0.837

samples = 16255
value = 1.735

True

MedInc ≤ 6.82
squared_error = 1.221

samples = 4385
value = 3.306

False

squared_error = 0.561
samples = 7860
value = 1.357

AveOccup ≤ 2.373
squared_error = 0.837

samples = 8395
value = 2.089

squared_error = 1.291
samples = 1954

value = 2.79

squared_error = 0.505
samples = 6441
value = 1.876

AveOccup ≤ 2.743
squared_error = 0.891

samples = 3047
value = 2.906

squared_error = 0.778
samples = 1338
value = 4.216

squared_error = 1.006
samples = 1260
value = 3.391

squared_error = 0.526
samples = 1787
value = 2.563

Figure: Output of a decision tree trained on a real-estate data set
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Construction of Decision trees - regression
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Construction of Decision trees - regression

Decision tree building

Requires a splitting rule

Requires a stopping rule

Requires a prediction rule
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Construction of Decision trees - classification
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Construction of Decision trees - classification

Decision tree building

Requires a splitting rule

Requires a stopping rule

Requires a prediction rule
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Splitting criterion

Finding the best split in a cell A requires to define an impurity criterion Imp. Based on
this criterion, one can define the impurity reduction associated to a split (j , s) as

∆Imp(j , s;A) = Imp(A)− pLImp(AL)− pR Imp(AR),

where pL (resp. pR) is the fraction of observations in A that fall into AL (resp. AR).

The best split (j⋆, s⋆) is then chosen as

(j⋆, s⋆) ∈ argmax
j,s

∆Imp(j , s;A).

An instance of impurity measure: the empirical variance (regression)

ImpV (A) = Vn[Y |X ∈ A]

=
1

Nn(A)

∑
i,Xi∈A

(Yi − ȲA)
2,

where Nn(A) is the number of observations in the cell A and ȲA the mean of the Yi s over
all observations in A.
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Finding the best split - an example

Consider splits at the middle of two consecutive observations

For each split, compute the decrease in impurity between the parent node and the
two resulting nodes.
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Finding the best split - an example

Consider splits at the middle of two consecutive observations

For each split, compute the decrease in impurity between the parent node and the
two resulting nodes.

Select the split maximizing the decrease in impurity
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Splitting criteria
For regression:

Variance

ImpV (A) = Vn[Y |X ∈ A].

Mean absolute deviation around the median

ImpL1(A) = En[|Y −Med(Y |X ∈ A)||X ∈ A].

For classification, letting pk,n(A) the proportion of observations in A such that Y = k:

Misclassification error rate

Imperr (A) = 1− max
1≤k≤K

pk,n(A)

Gini

ImpG (A) =
K∑

k=1

pk,n(A)(1− pk,n(A)).

Entropy

ImpH(A) = −
K∑

k=1

pk,n(A) log2(pk,n(A)).

General rule. Choose the splitting criterion corresponding to the risk you want to
minimize (Variance for MSE, Entropy for cross-entropy)
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Classification - which criterion to use?

We can choose between

Misclassification rate

Imperr (A) = 1− max
1≤k≤K

pk,n(A)

Gini

ImpG (A) =
K∑

k=1

pk,n(A)(1− pk,n(A)).

Entropy

ImpH(A) = −
K∑

k=1

pk,n(A) log2(pk,n(A)).
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Classification - which criterion to use?

In a binary classification setting, the criterion can be rewritten as

Misclassification rate

Imperr (A) = 1− max
k∈{0,1}

pk,n(A)

Gini

ImpG (A) = 2p0,n(A)(1− p0,n(A))

Entropy

ImpH(A) = −p0,n(A) log2(p0,n(A))− (1− p0,n(A)) log2(1− p0,n(A))
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Classification - which criterion to use?

Let us take an example:

For such a split of the parent cell A, we have

Imperr (A) = Imperr (AL) = Imperr (AR) = 0.1,

which leads us to believe that the split is uninformative since ∆Imperr = 0.
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For such a split of the parent cell A, we have

Imperr (A) = Imperr (AL) = Imperr (AR) = 0.1,

which leads us to believe that the split is uninformative since ∆Imperr = 0.

But the right node is pure! The decrease in impurity for the two other criterion is

∆ImpH(A) = 0.01 and ∆ImpG (A) = 0.005.
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Classification - which criterion to use?

Let us take an example:

For such a split of the parent cell A, we have

Imperr (A) = Imperr (AL) = Imperr (AR) = 0.1,

which leads us to believe that the split is uninformative since ∆Imperr = 0.

This phenomenon results from the fact that the misclassification rate in the binary setting
is not strictly concave, contrary to the Entrope/Gini criterion. More explanation here1

Misclassification criterion is not precise enough to be used for building trees.

1https://tushaargvs.github.io/assets/teaching/dt-notes-2020.pdf
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Handling discrete features

There exist three main types of features:

Continuous (blood pressure)

Ordinal (Glasgow score)

Nominal (Medical treatments)

Continuous features. The tree above was built on continuous features: splits are of the
form X (j) ≤ s.

Ordinal features. Construction can be directly extended to ordinal features: splits are
exactly of the same form X (j) ≤ s.

Nominal features. For nominal feature, it makes no sense to consider such splits: there
is no natural order on treatments. We can use one-hot encoding instead.
One-hot encoding : Consists in creating as many new variables as the original one
contains modalities.

Advantage: can model splits of any types - increase approximation capacity of
decision trees

Drawback: exploding number of variables - expensive computations and requires
large sample sizes.
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A particular case: nominal features for binary classification

Nominal variables. A classic way to handle them is via one-hot encoding. Sadly, the
number of dummy variables explodes.

In binary classification, we can do better.

Choose one of the following splitting criteria: misclassification rate, Entropy or Gini

Consider a nominal variable Xj that can take L modalities. Reorder it so that the
empirical probabilities in a given cell A satisfy

Pn[Y = 1|Xj = C1,X ∈ A] ≤ Pn[Y = 1|Xj = C2,X ∈ A] ≤ . . .

≤ Pn[Y = 1|Xj = CL,X ∈ A].

Then the best split (that maximizes the decrease in impurity) is of the form

Xj ∈ {C1, . . . ,Cℓ} vs Xj ∈ {Cℓ+1, . . . ,CL}. (1)

This is a result from Fisher, 1958

Summary. Instead of evaluating the splitting criterion on 2L−1 − 1 splits, we just need to
compute it on L− 1 splits!

Extension to regression. The same procedure holds in regression by considering the
average values of Y for each modality (instead of the probability in (1)).
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average values of Y for each modality (instead of the probability in (1)).
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Decision tree

Now that we have defined a splitting rule, let us see the rest of the tree construction.

Decision tree building

Splitting rule (Variance in regression, Gini or Entropy in classification)

Stopping rule

(by default, one observation per leaf)

Prediction rule

(average or majority vote per leaf)
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Decision tree

Now that we have defined a splitting and a stopping rule, let us see the rest of the tree
construction.
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Decision tree

Now that we have defined a splitting and a stopping rule, let us see the rest of the tree
construction.

Decision tree building

Splitting rule (Variance in regression, Gini or Entropy in classification)

Stopping rule (by default, one observation per leaf)

Prediction rule

(average or majority vote per leaf)

Prediction rule:

Regression - Average of labels per leaf

t̂n(xnew ) =
n∑

i=1

Yi
1Xi∈An(xnew )

Nn(An(xnew ))

Classification - Majority vote per leaf

t̂n(xnew ) = argmax
k∈{1,...,K}

n∑
i=1

1Yi=k1Xi∈An(xnew )

Nn(An(xnew ))
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Decision tree

Now that we have defined a splitting and a stopping rule, let us see the rest of the tree
construction.

Decision tree building

Splitting rule (Variance in regression, Gini or Entropy in classification)

Stopping rule (by default, one observation per leaf)

Prediction rule (average or majority vote per leaf)
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Tree ensemble methods

Consist in aggregating the predictions of several decision trees:

More robust than individual trees to changes in data

More flexible methods / useful for modelling complex input-output relations

How to do that?
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Tree ensemble methods

Consist in aggregating the predictions of several decision trees:

More robust than individual trees to changes in data

More flexible methods / useful for modelling complex input-output relations

How to do that?

Random forests (parallel methods)

Tree boosting (sequential methods)
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Tree construction

Tree construction

Input: dataset, splitting criterion.

At each node A, select the best split by optimizing the splitting criterion / difference
in impurity

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j , s;A).

Repeat for each cell until:
▶ All labels in the cell are the same
▶ No impurity reduction
▶ The leaf contains one observation

Output: a fully-grown decision tree.

Tree pruning

Input: A fully-grown decision tree, a data set, an impurity measure.

Choose one of the two pruning strategies:
▶ Reduction Error pruning (RE, C4.5)
▶ Cost complexity pruning (CART)

Output: a pruned decision tree.
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Tree construction in random forests

Tree construction

Input: dataset, splitting criterion.

At each node A, select the best split by optimizing the splitting criterion / difference
in impurity

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j , s;A).

Repeat for each cell until:
▶ All labels in the cell are the same
▶ No impurity reduction
▶ The leaf contains one observation

Output: a fully-grown decision tree.

Tree pruning
For trees in random forests, no pruning strategy
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Tree construction

Tree construction

Input: dataset, splitting criterion.

At each node A, select the best split by optimizing the splitting criterion / difference
in impurity

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j , s;A).

Repeat for each cell until:
▶ All labels in the cell are the same
▶ No impurity reduction
▶ The leaf contains one observation

Output: a fully-grown decision tree.

Tree pruning
For trees in random forests, no pruning strategy

Such trees have a small bias (fully-grown) but a large variance (one point per leaf).
They cannot be used as single estimators!
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Bagging - Averaging predictors via data set resampling

Bagging (Bootstrap aggregating) consists in running a learning algorithm on mulitple
modified data sets to stabilize its performance.

E. Scornet StatLearn - 5th April 2023 18 / 78



Bagging - Averaging predictors via data set resampling

Bagging (Bootstrap aggregating) consists in running a learning algorithm on mulitple
modified data sets to stabilize its performance.
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Bagging - Averaging predictors via data set resampling

Interests:

Increase stability - data modification has less impact on the final predictor

Parallel method - computationnally efficient

Can be applied to a wide range of learning algorithm (for example, decision trees!)

Inconvenient: individual predictors may be too correlated (built on similar observations).
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Split randomization in tree construction

Random forests

Two randomization ingredients:

Bagging

Split randomization
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Split randomization in tree construction

Regular split selection. In each cell of a tree, select the best split, by optimizing the
splitting criterion along all directions.
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Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at random a prespecified number of directions.
Select the best split (by optimizing the splitting criterion) along these directions only.
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Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at random a prespecified number of directions.
Select the best split (by optimizing the splitting criterion) along these directions only.

Here, for example, randomly selecting the first direction (variable X (1)) leads to considering
the following splits only.
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Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at random a prespecified number of directions.
Select the best split (by optimizing the splitting criterion) along these directions only.

The same procedure is repeated on the resulting cells, with a new random choice of the
splitting directions.
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Construction of random forests
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Construction of Breiman forests

Build in parallel n-estimators CART as follows.

CART

▶ Bootstrap - Select max-samples observations with replacement among the original sample
Dn. Use only these observations to build the tree.

▶ For each cell,

⋆ Select randomly max-features coordinates among {1, . . . , d};
⋆ Choose the best split along previous directions, according to the splitting criterion the one

minimizing the CART criterion.

▶ Stop splitting each cell when all observations inside it have the same label or when a stopping
criterion is met:

⋆ there are less than min-sample-leaf observation in the leaf
⋆ resulting cells would contain less than min-sample-split observation
⋆ cell is already split max-depth times
⋆ there are already max-leaf-nodes leaves

Compute the forest prediction by averaging the predictions of all trees.
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List of all random forest hyperparameters
See Scikit-learn documentation for more details: RandomForestRegressor /
RandomForestClassifier.

List of all hyperparameters in the forest:

n-estimators = 100

criterion=’gini’

max-depth=None, min-samples-split = 2, min-samples-leaf = 1,
min-weight-fraction-leaf = 0.0, min-impurity-decrease = 0.0,
max-leaf-nodes=None
→ By default, trees are fully grown with no pruning strategy

max-features=’sqrt’ (classif.) ’None’ (regression).

bootstrap=True, max-samples=None

Remarks.

Due to bootstrap and split randomization, running twice RF may lead to different
results. Increasing the number of trees limits this difference.

Fixing a random-state with no boostrap and no split randomization will make two
runs of RF identical.

Beware, by default, split randomization is used in classification but not in regression!
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Role of each hyperparameter
Number of trees.

Larger values are better

No statistical tradeoff between low and high values

Limited by computational power - growing many trees is expensive

Default values (several hundreds / thousands) usually do a good job

Bootstrap size / tree shape.

Control the bias/variance tradeoff: small bootstrap size / shallow trees lead to
predictors with a large bias but a small variance

Use small bootstrap size or shallow tree if data are very noisy

Use default setting for modelling very complex phenomenon

→ Precise tuning can help but default values are good in general

Split randomization

Most complex parameter to tune

Small values of max-features lead to very different trees
→ max-features=1 corresponds to drawing randomly the splitting direction

Large values of max-features lead to similar trees
→ max-features=d corresponds to building the same tree (if no bootstrap is used)

No precise heuristic, can be tuned by cross-validation.
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Use small bootstrap size or shallow tree if data are very noisy

Use default setting for modelling very complex phenomenon

→ Precise tuning can help but default values are good in general

Split randomization

Most complex parameter to tune

Small values of max-features lead to very different trees
→ max-features=1 corresponds to drawing randomly the splitting direction

Large values of max-features lead to similar trees
→ max-features=d corresponds to building the same tree (if no bootstrap is used)

No precise heuristic, can be tuned by cross-validation.
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Out-of-bag error

Idea. Evaluate the error of a random forest using the fact that each observation has not
been used in all tree constructions and can thus be used as test points for such
aggregated trees.
General procedure (short):

Consider that a forest has been trained on the data set Dn.

For each observation i ∈ {1, . . . , n},
▶ Consider the bootstrap samples that do not contain this observation.
▶ For the trees that are not built using observation i , compute the predictions at Xi and

aggregate them. Compute the loss of such an aggregated prediction.

Compute the Out-of-bag error by averaging the losses over all observations.

Benefits:

No need for dividing the data set into a train and a test set

Easily parallelizable

Asymptotically equivalent to the risk of the forest for large M.

Drawback:

Do not compute exactly the error of the whole forest but rather the aggregated error
of some trees in the forest.
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Out-of-bag (detailed procedure)

Consider that a forest has been trained on the data set Dn.

For each observation i ∈ {1, . . . , n},
▶ Consider the bootstrap samples that do not contain this observation, that is the set

Λi,n = {m, (Xi ,Yi ) /∈ D̃m,n}
▶ For the trees that are not built using observation i , compute the prediction at Xi and

aggregate them as

f
(OOB)
M,n (Xi ) =

1

|Λi,n|
∑

m∈Λn,i

tn(Xi ,Θm)1|Λn,i |>0 in regression,

= argmax
k∈{1,...,K}

∑
ℓ∈Λn,i

1tn(Xi ,Θℓ)=k in classification.

▶ Compute the associated loss

ℓ(f
(OOB)
M,n (Xi ),Yi ) = (f

(OOB)
M,n (Xi )− Yi )

2 in regression,

= ℓ(f
(OOB)
M,n (Xi ),Yi ) = 1

f
(OOB)
M,n

(Xi ) ̸=Yi
in classification.

Compute the Out-of-bag error by averaging the losses over all observations, that is

ROOB
n =

1

n

n∑
i=1

ℓ(f
(OOB)
M,n (Xi ),Yi )
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Variable importance via random forests
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Average number of rooms

Median house age in block
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Average house occupancy

Median income in block

Feature importances using MDI

Figure: One of the two variable importance
measure, Mean Decrease in Impurity (MDI)
computed on the California housing data set.
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Figure: One of the two variable importance
measure, Mean Decrease in Accuracy (MDA)
computed on the California housing data set.

Going beyond prediction to understand the black-box model

Finding the input variables that are the most “linked” to the output

Here the variable ranking is not exactly the same across these two different measures.
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Variable importance - to what aim?

One single good variable importance measure does not exist. It always depend on
what it is used for.

A simple example. Assume that X ∈ R10, Y ∈ R and Y = X1 with X1 = g(X2, . . . ,X10)
for some function g .

(Variable selection) If one is interested in finding the smallest set of variables leading
to good predictive performance, the associated variable importance should be large
for X1 and null for X2, . . . ,X10.

(Link identification) If one is interested in finding all variables linked to the output,
the associated variable importance should be large for X1, . . . ,Xd .

The quality of a variable importance measure depends on its final use (variable selection
or link identification).
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Variable importance in random forests

Two different measures often computed with random forests:

Mean Decrease Impurity (MDI) (Breiman, 2002)

▶ Tailored for decision tree methods

▶ Use the decrease in impurity in each node to compute an aggregated variable
importance

Mean Decrease Accuracy (MDA) (also called permutation importance, see Breiman,
2001a)

▶ Can be used with any supervised learning algorithm (not tree specific)

▶ Permute the values of a given feature in the test set and compare the resulting
decrease in predictive performance.

E. Scornet StatLearn - 5th April 2023 29 / 78



Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1).
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For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)
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Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity between the parent node A and
the two resulting nodes AL and AR :

∆Impn(A) = Impn(A)− pL,nImpn(AL)− pR,nImpn(AR),

where pL,n (resp. pR,n) is the fraction of observations in A that fall into AL (resp.
AR). For example,

ImpV ,n(A) = Vn[Y |X ∈ A].
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Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity ∆Impn(A) between the parent node
A and the two resulting nodes AL and AR

The MDI of X (1) computed via this tree T is

M̂DIT (X (j)) =
∑
A∈T
jn,A=1

pn,A ∆Impn(A), (2)

where the sum ranges over all cells A in T that are split along variable j and pA,n is
the fraction of observations falling into A
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Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity ∆Impn(A) between the parent node
A and the two resulting nodes AL and AR

The MDI of X (1) computed via this tree T is

M̂DIT (X (j)) =
∑
A∈T
jn,A=1

pn,A ∆Impn(A) (2)

The MDI of X (1) output by a forest is the average of the MDI of X (1) of each tree.

E. Scornet StatLearn - 5th April 2023 30 / 78



Mean Decrease in Impurity

Pros

Easily accessible via scikit-learn as the attribute feature-importances- of a
RandomForest object

No extra computations needed

Adapted to the tree building process / the predictor

Cons

biased towards variables with many categories (see, e.g., Strobl et al., 2007;
Nicodemus, 2011), variables that possess high-category frequency (Nicodemus,
2011; Boulesteix et al., 2011), biased in presence of correlated features (Nicodemus
and Malley, 2009)

Bias related to in-sample estimation (Li et al., 2019; Zhou and Hooker, 2019) -
Same observations are used to build the tree and estimate the MDI

Bias related to fully-grown tree

No information about the quantity it is supposed to estimate!
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MDA illustration

Built-in variable importance algorithm for random forests
MDA principle: decrease of accuracy of the forest when a variable is noised up

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

Table: Example of the permutation of a dataset Dn for n = 5.

quadratic error = 13.7 quadratic error = 16.4

MDA(X (j)) = 16.4− 13.7 = 2.7

MDA(X (j)) = 0 −→ no influence of X (j)

MDA(X (j)) is high −→ strong influence of X (j)

Dn used to fit the forest and compute accuracy: overfitting and inflated accuracy
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Mean Decrease in Accuracy

Pros

Can be applied to any machine learning algorithm via the function
permutation-importance in scikit-learn

Fast to compute (no need to retrain a forest)

Cons

Biased in presence of correlation

Break the links between the given covariate and the output but also between the
given covariate and the other covariates
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1 Interpretability

2 Random Forests
Decision Trees
Random forests
Out-of-bag error
Variable importance

3 Post-hoc methods: Sobol indices
MDA definition
MDA convergence
Sobol-MDA

4 A first interpretable approach: SIRUS
Algorithm
Stability property

5 Conclusion
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Random forests

Regression setting
▶ input vector X = (X (1), . . . ,X (p)) ∈ Rp

▶ output Y ∈ R
▶ dataset Dn = {(Xi ,Yi ), i = 1, . . . , n},

where (Xi ,Yi ) ∼ PX,Y .

Random forest algorithm
▶ Aggregation of Θ-random trees

Θ = (Θ(S),Θ(V ))
▶ M: number of trees
▶ mM,n(X,ΘM): the forest estimate at X
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▶ Aggregation of Θ-random trees

Θ = (Θ(S),Θ(V ))
▶ M: number of trees
▶ mM,n(X,ΘM): the forest estimate at X

{(Xi ,Yi ), i ∈ Θ(S)}

2 ∈ Θ
(V )
1

X (2) < 1.2 X (2) ≥ 1.2

1 ∈ Θ
(V )
3

X (1) < 6.2

X (1) ≥ 6.2

1 ∈ Θ
(V )
2

X (1) < 0.3

X (1) ≥ 0.3
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MDA illustration

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

Table: Example of the permutation of a dataset Dn for n = 5.
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Explained variance of Y = 16.4 Explained variance of Y = 13.7

MDA(X (j)) = 16.4− 13.7 = 2.7

E. Scornet StatLearn - 5th April 2023 36 / 78



MDA illustration

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 6.7 . . . 2.6 2.3
1.7 4.1 . . . 3.2 . . . 3.8 0.4
3.4 9.2 . . . 9.2 . . . 3.6 10.2
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Table: Example of the permutation of a dataset Dn for n = 5.

Question: Can I use Dn to both fit the forest and compute accuracy ?

No: overfitting and inflated accuracy.

How to handle this in practice?
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MDA versions

The explained variance estimate of MDA algorithms differ across implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: Dn is bootstrap prior to the construction of each tree,
leaving aside a portion of Dn, which is not involved in the tree growing and defines the
“out-of-bag” sample.

MDA Version Package Error Data

Train-Test
scikit-learn

randomForestSRC
Forest Testing dataset

Breiman-Cutler
randomForest (normalized)
ranger / randomForestSRC

Tree OOB sample

Ishwaran-Kogalur randomForestSRC Forest OOB sample

Table: Summary of the different MDA algorithms.
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Breiman-Cutler MDA

i ∈ {1, . . . , n} \Θ(S)
ℓ = {2, 5}: OOB sample of the ℓ-th tree

Nn,ℓ =
∑n

i=1 1i ̸=Θ
(S)
ℓ

= 2: size of the OOB sample of the ℓ-th tree

Xi,πjℓ : i-th observation where the j-th component is permuted across the OOB
sample of the ℓ-th tree

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

M̂DA
(BC)

M,n (X
(j)) =

1

M

M∑
ℓ=1

1

Nn,ℓ

n∑
i=1

[
−

]
1
i /∈Θ

(S)
ℓ

E. Scornet StatLearn - 5th April 2023 38 / 78



Breiman-Cutler MDA

i ∈ {1, . . . , n} \Θ(S)
ℓ = {2, 5}: OOB sample of the ℓ-th tree

Nn,ℓ =
∑n

i=1 1i ̸=Θ
(S)
ℓ

= 2: size of the OOB sample of the ℓ-th tree

Xi,πjℓ : i-th observation where the j-th component is permuted across the OOB
sample of the ℓ-th tree

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

M̂DA
(BC)

M,n (X
(j)) =

1

M

M∑
ℓ=1

1

Nn,ℓ

n∑
i=1

[
−

]
1
i /∈Θ

(S)
ℓ

E. Scornet StatLearn - 5th April 2023 38 / 78



Breiman-Cutler MDA

i ∈ {1, . . . , n} \Θ(S)
ℓ = {2, 5}: OOB sample of the ℓ-th tree

Nn,ℓ =
∑n

i=1 1i ̸=Θ
(S)
ℓ

= 2: size of the OOB sample of the ℓ-th tree

Xi,πjℓ : i-th observation where the j-th component is permuted across the OOB
sample of the ℓ-th tree

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
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Inflated quadratic risk of the ℓ-th tree where X (j) is permuted
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i ∈ {1, . . . , n} \Θ(S)
ℓ = {2, 5}: OOB sample of the ℓ-th tree
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(Yi −mn(Xi,πjℓ ,Θℓ))

2

− (Yi −mn(Xi ,Θℓ))
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i /∈Θ

(S)
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Risks are computed over the OOB sample of each tree
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Breiman-Cutler MDA

i ∈ {1, . . . , n} \Θ(S)
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Average over all trees
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1 Interpretability

2 Random Forests
Decision Trees
Random forests
Out-of-bag error
Variable importance

3 Post-hoc methods: Sobol indices
MDA definition
MDA convergence
Sobol-MDA

4 A first interpretable approach: SIRUS
Algorithm
Stability property

5 Conclusion
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Assumptions

(A1)

The response Y ∈ R follows

Y = m(X) + ε

where

X = (X (1), . . . ,X (p)) ∈ [0, 1]p

X admits a density f such that c1 < f (x) < c2, with constants c1, c2 > 0

m is continuous

the noise ε is sub-Gaussian and centered
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Assumptions

(A2): the theoretical tree is consistent
(always true with slight modifications of the forest algorithm)

(A2)

The randomized theoretical CART tree built with the distribution of (X,Y ) is consistent,
that is, for all x ∈ [0, 1]p, almost surely,

lim
k→∞

∆(m,A⋆
k (x,Θ)) = 0.

(A3): tree partition is not too complex with respect to n

(A3)

The asymptotic regime of an, the size of the subsampling without replacement, and the
number of terminal leaves tn is such that an ≤ n − 2, an/n < 1− κ for a fixed κ > 0,

lim
n→∞

an = ∞, lim
n→∞

tn = ∞, and lim
n→∞

tn
(log(an))

9

an
= 0.
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MDA Convergence

Theorem (Bénard, Da Veiga, et al. (2021))

If Assumptions (A1), (A2), and (A3) are satisfied, then, for all M ∈ N⋆ and
j ∈ {1, . . . , p} we have

M̂DA
(BC)

M,n (X
(j))

L1

−→ E[(m(X)−m(Xπj ))
2]

Xπj : X where the j-th component is replaced by an independent copy, i.e.

Xπj = (X (1), . . . ,X ′(j), . . . ,X (p))

Limit interpretation?
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Sensitivity analysis

V[Y ]

V[ε]

ST
(1)
full ST

(2)
full

Interactions

Dependence
ST (1) ST (2)

Figure: Standard and full total Sobol indices for Y = m(X (1),X (2)) + ε.

Total Sobol index (Sobol, 1993)

ST (1) =
E[V(m(X)|X(−1))]

V(Y )

Full total Sobol index (Mara et al., 2015;
Benoumechiara, 2019)

ST
(1)
full =

E[V(m(Xπ1)|X(−1))]

V(Y )
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MDA Decomposition

Proposition (Bénard, Da Veiga, et al. (2021))

If Assumptions (A1), (A2) and (A3) are satisfied, then for all M ∈ N⋆ and j ∈ {1, . . . , p}
we have

M̂DA
(BC)

M,n (X
(j))

L1

−→ V[Y ]× ST (j) +V[Y ]× ST
(j)
full +MDA

⋆(j)
3 .

The term MDA
⋆(j)
3 is not an importance measure and is defined by

MDA
⋆(j)
3 = E[(E[m(X)|X(−j)]− E[m(Xπj )|X

(−j)])2].
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MDA Decomposition

Proposition (Bénard, Da Veiga, et al. (2021))

If Assumptions (A1), (A2) and (A3) are satisfied, then for all M ∈ N⋆ and j ∈ {1, . . . , p}
we have

(i) M̂DA
(TT )

M,n (X (j))
L1

−→ V[Y ]× ST (j) +V[Y ]× ST
(j)
full +MDA

⋆(j)
3

(ii) M̂DA
(BC)

M,n (X
(j))

L1

−→ V[Y ]× ST (j) +V[Y ]× ST
(j)
full +MDA

⋆(j)
3 .

If additionally M −→ ∞, then

(iii) M̂DA
(IK)

M,n(X
(j))

L1

−→ V[Y ]× ST (j) +MDA
⋆(j)
3 .
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Independent inputs

If inputs X are independent: MDA
⋆(j)
3 = 0 and ST (j) = ST

(j)
full .

Corollary (Bénard, Da Veiga, et al. (2021))

If X has independent components, and if Assumptions (A1)-(A3) are satisfied, for all
M ∈ N⋆ and j ∈ {1, . . . , p} we have

M̂DA
(TT )

M,n (X (j))
L1

−→ 2V[Y ]× ST (j)

M̂DA
(BC)

M,n (X
(j))

L1

−→ 2V[Y ]× ST (j).

If additionally M −→ ∞, then

M̂DA
(IK)

M,n(X
(j))

L1

−→ V[Y ]× ST (j).

This Corollary completes the result from (Gregorutti, 2015).
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Additive regression function

If m is additive: MDA
⋆(j)
3 = 0.

Corollary (Bénard, Da Veiga, et al. (2021))

If the regression function m is additive, and if Assumptions (A1)-(A3) are satisfied, for all
M ∈ N⋆ and j ∈ {1, . . . , p} we have

M̂DA
(TT )

M,n (X (j))
L1

−→ V[Y ]× ST (j) +V[Y ]× ST
(j)
full

M̂DA
(BC)

M,n (X
(j))

L1

−→ V[Y ]× ST (j) +V[Y ]× ST
(j)
full .

If additionally M −→ ∞, then

M̂DA
(IK)

M,n(X
(j))

L1

−→ V[Y ]× ST (j).
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MDA summary

When inputs X are dependent and have interactions, the MDA is artificially inflated
by the term MDA3 and is therefore misleading.

MDA versions have different theoretical counterparts, and thus different meanings:
be careful when using forest packages !

For variable selection, the total Sobol index is the relevant component

V[Y ]× ST (j) +������
V[Y ]× ST

(j)
full +����MDA

⋆(j)
3

We develop the Sobol-MDA: a fast and consistent estimate of ST (j) for random
forests
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Sobol-MDA

Principle: project the partition of each tree along the j-th direction to remove X (j) from
the prediction process.

X (1)

X (2)

X

X (1)

X (2)

X

X(−j)

Figure: Partition of [0, 1]2 by a random tree (left side) projected on the subspace span by

X(−2) = X (1) (right side), for p = 2 and j = 2.

̂S-MDAM,n(X
(j)) =

1

σ̂2
Y

1

n

n∑
i=1−
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̂S-MDAM,n(X
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1

σ̂2
Y

1

n

n∑
i=1

[
Yi −m

(−j,OOB)
M,n (X(−j)

i ,ΘM)
]2

−
[
Yi −m

(OOB)
M,n (Xi ,ΘM)

]2

E. Scornet StatLearn - 5th April 2023 50 / 78



Sobol-MDA

Principle: project the partition of each tree along the j-th direction to remove X (j) from
the prediction process.

X (1)

X (2)

X

X (1)

X (2)

X

X(−j)

Figure: Partition of [0, 1]2 by a random tree (left side) projected on the subspace span by

X(−2) = X (1) (right side), for p = 2 and j = 2.

̂S-MDAM,n(X
(j)) =

1

σ̂2
Y

1

n

n∑
i=1

[
Yi −m

(−j,OOB)
M,n (X(−j)

i ,ΘM)
]2

−
[
Yi −m

(OOB)
M,n (Xi ,ΘM)

]2

E. Scornet StatLearn - 5th April 2023 50 / 78



Sobol-MDA

Principle: project the partition of each tree along the j-th direction to remove X (j) from
the prediction process.

X (1)

X (2)

X

X (1)

X (2)

X

X(−j)

Figure: Partition of [0, 1]2 by a random tree (left side) projected on the subspace span by

X(−2) = X (1) (right side), for p = 2 and j = 2.

̂S-MDAM,n(X
(j)) =

1

σ̂2
Y

1

n

n∑
i=1

[
Yi −m

(−j,OOB)
M,n (X(−j)

i ,ΘM)
]2

−
[
Yi −m

(OOB)
M,n (Xi ,ΘM)

]2
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Consistency of the Sobol-MDA
The Sobol-MDA recovers the appropriate theoretical counterpart for variable selection:
the total Sobol index

Theorem (Bénard, Da Veiga, et al. (2021))

If Assumptions (A1), (A2’), and (A3’) are satisfied, for all M ∈ N⋆ and j ∈ {1, . . . , p}

̂S-MDAM,n(X
(j))

p−→ ST (j).

(A2’)

A node split is constrained to generate child nodes with at least a small fraction
γ > 0 of the parent node observations.

At each tree node, the number mtry of candidate variables drawn to optimize the
split is set to mtry = 1 with a small probability δ > 0. Otherwise, with probability
1− δ, the default value of mtry is used.

(A3’)

The asymptotic regime of an, the size of the subsampling without replacement, and the
number of terminal leaves tn is such that an ≤ n − 2, an/n < 1− κ, for a fixed κ > 0,

lim an, tn = ∞, lim 2tn (log an)
9

an
= 0.
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Sobol-MDA Experiments

Settings (Archer and Kimes, 2008; Gregorutti et al., 2017)

p = 200 input variables

5 independent groups of 40 variables

each group is a Gaussian vector, strongly correlated

1 variable from each group involved in m

m(X) = 2X (1) + X (41) + X (81) + X (121) + X (161).

independent Gaussian noise with V[ε] = 10%V[Y ]

Y = m(X) + ε

n = 1000 observations

M = 300 trees
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Sobol-MDA Experiments

̂S-MDA

X(1) 0.035

X(161) 0.005

X(81) 0.004

X(121) 0.004

X(41) 0.002

X(179) 0.002

X(13) 0.001

X(25) 0.001

X(73) 0.001

X(155) 0.001

̂BC-MDA/2V[Y ]

X(1) 0.048

X(25) 0.010

X(31) 0.008

X(14) 0.008

X(40) 0.007

X(3) 0.007

X(17) 0.006

X(26) 0.006

X(41) 0.006

X(121) 0.006

̂IK-MDA/V[Y ]

X(1) 0.056

X(5) 0.009

X(81) 0.007

X(41) 0.005

X(161) 0.005

X(15) 0.005

X(121) 0.005

X(7) 0.005

X(4) 0.004

X(28) 0.004

Table: Sobol-MDA, normalized BC-MDA, and normalized IK-MDA estimates with influential
variables in blue.
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Conclusion

Additional experiments are available in Bénard, Da Veiga, et al. (2021)
(non-linear data with interactions and dependence)

analytical example

backward variable selection with real data

Extension. Sobol-MDA can be associated with any black-box algorithm

fit a black box f̂ on Dn

generate a large sample D′
N with f̂

run the Sobol-MDA with D′
N

Summary.

Strong connections between the MDA and Sobol indices

MDA does not target the appropriate quantity but Sobol-MDA does

R/C++ package SobolMDA, available online on Gitlab
(https://gitlab.com/drti/sobolmda), and based on the package ranger
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1 Interpretability

2 Random Forests
Decision Trees
Random forests
Out-of-bag error
Variable importance

3 Post-hoc methods: Sobol indices
MDA definition
MDA convergence
Sobol-MDA

4 A first interpretable approach: SIRUS
Algorithm
Stability property

5 Conclusion
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SIRUS: Stable and Interpretable RUle Set

An example: SIRUS output on Titanic data set (Bénard, Biau, et al., 2021b)

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%

if 1st or 2nd class
& sex is female then ps = 95% else ps = 25%

if fare < 10.5£ then ps = 20% else ps = 50%

if no parents or
children aboard then ps = 35% else ps = 51%

if 2st or 3nd class
& sex is male then ps = 14% else ps = 64%

if sex is male
& age ≥ 15 then ps = 16% else ps = 72%
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SIRUS

Principle

Build a random forests and extract all decisions rules from all trees

Select the rules that appear with a frequence larger than p0

Aggregate the rules to obtain the final estimator.

Principle

Frequent paths in random trees = strong and robust patterns in the data.
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Technical detail

Preprocessing: discretize features based on their quantiles

Random forests: building trees of depth 2

Probability that a Θ-random tree contains a given path P ∈ Π

pn(P) = P(P ∈ T (Θ,Dn)|Dn)

Selected paths

P̂M,n,p0 = {P ∈ Π : p̂M,n (P) > p0}

where

p̂M,n(P) =
1

M

M∑
ℓ=1

1P∈T (Θℓ,Dn)

is the Monte-Carlo estimate, directly computed using the random forest with M trees
parametrized by Θ1, ...,ΘM .
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SIRUS - Rule

How to recover a rule from a path ?

x (2)

x (1)
q̂
(1)
n,7q̂

(1)
n,5

q̂
(2)
n,4

Ĥn(P5) Ĥn(P6)

Ĥn(P3) Ĥn(P4)

X
(2)
i < q̂

(2)
n,4 X

(2)
i ≥ q̂

(2)
n,4

P1 P2

X
(1)
i < q̂

(1)
n,7

X
(1)
i ≥ q̂

(1)
n,7

P5 P6

X
(1)
i < q̂

(1)
n,5

X
(1)
i ≥ q̂

(1)
n,5

P3 P4
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P3 P4

∀x ∈ Rp, ĝn,P(x) =

{
1

Nn(Ĥn(P))

∑n
i=1 Yi1Xi∈Ĥn(P) if x ∈ Ĥn (P)

1

n−Nn(Ĥn(P))

∑n
i=1 Yi1Xi /∈Ĥn(P) otherwise.
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∀x ∈ Rp, ĝn,P(x) =

{
1

Nn(Ĥn(P))

∑n
i=1 Yi1Xi∈Ĥn(P) if x ∈ Ĥn (P)

1

n−Nn(Ĥn(P))

∑n
i=1 Yi1Xi /∈Ĥn(P) otherwise.

The final classifier corresponds to the averaging of all selected rules.
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Stability - definition

Define

D′
n, Θ

′ independent copies of Dn and Θ

p̂′
M,n(P), P̂ ′

M,n,p0
built with D′

n, Θ
′

Dice-Sorensen index

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+ ∣∣P̂ ′
M,n,p0

∣∣ .
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Stability - a theoretical result

(A1) The subsampling rate an satisfies lim
n→∞

an = ∞ and lim
n→∞

an
n
= 0.

(A2) The number of trees Mn satisfies lim
n→∞

Mn = ∞.

(A3) X has a density f with respect to the Lebesgue measure, continuous, bounded, and
strictly positive.

Let U⋆ = {p⋆(P),P ∈ Π} be the set of all theoretical probabilities of appearance of all
paths.

Proposition Bénard, Biau, et al., 2021b

Assume that Assumptions (A1)-(A3) are satisfied. Then, provided p0 ∈ [0, 1]\U⋆, we
have

lim
n→∞

ŜMn,n,p0 = 1, in probability.
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Sketch of proof

The asymptotic stability of SIRUS comes from the two following points:

1 The bias of p̂Mn,n(P) tends to zero.

▶ Prove that CART-splitting criterion is consistent and asymptotically normal when
cuts are limited to empirical quantiles and the number of trees grows with n (A3).

2 The variance of p̂Mn,n(P) tends to zero.

The variance can be decomposed into two terms:

▶ the variance generated by the Monte-Carlo randomization, which goes to 0 as the
number of trees increases (A2).

▶ the variance of pn(P), which is a bagged estimate and thus an infinite-order
U-statistic. The result comes from Mentch and Hooker, 2016 since lim

n→∞
an/n = 0

(A1).
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Numerical experiments

Competitors:

CART (Breiman et al., 1984)

Classical rule learning: RIPPER (Cohen, 1995)

Frequent pattern mining: CBA (Classification Based on Association Rules, Liu et al.,
1998), BRL (Bayesian Rule List, Letham et al., 2015)

Tree ensemble: RuleFit (Friedman and Popescu, 2008), Node Harvest (Meinshausen,
2010).

Metrics:

Accuracy/Error: 1-AUC

Stability: Dice-Sorensen index

Simplicity: Number of rules output by the
procedure
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Accuracy

Figure: Model error (1-AUC) over a 10-fold cross-validation for UCI datasets. Results are
averaged over 10 repetitions of the cross-validation. Values within 10% of the minimum are

displayed in bold, random forest is put aside.
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Simplicity

Figure: Mean model size over a 10-fold cross-validation for UCI datasets. Results are averaged
over 10 repetitions of the cross-validation.
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Stability

Figure: Mean stability over a 10-fold cross-validation for UCI datasets. Results are averaged over
10 repetitions of the cross-validation. Values within 10% of the maximum are displayed in bold.
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Conclusion on SIRUS

Method

Build a random forest with a limited tree depth (typically two) and with quantile
discretization.

Extract the most frequent decision rules

Aggregate these rules to obtain a predictor

Benefits.

Output a small, stable, and predictive set of rules

Predictive performances are on par with RF

Stability and number of rules improved over state-of-the-art algorithms

Works for classification and regression tasks

R package sirus available on CRAN 2

Bonus: theoretical guarantees of stability

2https://cran.r-project.org/web/packages/sirus/index.html
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Interpretability

Often required for sensitive real-world application

No precise meaning

Understanding what is meant by Interpretability is a prerequisite to the subsequent
analysis.

Interpretability needs to be interpreted!

Two main approaches can be distinguished:

Building a complex black-box model and try to
understand it:

▶ Variable importance
▶ Local linearization

Building a simple model, which is also stable and
predictive

▶ Decision rules (unstable)
▶ Decision trees (unstable)
▶ Linear/Logistic regression (limited predictivity)
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Take-home messages on variable importance

Different variable importances should be used depending on the task: (i) building a
small predictive model or (ii) finding all variables related to the output.

Variable importances are built based on heuristics, with no theoretical justification.

Do not use MDI or MDA!
We do not know what quantity they are targeting

Alternatives that circumvent some of their flaws have been proposed:

MDI
▶ Out-of-sample estimation (Li et al., 2019; Zhou and Hooker, 2021; Loecher, 2022)

with code in python:
https://github.com/ZhengzeZhou/unbiased-feature-importance

MDA
▶ Rerun the model without a given covariate (expensive). Work for any predictive model

(Williamson et al., 2021)
▶ Use the tree structure to remove a variable from the model without needing to rerun it

(Bénard, Da Veiga, et al., 2021)

Anyway, remember to check the predictive performance of a model: it it is low, the
model is useless and variable importances are misleading.
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Anyway, remember to check the predictive performance of a model: it it is low, the
model is useless and variable importances are misleading.
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Take-home messages on simple models

Generalized linear models

Linear/Logistic regression models are simple

But easy to interpret only in the case of independent input variables!

Decision trees/rules

Easy to interpret when the number of rules/tree depth is small

Often unstable: new runs of the algorithm on new data can change drastically the
results

SIRUS

Stabilize decision rules by construction, based on random forests

Good performances and stability results with a small number of rules

Operates in regression and classification
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Main references

Random forests

Seminal papers on random forests (Breiman, 2000; Breiman, 2004)

Overview on random forests Criminisi et al., 2011; Biau and Scornet, 2016

Variable importances

MDI is ill-defined (Scornet, 2020)

Use a different sample to estimate MDI (Li et al., 2019; Zhou and Hooker, 2021;
Loecher, 2022)3

Sobol-MDA, an alternative to MDA (Bénard, Da Veiga, et al., 2021) 4

Decision rules

Sirus in classification (Bénard, Biau, et al., 2021b) and regression (Bénard, Biau,
et al., 2021a)

R package sirus available on CRAN 5

3https://github.com/ZhengzeZhou/unbiased-feature-importance
4R package SobolMDA https://gitlab.com/drti/sobolmda)
5https://cran.r-project.org/web/packages/sirus/index.html
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Questions ?
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