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Interpolation regimes in ML



Framework - Nonparametric regression

• Supervised learning: we assume to be given a training set Dn =
{(X1,Y1), . . . , (Xn,Yn)} composed of i.i.d. pairs (Xi ,Yi ), distributed
as the generic pair (X ,Y ) with X ∈ Rd and Y ∈ R (regression).

• Our goal is to “learn” a predictor fn, based on the training set Dn,
such that

fn(X )︸ ︷︷ ︸
prediction on test (unseen) data

' Y .

• Performance measure of a predictor f : Risk(f ) = E
[(

Y − f (X )
)2
]

• The minimizer f ? of the risk is called the Bayes predictor
• Consistency: We say that a predictor fn is consistent when

Risk(fn) −−−−→
n→+∞

Risk(f ?).
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Complexity tuning

• Usually the constructed predictor fn is constrained to live in a class
F of functions

• Complexity of the model ≡ Size of F
• How to choose it?

Statistical wisdom: take care of the so-called bias-variance tradeoff

Bias: systematic error, the pre-
dictor model is too simple to
grasp data complexity

Variance: how much the pre-
dictions for a given point vary
between different realizations
of the model
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Going beyond the traditional bias-variance tradeoff

New insights in the parametric world: adding another billion parameters to a
neural network improves the predictive performances.

Fig. 1: Nakkiran et al. [2021]

Double descent phenomenon at least well-understood in linear models. [Hastie et

al. 2019]
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Over-parametrization in neural networks

The risk can be always decomposed as follows

Risk = approximation error + estimation error + optimisation error

Why does not overparametrization hurt NN training ?

• approximation error: more parameters, better approx capacities
• optimisation error: more parameters, nicer optimisation space

[NGuyen et al. 2019, Nguyen 2020]

• estimation error: more parameters, implicit regularisation
[Deep learning: a statistical viewpoint, Bartlett, Montanari, Rakhlin, 21]
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Interpolation and non-parametric methods

• Non-parametric learning
No fixed number of parameters a priori

• Nearest neighbour predictor
3 Simplest interpolator
7 Inconsistent (apart from the noiseless setting) i.e. [Biau et al. 2015]

Risk(f 1NN ) 6−−−−−→
n→+∞

Risk(f ?)

• Local-means estimator: f (x) =
∑n

i=1
Yi K
(
‖x−Xi‖

h

)∑n
i=1

K
(
‖x−Xi‖

h

) with K (x) = 1
‖x‖p

3 Interpolator
3 Consistent [Devroye et al. 1998]

[Belkin et al. 2019]
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Consistency of singular kernels

Belkin et al. [2019] consider Nadaraya-Watson predictors of the form

fa,h,n(x) =

∑n
i=1 YiKa

(
‖x−Xi‖

h

)
∑n

i=1 Ka

(
‖x−Xi‖

h

) ,

with singular kernels Ka(x) = ‖x‖−a1‖x‖61.

Fig. 2: Singular kernel above for a = 0.5

Regression model: Y = f ?(X ) + ε with

• E[ε2|X ] 6 σ2 a.s.
• X ∼ U([0, 1]d )
• and f ? Lipschitz.

Theorem (Belkin et al. [2019] - A specific case)
Let 0 < a < d/2. Letting hn = n−1/(2+d), we have

Risk(fa,hn,n) 6 Cn−2/(d+2).
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Predictions of singular kernels

Fig. 3: Interpolation with K(x) = ‖x‖−a1‖x‖61 and a = 0.49, [Belkin
et al., 2019]

• training points
− predictor
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Spiked-smooth estimates

Fig. 4: From [Belkin et al. 2019]

Spiked: the influence of interpola-
tion is very localized around training
points.

Smooth: anywhere else, the estimated
function remains “smooth”.

fn(x) = f smooth(x) + ∆spiky(x)

Beyond kernel methods
Can the same be said for random forests?
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Interpolation in random forests



Random Forest

Random forest (RF) fM,n(x) = 1
M

M∑
m=1

tn(x , θm)

• Non-parametric method
• Based on bagging and random feature selections
• Aggregate the predictions of M trees

Decision Trees (DT)

• DT is a way to partition the input space along coordinates axes
• At each step, the DT finds a feature j and a threshold τ for splitting
(usually according to some diversity criterion (entropy, ...))
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Decision tree

tn(x , θ) =
∑n

i=1 Yi
1Xi∈An(x,θ)

Nn(x ,θ)

θ ≡ randomized cuts

An(x , θ) ≡ leaf containing x

Nn(x , θ) ≡ number of data points in
An(x ,Θ)

11



A classical random forest

Training Data

Bootstrap samples

. . .

Tree 1 Tree 2 Tree M

Average in regression
Majority vote in classification

Prediction 12



Research statement

RF are powerful predictors in practice

• Consistency has been proved for several simpler RF models with label-
independent splits.

• Most convergence results are based on a control of the tree depth,
preventing trees to be fully grown, and thus avoiding interpolation.

Goal

• Is there any random forest model that both interpolate and exhibit
consistency properties? In other words,

Risk (interpolating RF) ?−−−−→
n→+∞

Risk(f ?)
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Research statement

Goal

• Study of the consistency of RF in interpolation regimes in regression

Risk (interpolating RF) ?−−−−→
n→+∞

Risk(f ?)

RF type Cuts depend on Xi Cuts depend on Yi

non-adaptive 7 7

(centered RF)

semi-adaptive 3 7

(Median RF)

adaptive 3 3

(Breiman RF)
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Preliminary

• The generative model satisfies

Y = f ?(X ) + ε,

with X ∼ U
(
[0, 1]d

)
and E [ε|X ] = 0 almost surely.

• Risk of fn
Risk(fn) = E

[
(fn(X )− Y )2]

• Forest predictor

fM,n(x) = 1
M

M∑
m=1

tn(x , θj)

• Infinite forest predictor

f∞,n(x) = EΘ [tn(x ,Θ)]

15
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Non-adaptive RF: Centered RF (CRF)

Construction of a centered tree: at each step,

1. a feature is uniformly chosen among all possible d features
2. the split along the chosen feature is made at the center of the

current cell

If the new point x falls into an empty cell, the tree arbitrarily predicts
0.

17



Non-adaptive RF: Centered RF (CRF)

Standard CRF

fM,n(x ,ΘM) = 1
M

M∑
m=1

tn(x ,Θm) f∞,n(x) = EΘ[fn(x ,Θ)]

Theorem [Klusowski, 2021]
The risk of the infinite centered forest f CRF

∞,n satisfies, for any depth kn,

Risk(f CRF
∞,n (X ))− Risk(f ?) 6 d

d∑
j=1
‖∂j f ?‖∞22kn log(1−1/(2d))

︸ ︷︷ ︸
approximation error

+ 12σ28ddd/2 2kn

n
1

k(d−1)/2
n︸ ︷︷ ︸

estimation error

+ B2 exp
(
− n
2kn+1

)
︸ ︷︷ ︸

bias related to empty cells

.
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Non-adaptive RF: Centered RF (CRF)

Standard CRF

fM,n(x ,ΘM) = 1
M

M∑
m=1

tn(x ,Θm) f∞,n(x) = EΘ[fn(x ,Θ)]

Unfortunately...

Proposition [Arnould et al., 2023]
Assume that E[f ?(X )2] > 0. Then, in the mean interpolating regime
(one point/cell in average, k = blog2(n)c), the CRF f CRF

∞,n is not
consistent.
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Non-adaptive RF: Centered RF (CRF)

Addressing the problem of empty cells by not averaging over
them!

Void-free CRF

f VF
M,n(x ,ΘM) ∝

M∑
m=1

tn(x ,Θm)1Nn(x ,Θm)>0 f VF
∞,n(x) = EΘ [fn(x ,Θ)|Nn(x ,Θ) > 0]

Proposition [Arnould et al., 2023]
Assume that f ? has bounded partial derivatives. Then, in the mean
interpolating regime (k = blog2 nc), the infinite void-free-CRF f VF

∞,n is
consistent in a noiseless setting (σ = 0), and, for all n > 1,

R
(
f VF
∞,n(X )

)
6 Cd

(
n

log2 n

)2 log2(1− 1
2d )

+ (Cd + 2) n−1/(2 ln 2),

where Cd = 4d
(∑d

j=1 ||∂f ?j ||2∞
)
.
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Centered RF: ideas of proof

Aggregating all cells,

Risk(f CRF
∞,n (X ))− Risk(f ?)

>E
[
f ?(X )2P (Nn(X ,Θ) = 0|X )

]
.

Aggregating non-empty cells
(noiseless setting)

Risk(f VF
∞,n(X ))− Risk(f ?)

6 bias2 + ||f ||2∞P (∀Θ,Nn(Θ,X ) = 0)

CRF vs Void-free CRF
P (Nn(X ,Θ) = 0) falling
into an empty leaf in a sin-
gle random tree of the in-
finite forest.

vs.

PX ,Dn [∀Θ,Nn(X ,Θ) = 0] .
falling into empty leaves
in all trees of the infinite
forest.
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Kernel RF (KeRF)

Still in the mean interpolation regime, one can study KeRF

• to avoid the problem of empty cells
• to control the risk (variance)

KeRF

1. grow all centered trees
2. average along all points contained in the leaves in which x falls

f KeRF
M,n (x ,Θ) =

∑n
i=1 YiKM,n(x ,Xi )∑n

i=1 KM,n(x ,Xi )
=
∑n

i=1 Yi
∑M

m=1 1Xi∈An(x ,Θm)∑n
i=1
∑M

m=1 1Xi∈An(x ,Θm)

Infinite KeRF

f KeRF
∞,n (x) =

∑n
i=1 YiKn(x ,Xi )∑n

i=1 Kn(x ,Xi )
=
∑n

i=1 YiPΘ [Xi ∈ An(x ,Θ)]∑n
i=1 PΘ [Xi ∈ An(x ,Θ)]
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KeRF

Theorem [Arnould et al., 2023]
Assume that f ? is Lipschitz continuous and ε ∼ N (0, σ2). Let d > 5.
Then, in the mean interpolation regime, kn = blog2(n)c,

Risk(f KeRF
∞,n )− Risk(f ?) 6 Cd log(n)−(d−5)/6,

with Cd > 0 a constant depending on σ, d , ‖f ?‖∞.

Remarks

• In the mean interpolation regime, the infinite KeRF is consistent

• Slow convergence rate

• Almost matching the lower bound log(n)−d+1 for the optimal
convergence rate of deep non-adaptive RF [Lin & Jeon, 2006]

23



KeRF

Theorem [Arnould et al., 2023]
Assume that f ? is Lipschitz continuous and ε ∼ N (0, σ2). Let d > 5.
Then, in the mean interpolation regime, kn = blog2(n)c,

Risk(f KeRF
∞,n )− Risk(f ?) 6 Cd log(n)−(d−5)/6,

with Cd > 0 a constant depending on σ, d , ‖f ?‖∞.

Remarks

• In the mean interpolation regime, the infinite KeRF is consistent

• Slow convergence rate

• Almost matching the lower bound log(n)−d+1 for the optimal
convergence rate of deep non-adaptive RF [Lin & Jeon, 2006]

23



Outline

Interpolation regimes in ML

Interpolation in random forests

Non-adaptive RF: centered RF (CRF)

Non-adaptive RF: KeRF

Semi-adaptive RF: median RF

Adaptive RF: Breiman RF

24



Towards strict interpolation

• So far, study in the mean interpolation regime only
• To analyze the strict interpolation case, we have to consider

semi-adaptive RF

Semi-adaptive median RF

1. Median tree
• Select an observations without replacement among the original sample

Dn. Use only these observations to build the tree.
• For each cell,

• Select randomly mtry = 1 coordinate among {1, . . . , d};
• Split at the location of the empirical median of Xi .

• Stop when each cell contains exactly nodesize = 1 observation.

2. Median RF: aggregation of median trees
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What we know about Median RF

Assumption (H1)
The model writes Y = f ?(X ) + ε, where ε is a centred noise such that
V[ε|X = x ] 6 σ2, X has a density on [0, 1]d and f ? is continuous.

Theorem [Scornet, 2016]
Grant Assumption (H1). Then, provided an → ∞ and an/n → 0, the
infinite median forest f MedRF

∞,n is consistent, i.e.,

lim
n→∞

Risk
(
f MedRF
∞,n

)
= Risk(f ?).

Remarks

• First (and only) consistency results for fully grown trees.
• Each tree is not consistent but the forest is, because of subsampling.

Unsatisfying result because forest interpolation only occurs when an = n.
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• Each tree is not consistent but the forest is, because of subsampling.

Unsatisfying result because forest interpolation only occurs when an = n.
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Semi-adaptive RF: median RF

Theorem [Arnould et al., 2023]
Suppose that f ? has bounded partial derivatives and that n is a power
of two. Then, the infinite interpolating Median RF f MedRF

∞,n is
consistent and verifies:

R
(
f MedRF
∞,n

)
6 C1d

( d∑
`=1
||∂`f ?||2∞

)(
1− 3

4d

)log2 n

+ σ2C2,d (log2 n)−(d−1)/2,

where C1 and C2,d are explicit constants.

• Interpolating (median) RF are consistent in a noisy setting (first result).
• Slow rate as expected
• Each tree is not consistent but the forest is (due to the randomization

of splitting directions).
• First result to highlight the asymptotic benefit of split randomization
(making the forest consistent).
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Outline

Interpolation regimes in ML

Interpolation in random forests

Non-adaptive RF: centered RF (CRF)

Non-adaptive RF: KeRF

Semi-adaptive RF: median RF

Adaptive RF: Breiman RF

28



Adaptive RF: Breiman forests

• Widely used
• Cuts depend on Xi and Yi

Breiman random forests

• Data sampling : bootstrap

• At each cell, select randomly mtry coordinates among {1, . . . , d}.

• Choose the split by minimizing the CART-split criterion on the cell
along the mtry selected coordinates.

• Stop when each cell contains exactly one point.

• Aggregate CART trees

Hard to theoretically analyze (even in non-interpolation regimes)
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Numerical XP with interpolating Breiman RF

• Simulated data with 4 different models
• 500 trees per forest, (max-depth= None)
• 2 types of forests

• max-feature = dd/3e + bootstrap off (interpolating)
• max-feature = d + bootstrap on (non-interpolating)
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Conclusion
Interpolating Breiman RF seem to be consistent even in the noisy
setting
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Breiman RF: how about the interpolation zone?

7 Theoretical analysis of interpolating Breiman RF consistency: out of
reach for now

• Study of the interpolation zone instead!
• Partition of the RF ≡ intersection of the partitions of the trees of
the RF

•
•

•
•

•
•

•
•

•
•

•
•

Tree 1 + Tree 2 −→ Forest

Interpolation zone
Area of the space where the prediction relies on only one point of the
dataset

31



Breiman RF: how about the interpolation zone?

7 Theoretical analysis of interpolating Breiman RF consistency: out of
reach for now

• Study of the interpolation zone instead!
• Partition of the RF ≡ intersection of the partitions of the trees of
the RF

•
•

•
•

•
•

•
•

•
•

•
•

Tree 1 + Tree 2 −→ Forest

Interpolation zone
Area of the space where the prediction relies on only one point of the
dataset

31



Breiman RF: volume of the interpolation zone

Proposition [Arnould et al., 2023]
Consider an infinite Breiman forest constructed without bootstrap, with
max-features fixed to 1. Then, the volume of its interpolation zone
Zn verifies

E [vol(Zn)] 6 1
nd−1 (1− 2−n)d

• The risk can be decomposed as

Risk(fn(X ))− Risk(f ?)
=Risk((fn(X )− f ?(X ))1X∈Zn )︸ ︷︷ ︸

> σ2E [vol(Zn)]

+Risk((fn(X )− f ?(X ))1X /∈Zn )

• Necessary condition for consistency: E [vol(Zn)]→ 0 as n→∞
• For most points of the space, more than one point are involved in

the prediction of the RF  self-averaging property?
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Conclusion

• Non-adaptive interpolating RF are not consistent (empty cells)

• Adaptive RF: interpolation and consistency become compatible when
self-regularisation processes occur

• Theoretically proved for Median RF
• Empirical evidence for Breiman RF

• RF vs kernel methods:
• Singular Kernel (any bandwidth) versus interpolating RF (large depth)
• Slow rate of consistency
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Conclusion - Thank you!

• Non-adaptive interpolating RF are not consistent (empty cells)
• Adaptive RF: interpolation and consistency become compatible when

self-regularisation processes occur
• Theoretically proved for Median RF
• Empirical evidence for Breiman RF

• RF vs kernel methods:
• Singular Kernel (any bandwidth) versus interpolating RF (large depth)
• Slow rate of consistency
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Summary of theoretical contributions
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Models in numerical XP

• Model 1: d = 2, Y = 2X 2
1 + exp(−X 2

2 ) (noiseless)
• Model 2: d = 8, Y = X1X2 + X 2

3 − X4X5 + X6X7 − X 2
8 +N (0, 0.5)

• Model 3: d = 6, Y = X 2
1 + X 2

2 X3e−|X4| + X5 − X6 +N (0, 0.5)
• Model 4: d = 5,

Y = 1/(1 + exp(−10(
∑d

i=1 Xi − 1/2))) +N (0, 0.05)
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