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Random forests

Random forests are a class of algorithms used to solve regression and classification
problems

They are often used in applied fields since they handle high-dimensional
settings.

They have good predictive power and can outperform state-of-the-art meth-
ods.
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Random forests

Random forests are a class of algorithms used to solve regression and classification
problems

They are often used in applied fields since they handle high-dimensional
settings.

They have good predictive power and can outperform state-of-the-art meth-
ods.

But mathematical properties of random forests remain a bit magical.
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General framework of the presentation

Regression setting

We are given a training set Dn = {(X1,Y1), ..., (Xn,Yn)} where the pairs
(Xi ,Yi ) ∈ [0, 1]d × R are i .i .d . distributed as (X ,Y ).

We assume that

Y = m(X) + ε.

We want to build an estimate of the regression function m using random
forest algorithm.
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How to build a tree?

Trees are built recursively by splitting the current cell into two children
until some stopping criterion is satisfied.
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How to build a tree?

Breiman Random forests are defined by

1 A splitting rule : minimize the variance within the resulting cells.

2 A stopping rule : stop when each cell contains less than nodesize = 2
observations.
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How to perform splits?

For a split direction j ∈ {1, . . . , d} and a split position z ∈ [0, 1] , the
criterion takes the form

Ln(j , z) =
1

Nn(A)

n∑
i=1

(
Yi − ȲAL

1
X

(j)
i <z
− ȲAR

1
X

(j)
i ≥z

)2

,

where

AL = {x ∈ A : x(j) < z} and AR = {x ∈ A : x(j) ≥ z}
ȲA is the average of the Yi ’s belonging to A.

Nn(A) is the number of points in A

Erwan Scornet Random forests



How to perform splits of Breiman’s forests?

An example: j = 1 and z = 0.5.

16,2

14,8

17,1

5,8

16,2

7,1

6,2

5,7

5,5
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Construction of random forests

Randomness in tree construction

Resampling the data set via bootstrap;

For each cell:

Preselecting a subset of mtry variables, eligible for splitting.
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Construction of Breiman forests

Breiman tree

Select an observations with replacement among the original sample
Dn. Use only these observations to build the tree.

For each cell,

Select randomly mtry coordinates among {1, . . . , d};
Choose the best split along previous direction, the one minimizing
the CART criterion.

Stop when each cell contains less than nodesize observations.
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Literature

Random forests were created by Breiman [2001].

Many theoretical results focus on simplified version on random forests,
whose construction is independent of the dataset.
[Biau et al., 2008, Biau, 2012, Genuer, 2012, Zhu et al., 2012, Arlot and Genuer,

2014]

Analysis of more data-dependent forests:

Asymptotic normality of random forests [Mentch and Hooker, 2015,

Wager and Athey, 2017],
Variable importance [Louppe et al., 2013],
Rate of consistency [Wager and Walther, 2015].

Literature review on random forests:

Methodological review [Criminisi et al., 2011, Boulesteix et al., 2012],
Theoretical review [Biau and Scornet, 2016]
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A tree

Tree estimate:

mn(x,Θ) =
n∑

i=1

1Xi∈An(x,Θ)

Nn(x,Θ)
Yi

where Nn(x,Θ) is the number of points in the cell An(x,Θ).
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A finite forest

. . .︸ ︷︷ ︸
M-Finite forest

M-Finite forest estimate :

mM,n(x,Θ1, . . . ,ΘM) =
1

M

M∑
m=1

mn(x,Θm).
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A finite forest

. . .︸ ︷︷ ︸
M-Finite forest

M-Finite forest estimate :

mM,n(x,Θ1, . . . ,ΘM) =
1

M

M∑
m=1

mn(x,Θm).

Conditionally on Dn, the estimate mM,n depends on Θ1, . . . ,ΘM .
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Toward infinite forest

. . .︸ ︷︷ ︸
M-Finite forest

M-Finite forest estimate :

mM,n(x,Θ1, . . . ,ΘM) =
1

M

M∑
m=1

mn(x,Θm) →
M→∞

EΘ [mn(x,Θ)]︸ ︷︷ ︸
m∞,n(x)
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Finite forest versus infinite forest

Infinite forest is better than finite forest.

(H1) One has

Y = m(X) + ε,

where ε is a centered Gaussian noise with finite variance σ2, independent
of X.

Theorem [Scornet, 2016]

Assume that (H2) is satisfied. Then, for all M, n ∈ N?,

R(mM,n) = R(m∞,n) +
1

M
EX,Dn

[
VΘ [mn(X,Θ)]

]
.

In particular,

0 ≤ R(mM,n)− R(m∞,n) ≤ 8

M
×
(
‖m‖2

∞ + σ2(1 + 4 log n)
)
.
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A single tree versus a forest

Theorem

We have

E[mM,n(X,Θ1, . . . ,ΘM)−m(X)]2 ≤ E[mn(X,Θ)−m(X)]2,

that is the risk of a forest is lower than the risk of each individual tree
that composed the forest.

Proof.

Jensen’s inequality.

A forest is not worse than a single tree.
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Different types of forests

Centred forest

Median forests Breiman’s forests

Independent of Xi and Yi Independent of Yi Dependent on Xi and Yi
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A single tree

For a tree whose construction is independent of data, if

1 diam(An(X))→ 0, in probability;

2 Nn(An(X))→∞, in probability;

then the tree is consistent, that is

lim
n→∞

E [mn(X)−m(X)]2 = 0.
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Consistency of purely random forests

Theorem [Biau et al., 2008]

Consider a totally non adaptive forest of level k . Assume that

diam(An(X,Θ))→ 0, in probability.

Then, providing k →∞ and n/2k →∞, the infinite random forest is
consistent, that is R(m∞,n)→ 0 as n→∞.

→ Forest consistency results from the consistency of each tree.

→ Trees are not fully developed.
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Stone Theorem

Consider an estimate of the form

mn(x) =
n∑

i=1

Wni (x)Yi .

Theorem [Stone, 1977]

Assume that the weights Wni are nonnegative and sum to one. Then the
estimate mn is consistent if and only if:

1 There is constant C such that, for every measurable function
g : [0, 1]d → R with E|g(X)| <∞,

E
[ n∑

i=1

Wni (X)|g(Xi )|
]
≤ CE|g(X)|, for all n ≥ 1.

2 For all a > 0,
∑n

i=1 Wni (X)1‖Xi−X‖>a → 0, in probability.

3 max1≤i≤n Wni (X)→ 0, in probability
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Stone theorem for a single tree

For a tree estimate

mn(x) =
n∑

i=1

Yi

1Xi∈An(x,Θ)

Nn(x,Θ)

that is

Wni (x) =
1Xi∈An(x,Θ)

Nn(x,Θ)
.

1 is ok.
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2 To check condition (2), note that, for all a > 0,

E

[
n∑

i=1

W∞ni (X)1‖X−Xi‖∞>a

]
=E

[
n∑

i=1

1
X

Θ↔Xi

Nn(X,Θ)
1‖X−Xi‖∞>a

]

=E

[ n∑
i=1

1
X

Θ↔Xi

Nn(X,Θ)
1‖X−Xi‖∞>a

× 1diam(An(X,Θ))≥a/2

]
,

because 1‖X−Xi‖∞>a1diam(An(X,Θ))<a/2 = 0. Thus,

E

[ n∑
i=1

W∞ni (X)1‖X−Xi‖∞>a

]
≤ E

[
1diam(An(X,Θ))≥a/2

×
n∑

i=1

1
X

Θ↔Xi
1‖X−Xi‖∞>a

]
≤ P

[
diam(An(X,Θ)) ≥ a/2

]
,

which tends to zero, as n→∞, by assumption.
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Proof of (3)

The tree partition has 2k cells, denoted by A1, . . . ,A2k . For 1 ≤ i ≤
2k , let Ni be the number of points among X,X1, . . . ,Xn falling into Ai .
Finally, set S = {X,X1, . . . ,Xn}. Since these points are independent and
identically distributed, fixing the set S (but not the order of the points)
and Θ, the probability that X falls in the i-th cell is Ni/(n + 1). Thus, for
every fixed t > 0,

P
[
Nn(X,Θ) < t

]
= E

[
P
[
Nn(X,Θ) < t

∣∣∣S,Θ]]
= E

[ ∑
i :Ni<t+1

Ni

n + 1

]

≤ 2k

n + 1
t.

Thus, by assumption, Nn(X,Θ)→∞ in probability, as n→∞.
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Proof of (3)

At last, to prove (3), note that,

E

[
max

1≤i≤n
W∞ni (X)

]
≤ E

[
max

1≤i≤n

1Xi∈An(X,Θ)

Nn(X,Θ)

]
≤ E

[
1Nn(X,Θ)>0

Nn(X,Θ)

]
→ 0 as n→∞,

since Nn(X,Θ)→∞ in probability, as n→∞.
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Construction of Median forests

Breiman tree

Select an observations with replacement among the original sample
Dn. Use only these observations to build the tree.

For each cell,

Select randomly mtry coordinates among {1, . . . , d};
Choose the best split along previous direction, the one minimizing
the CART criterion.

Stop when each cell contains less than nodesize observations.

Median tree

Select an observations without replacement among the original sample
Dn. Use only these observations to build the tree.

For each cell,

Select randomly mtry = 1 coordinate among {1, . . . , d};
Split at the location of the empirical median of Xi .

Stop when each cell contains exactly nodesize = 1 observation.
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Consistency of median forests

Assumption (H1)

The model writes Y = m(X) + ε, where ε is a centred noise such that
V[ε|X = x] ≤ σ2, X has a density on [0, 1]d and m is continuous.

Theorem [S.(2016)]

Grant Assumption (H1). Then, provided an →∞ and an/n→ 0, median
forests are consistent, i.e.,

lim
n→∞

E [m∞,n(X)−m(X)]2 = 0.

Remarks

Good trade-off between simplicity of centred forests and complexity
of Breiman’s forests.

First consistency results for fully grown trees.

Each tree is not consistent but the forest is, because of subsampling.
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Proof of Theorem (1)

Condition (i) in Stone’s Theorem is satisfied since the regression function
is uniformly continuous and Var[Y |X = x] ≤ σ2 [see remark after Stone
theorem in Györfi et al., 2002].

Lemme 1

Assume that X has a density over [0, 1]d , with respect to the Lebesgue
measure. Thus, the median tree satisfies, for all γ,

P
[
diam(An(X,Θ)) > γ

]
→

n→∞
0.
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Proof of Theorem (2)

To check (3), observe that in the subsampling step, there are exactly
(
n−1
an−1

)
choices to pick a fixed observation Xi . Since x and Xi belong to the same
cell only if Xi is selected in the subsampling step, we see that

PΘ

[
X

Θ↔ Xi

]
≤
(
n−1
an−1

)(
n
an

) =
an
n
.

So,

E

[
max

1≤i≤n
Wni (X)

]
≤ E

[
max

1≤i≤n
PΘ

[
X

Θ↔ Xi

]]
≤ an

n
,

which tends to zero by assumption.
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Centered forests

Theorem (Biau [2012])

Under proper regularity hypothesis, provided k →∞ and n/2k →∞, the
centred random forest is consistent.
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Consistency of centred random forest

Estimation error [Biau, 2012]

Under proper assumptions on the regression model,

E
[
mcc
∞,n(X)− m̄cc

∞,n(X)
]2 ≤ Cσ2 2kn

nk
1/2
n

Approximation error [Biau, 2012]

Under proper assumptions on the regression model,

E
[
m̄cc
∞,n(X)−m(X)

]2 ≤ 2dL2.2−
0.75kn
d log 2 + ‖m‖2

∞e−n/2kn
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Consistency of centred random forest

If the forest is fully grown, that is, if kn = blog2 nc
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Consistency of centred random forest

If the forest is fully grown, that is, if kn = blog2 nc

Estimation error [Biau, 2012]

Under proper assumptions on the regression model,

E
[
mcc
∞,n(X)− m̄cc

∞,n(X)
]2 ≤ Cσ2(log2 n)−1/2

Approximation error [Biau, 2012]

Under proper assumptions on the regression model,

E
[
m̄cc
∞,n(X)−m(X)

]2 ≤ 2dL2.2−
0.75kn
d log 2 + ‖m‖2

∞e−n/2kn
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Consistency of centred random forest

If the forest is fully grown, that is, if kn = blog2 nc

Estimation error [Biau, 2012]

Under proper assumptions on the regression model,

E
[
mcc
∞,n(X)− m̄cc

∞,n(X)
]2 ≤ Cσ2(log2 n)−1/2

Approximation error [Biau, 2012]

Under proper assumptions on the regression model,

E
[
m̄cc
∞,n(X)−m(X)

]2 ≤ 2dL2n−
0.75
d log 2 + ‖m‖2

∞×1
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Construction of Breiman/Median forests

Breiman tree

Select an observations with replacement among the original sample
Dn. Use only these observations to build the tree.

For each cell,

Select randomly mtry coordinates among {1, . . . , d};
Choose the best split along previous direction, the one minimizing
the CART criterion.

Stop when each cell contains less than nodesize observations.

Median tree

Select an observations without replacement among the original sample
Dn. Use only these observations to build the tree.

For each cell,

Select randomly mtry = 1 coordinate among {1, . . . , d};
Split at the location of the empirical median of Xi .

Stop when each cell has been cut k times (i.e., nodesize ' ban/2kc).
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Rate of consistency

Assumption (H1)

The regression model writes Y = m(X) + ε, where X is uniformly
distributed on [0, 1]d , m is L-Lipschitz, and ε ∼ N (0, σ2).

Theorem [Duroux, S.(2018)]

Grant (H1). For all n, for all x ∈ [0, 1]d , if an ≥ 2k , then

E
[
m∞,n(x)−m(x)

]2 ≤ 2σ2 2k

n
+ dL2C1

(
1− 3

4d

)k

.

Right-hand side: Estimation error + approximation error.

Consistency result for each tree if 2k/an → 0 and k →∞.

The upper bound is independent of an.
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4d

)k

.

≤ 2σ2 2k

an
+ dL2C1

(
1− 3

4d

)k

.

Right-hand side: Estimation error + approximation error.

Consistency result for each tree if 2k/an → 0 and k →∞.

The upper bound is independent of an.
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Rate of consistency

Let β = 1− 3/(4d) and k?n = (ln(n) + C2)/(ln 2− lnβ).

Theorem [Duroux, S.(2018)]

Assume that (H1) is satisfied. Consider a median forest of level k = k?n .
For all n, for all x ∈ [0, 1]d , if an ≥ 2k?n ,

E
[
m∞,n(x)−m(x)

]2 ≤ Cn
ln β

ln 2−ln β .

The previous theorem holds in particular for two regimes:

an = n: the median forest is not fully grown (2k?n /n→ 0) and the
whole data set is used to build each tree.

an = 2k?n : the median forest is fully grown and the subsampling rate
an/n→ 0.

No need for tuning them both at the same time.
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The Mondrian process (Roy and Teh, 2008)

MP(λ,C ): distribution on recursive, axis-aligned partitions of

C =
∏d

j=1[aj , bj ] ⊂ Rd (= trees).

λ > 0 “lifetime” = complexity parameter.
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The distribution MP(λ,C )

Start with cell C (root), formed at time τC = 0.

Sample time till split E ∼ Exp(|C |) with |C | :=
∑d

j=1(bj − aj)

If τC + E ≤ λ,

split C in CL = {x ∈ C : xJ ≤ SJ} and CR = C \ CL:

split coordinate J ∈ {1, . . . , d} with P(J = j) =
bj−aj
|A| ,

split threshold SJ |J ∼ U([aJ , bJ ])

Apply the procedure to (CL, τC + E), (CR , τC + E).

Else don’t split C (which becomes a leaf of the tree).
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Mondrian forests

Introduced in [1] for computational reasons: predictions updated
efficiently with new sample point (online algorithm).

Approximately: sample independent partitions

Π
(1)
λ , . . . ,Π

(M)
λ ∼ MP(λ, [0, 1]d), fit them and average their

predictions.

No theoretical analysis of the algorithm.

Choice of the parameter λ ?

1Lakshminarayanan, Roy, Teh. Mondrian forests: Efficient online random forests.
In NIPS, 2014.
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Theoretical results

Denote mλ,M,n the (randomized) Mondrian forest estimator with M trees
and parameter λ Let

(H) Var(Y |X ) ≤ σ2 <∞ a.s.

Theorem (Mourtada, Gäıffas, S.)

Assume (H) and that the regression function m is L-Lipschitz. Then:

R(mλ,M,n) ≤ 4dL2

λ2
+

(1 + λ)d

n

(
2σ2 + 9‖m‖2

∞
)
. (1)

In particular, the choice λ := λn � n1/(d+2) gives

R(mλ,M,n) = O(n−2/(d+2)), (2)

which is the minimax optimal rate for the estimation of a Lipschitz
function in dimension d .
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“Forest effect”: influence of the number of trees

The above result is true for every M ≥ 1 (number of trees): in
particular, a single tree is already optimal for the estimation of a
Lipschitz function in dimension d .

In practice, forests with M � 1 perform better than trees.

How to account for this ? Do we gain something by randomizing
partitions ?

When is M “large enough” ?
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Improved rates under C 2 regularity

Theorem (Mourtada, Gäıffas, S.)

Assume (H), m of class C 2, and that X has a positive, Lipschitz density
on [0, 1]d . Then, for every ε > 0:

R[ε,1−ε]d (mλ,M,n) = O
( 1

Mλ2
+

1

λ4
+

e−λε

λ3
+

(1 + λ)d

n

)
For λ := λn � n1/(d+4) and M := Mn & n2/(d+4), this implies

R[ε,1−ε]d (mλ,M,n) = O(n−4/(d+4))

which is the optimal rate for twice differentiable m in dimension d .
Without conditioning, we get O(n−3/(d+3)) (boundary effect). By
contrast, Mondrian trees do not exhibit improved rates.

Remark: Similar result obtained by Arlot and Genuer (2014) in dimension 1
for another variant of Random forests.
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Proof ideas

Bias-variance decomposition: standard decomposition in
approximation error + estimation error.

Exact geometric properties (local and global) of Mondrian partitions
are directly available, without reasoning conditionally on the graph
structure / on earlier splits.

Restriction property: enables to obtain the exact distribution of the
cell Cλ(x) of x ∈ [0, 1]d in the partition Πλ ∼ MP(λ, [0, 1]d) (4 lines
proof).

By modifying the distribution of the Mondrian and using the
one-dimensional case, one can show that the expected number of
leaves in Πλ is (1 + λ)d .
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Online implementation and adaptivity to smoothness

If m : x 7→ E[Y |X = x ] is α-Hölder (α ∈ (0, 1]), optimal rate

R(f̂λ,n) = O(n−2α/(d+2α)) for λ � n−1/(d+2α).

In practice, α is unknown. How to choose λ ?

Exponentially weighted aggregation over the class of all finite
labeled subtrees of the “infinite Mondrian” Π∞. BUT: infinite tree
(sampled from the start ??) + number of subtrees exponential in
the number of nodes.

Extension properties of Mondrian + efficient algorithm for branching
process prior (“Context Tree Weighting”: one weight per node) =⇒
online and efficient exact algorithm (O(log n) update, O(n log n)
training time, O(log n) prediction).

Resulting m̂n is adaptive to α: R(m̂n) = Õ(n−2α/(d+2α)).
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Construction of Breiman forests

Breiman tree

Select an observations with replacement among the original sample
Dn. Use only these observations to build the tree.

For each cell,

Select randomly mtry coordinates among {1, . . . , d};
Choose the best split along previous direction, the one minimizing
the CART criterion.

Stop when each cell contains less than nodesize observations.

Our Breiman tree

Select an observations without replacement among the original sample
Dn. Use only these observations to build the tree.

For each cell,

Select randomly mtry coordinates among {1, . . . , d};
Choose the best split along previous direction, the one minimizing
the CART criterion.

Stop when the number of cells is exactly tn.
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Additive regression model

Assumption (H1)

The regression model is

Y =
d∑

j=1

mj(X
(j)) + ε,

where ε ∼ N (0, σ2) with ε independent of X; X is uniformly distributed
on [0, 1]d ; each model component mj is continuous.
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Consistency

Assumption (H1)

The regression model is Y =
∑d

j=1 mj(X(j)) + ε, where ε ∼ N (0, σ2)

with ε independent of X; X is uniformly distributed on [0, 1]d ; each
model component mj is continuous.

Theorem [Scornet et al., 2015]

Assume that (H1) is satisfied. Then, provided an → ∞ and
tn(log an)9/an → 0, random forests are consistent, i.e.,

lim
n→∞

E [m∞,n(X)−m(X)]2 = 0.

Remarks

First consistency result for Breiman’s original forest.

Consistency of CART.
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Sketch of proof

∆(m,A) = sup
x,x′∈A

|m(x)−m(x′)|.

Furthermore, we denote by An(X,Θ) the cell of a tree built with random
parameter Θ that contains the point X.

Proposition

Assume that (H1) holds. Then, for all ρ, ξ > 0, there exists N ∈ N?
such that, for all n > N,

P [∆(m,An(X,Θ)) ≤ ξ] ≥ 1− ρ.

Theoretical splitting criterion for a split (j , z):

L?(j , z) = V[Y |X ∈ A]− P[X(j) < z |X ∈ A] V[Y |X(j) < z ,X ∈ A]

− P[X(j) ≥ z |X ∈ A] V[Y |X(j) ≥ z ,X ∈ A].
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Assume that (H1) is satisfied. Then, for all x ∈ [0, 1]p,

∆(m,A?k(x,Θ))→ 0, almost surely, as k →∞.

Assume that (H1) is satisfied. Fix x ∈ [0, 1]p, k ∈ N?, and let

ξ > 0. Then Ln,k(x, ·) is stochastically equicontinuous on Āξk(x),
that is, for all α, ρ > 0, there exists δ > 0 such that

lim
n→∞

P

 sup
‖dk−d′k‖∞≤δ
dk ,d

′
k∈Ā

ξ
k (x)

|Ln,k(x,dk)− Ln,k(x,d′k)| > α

 ≤ ρ.
Assume that (H1) is satisfied. Fix ξ, ρ > 0 and k ∈ N?. Then there
exists N ∈ N? such that, for all n ≥ N,

P
[
d∞(d̂k,n(X,Θ),A?k(X,Θ)) ≤ ξ

]
≥ 1− ρ.
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We let Fn(Θ) be the set of all functions f : [0, 1]d → R piecewise constant
on each cell of the partition Pn(Θ)

Theorem [Györfi et al., 2002]

Let mn and Fn(Θ) be as above. Assume that

(i) lim
n→∞

βn =∞,

(ii) lim
n→∞

E
[

inf
f∈Fn(Θ)
‖f ‖∞≤βn

EX [f (X)−m(X)]2

]
= 0,

(iii) For all L > 0,

lim
n→∞

E
[

sup
f∈Fn(Θ)
‖f ‖∞≤βn

∣∣∣ 1

an

∑
i∈In,Θ

[
f (Xi )− Yi,L

]2 − E
[
f (X)− YL

]2∣∣∣] = 0.

Then

lim
n→∞

E [Tβnmn(X,Θ)−m(X)]2 = 0.
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Sketch of proof

According to the Proposition

Proposition

Assume that (H1) holds. Then, for all ρ, ξ > 0, there exists N ∈ N?
such that, for all n > N,

P [∆(m,An(X,Θ)) ≤ ξ] ≥ 1− ρ.

the statement (ii) holds.
The second one is true because the complexity of the partition is controlled
by the condition tn(log an)9/an → 0.
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Sparsity and Breiman’s forests

Assumption

Assume that,

Y =
S∑
`=1

m`(X
(`)) + ε,

for some S < d and that, for each cell, the best split is selected among
all d variables

Proposition [Scornet et al., 2015]

Let k ∈ N? and ξ > 0. Under appropriate assumptions, with probability
1− ξ, for all n large enough, we have, for all 1 ≤ q ≤ k,

jq,n(X) ∈ {1, . . . ,S},

where j1,n(X), . . . , jk,n(X) are the first k splitting directions used to
construct the cell containing X
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Conclusion

Centred forests: Trees and forests are consistent.

Median forests

A single tree is not consistent but the forest is.

→ Benefits from using a random forest compared to a single tree.

Asymptotic to optimize subsampling size and tree depth.

→ No need to tune them both at the same time.

Mondrian forests

Achieve minimax rate for both C 1 and C 2 functions

→ For C 2 functions, a tree is not optimal but the forest is.

Breiman forests

Trees and forests are consistent and relevant feature selection

→ Good performance in high-dimensional settings.
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Thank you!
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