

# Is interpolation benign for Random Forest regression?

Erwan Scornet joint work with Ludovic Arnould (Paris 6) and Claire Boyer (Paris 6) Interpolation regimes in ML

Interpolation in random forests Non-adaptive RF: centered RF (CRF) Non-adaptive RF: KeRF Semi-adaptive RF: median RF Adaptive RF: Breiman RF

## Interpolation regimes in ML

## Framework - Nonparametric regression

• Supervised learning: we assume to be given a training set  $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$  composed of i.i.d. pairs  $(X_i, Y_i)$ , distributed as the generic pair (X, Y) with  $X \in \mathbb{R}^d$  and  $Y \in \mathbb{R}$  (regression).

## Framework - Nonparametric regression

- Supervised learning: we assume to be given a training set  $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$  composed of i.i.d. pairs  $(X_i, Y_i)$ , distributed as the generic pair (X, Y) with  $X \in \mathbb{R}^d$  and  $Y \in \mathbb{R}$  (regression).
- Our goal is to "learn" a predictor  $f_n$ , based on the training set  $\mathcal{D}_n$ , such that

$$\underbrace{f_n(X)}{} \simeq Y.$$

prediction on test (unseen) data

- Performance measure of a predictor f: Risk $(f) = \mathbb{E} \left| (Y f(X))^2 \right|$
- The minimizer  $f^*$  of the risk is called the Bayes predictor

## Framework - Nonparametric regression

- Supervised learning: we assume to be given a training set  $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$  composed of i.i.d. pairs  $(X_i, Y_i)$ , distributed as the generic pair (X, Y) with  $X \in \mathbb{R}^d$  and  $Y \in \mathbb{R}$  (regression).
- Our goal is to "learn" a predictor  $f_n$ , based on the training set  $\mathcal{D}_n$ , such that

$$\underbrace{f_n(X)}{} \simeq Y.$$

prediction on test (unseen) data

- Performance measure of a predictor f:  $\operatorname{Risk}(f) = \mathbb{E} \left| \left( Y f(X) \right)^2 \right|$
- The minimizer  $f^{\star}$  of the risk is called the Bayes predictor
- Consistency: We say that a predictor  $f_n$  is consistent when

$$\operatorname{Risk}(f_n) \xrightarrow[n \to +\infty]{} \operatorname{Risk}(f^*).$$

## **Complexity tuning**

- Usually the constructed predictor  $f_n$  is constrained to live in a class  $\mathcal{F}$  of functions
- Complexity of the model  $\equiv$  Size of  ${\cal F}$
- How to choose it?

Statistical wisdom: take care of the so-called bias-variance tradeoff

Bias: systematic error, the predictor model is too simple to grasp data complexity

Variance: how much the predictions for a given point vary between different realizations of the model



## Going beyond the traditional bias-variance tradeoff

New insights in the parametric world: adding another billion parameters to a neural network improves the predictive performances.



Fig. 1: Nakkiran et al. [2021]

Double descent phenomenon at least well-understood in linear models. [Hastie et al. 2019]

The risk can be always decomposed as follows

Risk = approximation error + estimation error + optimisation error

Why does not overparametrization hurt NN training ?

- approximation error: more parameters, better approx capacities
- optimisation error: more parameters, nicer optimisation space

[NGuyen et al. 2019, Nguyen 2020]

• estimation error: more parameters, implicit regularisation

[Deep learning: a statistical viewpoint, Bartlett, Montanari, Rakhlin, 21]

• Non-parametric learning

• Non-parametric learning

- Nearest neighbour predictor
  - $\checkmark$  Simplest interpolator

Non-parametric learning

- Nearest neighbour predictor
  - $\checkmark$  Simplest interpolator
  - X Inconsistent (apart from the noiseless setting) i.e. [Biau
    - [Biau et al. 2015]

$$\mathsf{Risk}(f^{1NN}) \xrightarrow[n \to +\infty]{} \mathsf{Risk}(f^*)$$

• Non-parametric learning

- Nearest neighbour predictor
  - ✓ Simplest interpolator
  - X Inconsistent (apart from the noiseless setting) i.e. [Biau et al. 2015]

$$\mathsf{Risk}(f^{1NN}) \xrightarrow[n \to +\infty]{} \mathsf{Risk}(f^*)$$

• Local-means estimator: 
$$f(x) = \frac{\sum_{i=1}^{n} Y_i K\left(\frac{\|x-X_i\|}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{\|x-X_i\|}{h}\right)}$$
 with  $K(x) = \frac{1}{\|x\|^p}$ 

Non-parametric learning

No fixed number of parameters a priori

- Nearest neighbour predictor
  - ✓ Simplest interpolator
  - X Inconsistent (apart from the noiseless setting) i.e. [Biau et al. 2015]

$$\mathsf{Risk}(f^{1NN}) \xrightarrow[n \to +\infty]{} \mathsf{Risk}(f^{\star})$$

• Local-means estimator: 
$$f(x) = \frac{\sum_{i=1}^{n} Y_i \mathcal{K}\left(\frac{\|x - X_i\|}{h}\right)}{\sum_{i=1}^{n} \mathcal{K}\left(\frac{\|x - X_i\|}{h}\right)}$$
 with  $\mathcal{K}(x) = \frac{1}{\|x\|^p}$ 

- Interpolator
- ✓ Consistent

[Devroye et al. 1998] [Belkin et al. 2019]

## Consistency of singular kernels

Belkin et al. [2019] consider Nadaraya-Watson predictors of the form

$$f_{a,h,n}(x) = \frac{\sum_{i=1}^{n} Y_i K_a\left(\frac{\|x-X_i\|}{h}\right)}{\sum_{i=1}^{n} K_a\left(\frac{\|x-X_i\|}{h}\right)},$$

with singular kernels  $K_a(x) = \|x\|^{-a} \mathbb{1}_{\|x\| \leqslant 1}$ .

## Consistency of singular kernels

Belkin et al. [2019] consider Nadaraya-Watson predictors of the form

$$f_{a,h,n}(x) = \frac{\sum_{i=1}^{n} Y_i K_a\left(\frac{\|x-X_i\|}{h}\right)}{\sum_{i=1}^{n} K_a\left(\frac{\|x-X_i\|}{h}\right)},$$

with singular kernels  $K_a(x) = ||x||^{-a} \mathbb{1}_{||x|| \leq 1}$ .



Fig. 2: Singular kernel above for a = 0.5

## Consistency of singular kernels

Belkin et al. [2019] consider Nadaraya-Watson predictors of the form

$$f_{a,h,n}(x) = \frac{\sum_{i=1}^{n} Y_i K_a\left(\frac{\|x-X_i\|}{h}\right)}{\sum_{i=1}^{n} K_a\left(\frac{\|x-X_i\|}{h}\right)},$$

with singular kernels  $K_a(x) = \|x\|^{-a} \mathbb{1}_{\|x\| \leqslant 1}$ .

**Regression model:**  $Y = f^*(X) + \varepsilon$  with

- $\mathbb{E}[\varepsilon^2|X] \leqslant \sigma^2$  a.s.
- $X \sim U([0,1]^d)$
- and f\* Lipschitz.

Theorem (Belkin et al. [2019] - A specific case)

Let 0 < a < d/2. Letting  $h_n = n^{-1/(2+d)}$ , we have

 $Risk(f_{a,h_n,n}) \leqslant Cn^{-2/(d+2)}.$ 

## Predictions of singular kernels



• training points

predictor

Fig. 3: Interpolation with  $K(x) = ||x||^{-a} \mathbb{1}_{||x|| \leq 1}$  and a = 0.49, [Belkin et al., 2019]

## **Spiked-smooth estimates**



Fig. 4: From [Belkin et al. 2019]

Spiked: the influence of interpolation is very localized around training points.

Smooth: anywhere else, the estimated function remains "smooth".

$$f_n(x) = f^{\text{smooth}}(x) + \Delta^{\text{spiky}}(x)$$

## Spiked-smooth estimates



Fig. 4: From [Belkin et al. 2019]

Spiked: the influence of interpolation is very localized around training points.

Smooth: anywhere else, the estimated function remains "smooth".

$$f_n(x) = f^{\text{smooth}}(x) + \Delta^{\text{spiky}}(x)$$

#### **Beyond kernel methods**

Can the same be said for random forests?

## Interpolation in random forests

Random forest (RF) 
$$f_{M,n}(x) = \frac{1}{M} \sum_{m=1}^{M} t_n(x, \theta_m)$$

- Non-parametric method
- Based on bagging and random feature selections
- Aggregate the predictions of M trees

Random forest (RF) 
$$f_{M,n}(x) = \frac{1}{M} \sum_{m=1}^{M} t_n(x, \theta_m)$$

- Non-parametric method
- Based on bagging and random feature selections
- Aggregate the predictions of *M* trees

Decision Trees (DT)

- DT is a way to partition the input space along coordinates axes
- At each step, the DT finds a feature j and a threshold τ for splitting (usually according to some diversity criterion (entropy, ...))

## **Decision tree**



 $\theta \equiv$  randomized cuts

$$t_n(x,\theta) = \sum_{i=1}^n Y_i \begin{bmatrix} \frac{1}{X_i \in A_n(x,\theta)} \\ N_n(x,\theta) \end{bmatrix}$$

 $A_n(x, \theta) \equiv$  leaf containing x  $N_n(x, \theta) \equiv$  number of data points in  $A_n(x, \Theta)$ 

## A classical random forest



#### RF are powerful predictors in practice

- Consistency has been proved for several simpler RF models with labelindependent splits.
- Most convergence results are based on a control of the tree depth, preventing trees to be fully grown, and thus avoiding interpolation.

#### Goal

• Is there any random forest model that both interpolate and exhibit consistency properties? In other words,

$$\mathsf{Risk}\,(\mathsf{interpolating}\,\,\mathsf{RF})\xrightarrow[n\to+\infty]{?}\mathsf{Risk}(f^*)$$

## **Research statement**

## Goal

• Study of the consistency of RF in interpolation regimes in regression

Risk (interpolating RF) 
$$\xrightarrow[n \to +\infty]{?}$$
 Risk $(f^*)$ 

| RF type       | Cuts depend on $X_i$ | Cuts depend on $Y_i$ |  |
|---------------|----------------------|----------------------|--|
| non-adaptive  | ×                    | ×                    |  |
| (centered RF) |                      |                      |  |
| semi-adaptive | $\checkmark$         | ×                    |  |
| (Median RF)   |                      |                      |  |
| adaptive      | $\checkmark$         | $\checkmark$         |  |
| (Breiman RF)  |                      |                      |  |

• The generative model satisfies

$$Y = f^{\star}(X) + \varepsilon,$$

with  $X \sim \mathcal{U}\left([0,1]^d
ight)$  and  $\mathbb{E}\left[arepsilon|X
ight] = 0$  almost surely.

• Risk of  $f_n$ 

$$\operatorname{Risk}(f_n) = \mathbb{E}\left[(f_n(X) - Y)^2\right]$$

• Forest predictor

$$f_{M,n}(x) = \frac{1}{M} \sum_{m=1}^{M} t_n(x,\theta_j)$$

• Infinite forest predictor

$$f_{\infty,n}(x) = \mathbb{E}_{\Theta}\left[t_n(x,\Theta)\right]$$

Interpolation regimes in ML

Interpolation in random forests

Non-adaptive RF: centered RF (CRF)

Non-adaptive RF: KeRF

Semi-adaptive RF: median RF

Adaptive RF: Breiman RF

Construction of a centered tree: at each step,

- 1. a feature is uniformly chosen among all possible d features
- 2. the split along the chosen feature is made at the center of the current cell

If the new point x falls into an empty cell, the tree arbitrarily predicts 0.





## Non-adaptive RF: Centered RF (CRF)

## Standard CRF

$$f_{M,n}(x,\Theta_M) = \frac{1}{M} \sum_{m=1}^M t_n(x,\Theta_m) \qquad f_{\infty,n}(x) = \mathbb{E}_{\Theta}[f_n(x,\Theta)]$$

### Theorem [Klusowski, 2021]

The risk of the infinite centered forest  $f_{\infty,n}^{\text{CRF}}$  satisfies, for any depth  $k_n$ ,

$$\operatorname{Risk}(f_{\infty,n}^{\operatorname{CRF}}(X)) - \operatorname{Risk}(f^{\star}) \leq \underbrace{d \sum_{j=1}^{d} \|\partial_{j}f^{\star}\|_{\infty} 2^{2k_{n}\log(1-1/(2d))}}_{\operatorname{approximation error}} + \underbrace{12\sigma^{2}8^{d}d^{d/2}}_{\operatorname{estimation error}} \frac{2^{k_{n}}}{n} \frac{1}{k_{n}^{(d-1)/2}}}_{\operatorname{bias related to empty cells}} + \underbrace{B^{2}\exp\left(-\frac{n}{2^{k_{n}+1}}\right)}_{\operatorname{bias related to empty cells}}.$$

## Non-adaptive RF: Centered RF (CRF)

## Standard CRF

$$f_{M,n}(x,\Theta_M) = \frac{1}{M} \sum_{m=1}^M t_n(x,\Theta_m) \qquad f_{\infty,n}(x) = \mathbb{E}_{\Theta}[f_n(x,\Theta)]$$

#### Theorem [Klusowski, 2021]

The risk of the infinite centered forest  $f_{\infty,n}^{\text{CRF}}$  satisfies, for a depth  $k_n = \log_2 n$ ,

$$\operatorname{Risk}(f_{\infty,n}^{\operatorname{CRF}}(X)) - \operatorname{Risk}(f^{\star}) \leqslant \underbrace{d \sum_{j=1}^{d} \|\partial_{j}f^{\star}\|_{\infty} n^{2\log(1-1/(2d))}}_{\operatorname{approximation error}} + \underbrace{12\sigma^{2}8^{d}d^{d/2} \frac{1}{(\log_{2}n)^{(d-1)/2}}}_{\operatorname{estimation error}} + \underbrace{B^{2}\exp\left(-\frac{1}{2}\right)}_{\operatorname{bias related to empty cells}}.$$

#### Standard CRF

$$f_{M,n}(x,\Theta_M) = \frac{1}{M} \sum_{m=1}^M t_n(x,\Theta_m) \qquad f_{\infty,n}(x) = \mathbb{E}_{\Theta}[f_n(x,\Theta)]$$

#### Unfortunately...

Proposition [Arnould et al., 2023]

Assume that  $\mathbb{E}[f^*(X)^2] > 0$ . Then, in the mean interpolating regime (one point/cell in average,  $k = \lfloor \log_2(n) \rfloor$ ), the CRF  $f_{\infty,n}^{CRF}$  is not consistent.

## Non-adaptive RF: Centered RF (CRF)

## Addressing the problem of empty cells by not averaging over them!

Void-free CRF

$$f_{M,n}^{\rm VF}(x,\Theta_M) \propto \sum_{m=1}^M t_n(x,\Theta_m) \mathbb{1}_{N_n(x,\Theta_m)>0} \qquad f_{\infty,n}^{\rm VF}(x) = \mathbb{E}_{\Theta}\left[f_n(x,\Theta) | N_n(x,\Theta)>0\right]$$

## Non-adaptive RF: Centered RF (CRF)

## Addressing the problem of empty cells by not averaging over them!

#### Void-free CRF

$$f_{M,n}^{\rm VF}(x,\Theta_M) \propto \sum_{m=1}^M t_n(x,\Theta_m) \mathbb{1}_{N_n(x,\Theta_m)>0} \qquad f_{\infty,n}^{\rm VF}(x) = \mathbb{E}_{\Theta}\left[f_n(x,\Theta) | N_n(x,\Theta)>0\right]$$

#### Proposition [Arnould et al., 2023]

Assume that  $f^*$  has bounded partial derivatives. Then, in the mean interpolating regime ( $k = \lfloor \log_2 n \rfloor$ ), the infinite void-free-CRF  $f_{\infty,n}^{VF}$  is consistent in a noiseless setting ( $\sigma = 0$ ), and, for all n > 1,

$$\mathcal{R}\left(f_{\infty,n}^{\mathrm{VF}}(X)\right) \leqslant C_d \left(\frac{n}{\log_2 n}\right)^{2\log_2\left(1-\frac{1}{2d}\right)} + (C_d+2) n^{-1/(2\ln 2)}$$

where  $C_d = 4d\left(\sum_{j=1}^d ||\partial f_j^\star||_\infty^2\right)$ .

Aggregating all cells,

 $\begin{aligned} \operatorname{Risk}(f_{\infty,n}^{\operatorname{CRF}}(X)) &- \operatorname{Risk}(f^*) \\ \geqslant \mathbb{E}\left[f^*(X)^2 \mathbb{P}\left(N_n(X,\Theta) = 0|X\right)\right]. \end{aligned}$ 

Aggregating non-empty cells (noiseless setting)

 $\begin{aligned} \mathsf{Risk}(f^{\mathrm{VF}}_{\infty,n}(X)) &- \mathsf{Risk}(f^*) \\ &\leqslant \mathsf{bias}^2 + ||f||^2_{\infty} \mathbb{P}\left( \forall \Theta, \mathsf{N}_n(\Theta, X) = \mathbf{0} \right) \end{aligned}$ 

#### CRF vs Void-free CRF

 $\mathbb{P}(N_n(X,\Theta)=0)$  falling into an empty leaf in a single random tree of the infinite forest.

VS.

 $\mathbb{P}_{X,\mathcal{D}_n} \left[ \forall \Theta, N_n(X, \Theta) = 0 \right].$ falling into empty leaves in all trees of the infinite forest. Interpolation regimes in ML

nterpolation in random forests Non-adaptive RF: centered RF (CRF Non-adaptive RF: KeRF

Semi-adaptive RF: median RF

Adaptive RF: Breiman RF

## Kernel RF (KeRF)

Still in the mean interpolation regime, one can study KeRF

- to avoid the problem of empty cells
- to control the risk (variance)

## Kernel RF (KeRF)

Still in the mean interpolation regime, one can study KeRF

- to avoid the problem of empty cells
- to control the risk (variance)

#### KeRF

- 1. grow all centered trees
- 2. average along all points contained in the leaves in which x falls

$$f_{M,n}^{\text{KeRF}}(x,\Theta) = \frac{\sum_{i=1}^{n} Y_i K_{M,n}(x,X_i)}{\sum_{i=1}^{n} K_{M,n}(x,X_i)} = \frac{\sum_{i=1}^{n} Y_i \sum_{m=1}^{M} \mathbb{1}_{X_i \in A_n(x,\Theta_m)}}{\sum_{i=1}^{n} \sum_{m=1}^{M} \mathbb{1}_{X_i \in A_n(x,\Theta_m)}}$$

## Kernel RF (KeRF)

Still in the mean interpolation regime, one can study KeRF

- to avoid the problem of empty cells
- to control the risk (variance)

#### KeRF

- 1. grow all centered trees
- 2. average along all points contained in the leaves in which x falls

$$f_{M,n}^{\text{KeRF}}(x,\Theta) = \frac{\sum_{i=1}^{n} Y_i K_{M,n}(x,X_i)}{\sum_{i=1}^{n} K_{M,n}(x,X_i)} = \frac{\sum_{i=1}^{n} Y_i \sum_{m=1}^{M} \mathbb{1}_{X_i \in A_n(x,\Theta_m)}}{\sum_{i=1}^{n} \sum_{m=1}^{M} \mathbb{1}_{X_i \in A_n(x,\Theta_m)}}$$

#### Infinite KeRF

$$f_{\infty,n}^{\text{KeRF}}(x) = \frac{\sum_{i=1}^{n} Y_i K_n(x, X_i)}{\sum_{i=1}^{n} K_n(x, X_i)} = \frac{\sum_{i=1}^{n} Y_i \mathbb{P}_{\Theta} [X_i \in A_n(x, \Theta)]}{\sum_{i=1}^{n} \mathbb{P}_{\Theta} [X_i \in A_n(x, \Theta)]}$$

#### Theorem [Arnould et al., 2023]

Assume that  $f^*$  is Lipschitz continuous and  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ . Let d > 5. Then, in the mean interpolation regime,  $k_n = \lfloor \log_2(n) \rfloor$ ,

$$\mathsf{Risk}(f_{\infty,n}^{\mathrm{KeRF}}) - \mathsf{Risk}(f^*) \leqslant C_d \log(n)^{-(d-5)/6}$$

with  $C_d > 0$  a constant depending on  $\sigma, d, ||f^*||_{\infty}$ .

#### Theorem [Arnould et al., 2023]

Assume that  $f^*$  is Lipschitz continuous and  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ . Let d > 5. Then, in the mean interpolation regime,  $k_n = \lfloor \log_2(n) \rfloor$ ,

$$\mathsf{Risk}(f^{\mathrm{KeRF}}_{\infty,n}) - \mathsf{Risk}(f^{\star}) \leqslant C_d \log(n)^{-(d-5)/6}$$

with  $C_d > 0$  a constant depending on  $\sigma, d, \|f^*\|_{\infty}$ .

#### Remarks

- In the mean interpolation regime, the infinite KeRF is consistent
- Slow convergence rate
- Almost matching the lower bound  $log(n)^{-d+1}$  for the optimal convergence rate of deep non-adaptive RF [Lin & Jeon, 2006]

Interpolation regimes in ML

Interpolation in random forests Non-adaptive RF: centered RF (CRF) Non-adaptive RF: KeRF Semi-adaptive RF: median RF

Adaptive RF: Breiman RF

## Towards strict interpolation

- So far, study in the mean interpolation regime only
- To analyze the strict interpolation case, we have to consider semi-adaptive RF

## Towards strict interpolation

- So far, study in the mean interpolation regime only
- To analyze the strict interpolation case, we have to consider semi-adaptive RF

#### Semi-adaptive median RF

- 1. Median tree
  - Select  $a_n$  observations without replacement among the original sample  $D_n$ . Use only these observations to build the tree.
  - For each cell,
    - Select randomly mtry = 1 coordinate among {1,...,d};
    - Split at the location of the empirical median of X<sub>i</sub>.
  - Stop when each cell contains exactly **nodesize** = 1 observation.
- 2. Median RF: aggregation of median trees

#### Assumption (H1)

The model writes  $Y = f^*(X) + \varepsilon$ , where  $\varepsilon$  is a centred noise such that  $\mathbb{V}[\varepsilon|X = x] \leq \sigma^2$ , X has a density on  $[0, 1]^d$  and  $f^*$  is continuous.

## What we know about Median RF

#### Assumption (H1)

The model writes  $Y = f^*(X) + \varepsilon$ , where  $\varepsilon$  is a centred noise such that  $\mathbb{V}[\varepsilon|X = x] \leq \sigma^2$ , X has a density on  $[0, 1]^d$  and  $f^*$  is continuous.

#### Theorem [Scornet, 2016]

Grant Assumption **(H1)**. Then, provided  $a_n \to \infty$  and  $a_n/n \to 0$ , the infinite median forest  $f_{\infty,n}^{\text{MedRF}}$  is consistent, i.e.,

$$\lim_{n\to\infty} \operatorname{Risk}\left(f^{\operatorname{MedRF}}_{\infty,n}\right) = \operatorname{Risk}(f^{\star}).$$

## What we know about Median RF

#### Assumption (H1)

The model writes  $Y = f^*(X) + \varepsilon$ , where  $\varepsilon$  is a centred noise such that  $\mathbb{V}[\varepsilon|X = x] \leq \sigma^2$ , X has a density on  $[0, 1]^d$  and  $f^*$  is continuous.

#### Theorem [Scornet, 2016]

Grant Assumption **(H1)**. Then, provided  $a_n \to \infty$  and  $a_n/n \to 0$ , the infinite median forest  $f_{\infty,n}^{\text{MedRF}}$  is consistent, i.e.,

$$\lim_{n\to\infty} \operatorname{Risk}\left(f^{\operatorname{MedRF}}_{\infty,n}\right) = \operatorname{Risk}(f^{\star}).$$

#### Remarks

- First (and only) consistency results for fully grown trees.
- Each tree is not consistent but the forest is, because of subsampling.

## What we know about Median RF

#### Assumption (H1)

The model writes  $Y = f^*(X) + \varepsilon$ , where  $\varepsilon$  is a centred noise such that  $\mathbb{V}[\varepsilon|X = x] \leq \sigma^2$ , X has a density on  $[0, 1]^d$  and  $f^*$  is continuous.

#### Theorem [Scornet, 2016]

Grant Assumption **(H1)**. Then, provided  $a_n \to \infty$  and  $a_n/n \to 0$ , the infinite median forest  $f_{\infty,n}^{\text{MedRF}}$  is consistent, i.e.,

$$\lim_{n\to\infty} \operatorname{Risk}\left(f^{\operatorname{MedRF}}_{\infty,n}\right) = \operatorname{Risk}(f^{\star}).$$

#### Remarks

- First (and only) consistency results for fully grown trees.
- Each tree is not consistent but the forest is, because of subsampling.

Unsatisfying result because forest interpolation only occurs when  $a_n = n$ .

#### Theorem [Arnould et al., 2023]

Suppose that  $f^*$  has bounded partial derivatives and that n is a power of two. Then, the infinite interpolating Median RF  $f_{\infty,n}^{\text{MedRF}}$  is consistent and verifies:

$$\mathcal{R}\left(f_{\infty,n}^{\text{MedRF}}\right) \leqslant C_1 d\left(\sum_{\ell=1}^d ||\partial_\ell f^\star||_\infty^2\right) \left(1 - \frac{3}{4d}\right)^{\log_2 n} + \sigma^2 C_{2,d} (\log_2 n)^{-(d-1)/2},$$

where  $C_1$  and  $C_{2,d}$  are explicit constants.

#### Theorem [Arnould et al., 2023]

Suppose that  $f^*$  has bounded partial derivatives and that n is a power of two. Then, the infinite interpolating Median RF  $f_{\infty,n}^{\text{MedRF}}$  is consistent and verifies:

$$\mathcal{R}\left(f_{\infty,n}^{\text{MedRF}}\right) \leqslant C_1 d\left(\sum_{\ell=1}^d ||\partial_\ell f^\star||_\infty^2\right) \left(1 - \frac{3}{4d}\right)^{\log_2 n} \\ + \sigma^2 C_{2,d} (\log_2 n)^{-(d-1)/2},$$

where  $C_1$  and  $C_{2,d}$  are explicit constants.

- Interpolating (median) RF are consistent in a noisy setting (first result).
- Slow rate as expected
- Each tree is not consistent but the forest is (due to the randomization of splitting directions).
- First result to highlight the asymptotic benefit of split randomization (making the forest consistent).

Interpolation regimes in ML

Interpolation in random forests Non-adaptive RF: centered RF (CRF) Non-adaptive RF: KeRF Semi-adaptive RF: median RF

Adaptive RF: Breiman RF

## Adaptive RF: Breiman forests

- Widely used
- Cuts depend on  $X_i$  and  $Y_i$

#### **Breiman random forests**

- Data sampling : bootstrap
- At each cell, select randomly  $m_{\rm try}$  coordinates among  $\{1,\ldots,d\}$ .
- Choose the split by minimizing the CART-split criterion on the cell along the  $m_{\rm try}$  selected coordinates.
- Stop when each cell contains exactly one point.
- Aggregate CART trees

Hard to theoretically analyze (even in non-interpolation regimes)

- Simulated data with 4 different models
- 500 trees per forest, (max-depth= None)
- 2 types of forests
  - max-feature =  $\lceil d/3 \rceil$  + bootstrap off
  - max-feature = d + bootstrap on

(interpolating) (non-interpolating)

## Numerical XP with interpolating Breiman RF

- Simulated data with 4 different models
- 500 trees per forest, (max-depth= None)
- 2 types of forests
  - max-feature = [d/3] + bootstrap off
    max-feature = d + bootstrap on

(interpolating) (non-interpolating)



## Numerical XP with interpolating Breiman RF

- Simulated data with 4 different models
- 500 trees per forest, (max-depth= None)
- 2 types of forests
  - max-feature =  $\lceil d/3 \rceil$  + bootstrap off
  - max-feature = d + bootstrap on

(interpolating) (non-interpolating)



#### Conclusion

Interpolating Breiman RF seem to be consistent even in the noisy setting

## Breiman RF: how about the interpolation zone?

- X Theoretical analysis of interpolating Breiman RF consistency: out of reach for now
- Study of the interpolation zone instead!
- Partition of the RF  $\equiv$  intersection of the partitions of the trees of the RF

## Breiman RF: how about the interpolation zone?

- X Theoretical analysis of interpolating Breiman RF consistency: out of reach for now
- Study of the interpolation zone instead!
- Partition of the RF  $\equiv$  intersection of the partitions of the trees of the RF



#### Interpolation zone

Area of the space where the prediction relies on only one point of the dataset

## Breiman RF: volume of the interpolation zone

#### Proposition [Arnould et al., 2023]

Consider an infinite Breiman forest constructed without bootstrap, with max-features fixed to 1. Then, the volume of its interpolation zone  $Z_n$  verifies

$$\mathbb{E}\left[\operatorname{vol}(Z_n)\right] \leqslant \frac{1}{n^{d-1}}(1-2^{-n})^d$$

• The risk can be decomposed as

$$\underset{k \neq Z_n}{\operatorname{Risk}(f_n(X)) - \operatorname{Risk}(f^*)} = \underbrace{\operatorname{Risk}((f_n(X) - f^*(X))\mathbb{1}_{X \in Z_n})}_{\geqslant \sigma^2 \mathbb{E}[\operatorname{vol}(Z_n)]} + \operatorname{Risk}((f_n(X) - f^*(X))\mathbb{1}_{X \notin Z_n})$$

- Necessary condition for consistency:  $\mathbb{E}[\operatorname{vol}(Z_n)] \to 0$  as  $n \to \infty$
- For most points of the space, more than one point are involved in the prediction of the RF ~> self-averaging property?

## Conclusion

• Non-adaptive interpolating RF are not consistent (empty cells)

## Conclusion

- Non-adaptive interpolating RF are not consistent (empty cells)
- Adaptive RF: interpolation and consistency become compatible when self-regularisation processes occur
  - Theoretically proved for Median RF
  - Empirical evidence for Breiman RF

## Conclusion

- Non-adaptive interpolating RF are not consistent (empty cells)
- Adaptive RF: interpolation and consistency become compatible when self-regularisation processes occur
  - Theoretically proved for Median RF
  - Empirical evidence for Breiman RF
- RF vs kernel methods:
  - Singular Kernel (any bandwidth) versus interpolating RF (large depth)
  - Slow rate of consistency

## Conclusion - Thank you!

- Non-adaptive interpolating RF are not consistent (empty cells)
- Adaptive RF: interpolation and consistency become compatible when self-regularisation processes occur
  - Theoretically proved for Median RF
  - Empirical evidence for Breiman RF
- RF vs kernel methods:
  - Singular Kernel (any bandwidth) versus interpolating RF (large depth)
  - Slow rate of consistency



|                                                              |               | Conditions for consistency           |                         |                             |                                                |
|--------------------------------------------------------------|---------------|--------------------------------------|-------------------------|-----------------------------|------------------------------------------------|
|                                                              |               | Regardless o                         | of the noise scenario   | In a noisy<br>scenario      |                                                |
|                                                              |               | Managing<br>the empty<br>cells issue | Controlling the<br>bias | Controlling the<br>variance | Decreasing volume of<br>the interpolation zone |
| Mean<br>interpolation<br>regime<br>(non-adaptive<br>RF)      | Centered RF   | ×                                    | √                       | √                           |                                                |
|                                                              | Void-free CRF | ~                                    | √                       | ?                           |                                                |
|                                                              | Centered KeRF | ~                                    | $\checkmark$            | $\checkmark$                |                                                |
| Exact<br>interpolation<br>(semi-adaptive<br>and adaptive RF) | Median RF     | $\checkmark$                         | $\checkmark$            | $\checkmark$                | $\checkmark$                                   |
|                                                              | Breiman RF    | ~                                    | ?                       | ?                           | $\checkmark$                                   |

## References

- Ludovic Arnould, Claire Boyer, and Erwan Scornet. Is interpolation benign for random forest regression? *The 26th International Conference on Artificial Intelligence and Statistics*, 2023.
- Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contradict statistical optimality? In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 1611–1619. PMLR, 2019.
- Jason Klusowski. Sharp analysis of a simple model for random forests. In International Conference on Artificial Intelligence and Statistics, pages 757– 765. PMLR, 2021.

- Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double descent: Where bigger models and more data hurt. *Journal of Statistical Mechanics: Theory and Experiment*, 2021(12): 124003, 2021.
- E. Scornet. On the asymptotics of random forests. *Journal of Multivariate Analysis*, 146:72–83, 2016.

- Model 1: d = 2,  $Y = 2X_1^2 + \exp(-X_2^2)$  (noiseless)
- Model 2: d = 8,  $Y = X_1X_2 + X_3^2 X_4X_5 + X_6X_7 X_8^2 + \mathcal{N}(0, 0.5)$
- Model 3: d = 6,  $Y = X_1^2 + X_2^2 X_3 e^{-|X_4|} + X_5 X_6 + \mathcal{N}(0, 0.5)$
- Model 4: d = 5,  $Y = 1/(1 + \exp(-10(\sum_{i=1}^{d} X_i - 1/2))) + \mathcal{N}(0, 0.05)$