
Introduction to Neural Networks
First & Second lectures

E. Scornet

E. Scornet Deep Learning 1 / 92

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 2 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 3 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 4 / 92

What is a neuron?

This is a real neuron!

Figure: Real Neuron

Figure: Real Neuron - diagram

E. Scornet Deep Learning 5 / 92

What is a neuron?

This is a real neuron!

Figure: Real Neuron - diagram

Two main approaches to simulate intelligent
behaviour:

Connectionism: using connected circuits
/ neural networks.
Symbolic AI / Old Good AI: combining
human-readable representations of prob-
lems.

E. Scornet Deep Learning 5 / 92

McCulloch and Pitts neuron - 1943

[“A logical calculus of the ideas immanent in nervous activity”,

McCulloch and Pitts 1943]

In 1943, portrayed with a simple electrical cir-
cuit by neurophysiologist Warren McCulloch
and mathematician Walter Pitts.

E. Scornet Deep Learning 6 / 92

McCulloch and Pitts neuron - 1943

[“A logical calculus of the ideas immanent in nervous activity”,

McCulloch and Pitts 1943]

In 1943, portrayed with a simple electrical cir-
cuit by neurophysiologist Warren McCulloch
and mathematician Walter Pitts.

A McCulloch-Pitts neuron takes binary in-
puts, computes a weighted sum and returns
0 if the result is below threshold and 1 other-
wise.

E. Scornet Deep Learning 6 / 92

McCulloch and Pitts neuron - 1943

Donald Hebb took the idea further by propos-
ing that neural pathways strengthen over
each successive use, especially between neu-
rons that tend to fire at the same time.
[The organization of behavior: a neuropsychological theory, Hebb

1949]

E. Scornet Deep Learning 6 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 7 / 92

Perceptron - 1958

In the late 50s, Frank Rosenblatt, a psychol-
ogist at Cornell, worked on decision systems
present in the eye of a fly, which determine
its flee response.

In 1958, he proposed the idea of a Percep-
tron, calling it Mark I Perceptron. It was a
system with a simple input-output relation-
ship, modelled on a McCulloch-Pitts neuron.

[“Perceptron simulation experiments”, Rosenblatt 1960]

E. Scornet Deep Learning 8 / 92

Perceptron diagram

Figure: True representation of perceptron

The connections between the input and the
first hidden layer cannot be optimized!

E. Scornet Deep Learning 9 / 92

Perceptron Machine

E. Scornet Deep Learning 10 / 92

Perceptron Machine

First implementation: Mark I Perceptron
(1958).

The machine was connected to a camera
(20x20 photocells, 400-pixel image)

Patchboard: allowed experimentation
with different combinations of input fea-
tures

Potentiometers: that implement the
adaptive weights

E. Scornet Deep Learning 10 / 92

Parameters of the perceptron

E. Scornet Deep Learning 11 / 92

Parameters of the perceptron

Learnable parameters

Activation function: σ(z) = 1z>0

Learnable parameters:
Weights w = (w1, . . . , wd) ∈ Rd

Bias: b

How do we estimate (w, b)?

E. Scornet Deep Learning 11 / 92

The Perceptron Algorithm

We have Dn = {(xi , yi), i = 1, . . . , n}, with
yi ∈ {−1, 1}. To ease notations, we put
w̃ = (w1, . . . , wd , b) and x̃i = (xi , 1)

Perceptron Algorithm - first (iterative)
learning algorithm

Start with w̃ = 0.
Repeat over all samples:

▶ if yi < w̃, x̃i >≤ 0 modify w̃ into
w̃ + yi x̃i ,

▶ otherwise do not modify w̃.

Gradient descent:

1 Start with w̃ = w̃0

2 Update w̃← w̃− η∇L(w̃), where L is
the loss to be minimized.

3 Stop when w̃ does not vary too much.

E. Scornet Deep Learning 12 / 92

The Perceptron Algorithm

We have Dn = {(xi , yi), i = 1, . . . , n}, with
yi ∈ {−1, 1}. To ease notations, we put
w̃ = (w1, . . . , wd , b) and x̃i = (xi , 1)

Perceptron Algorithm - first (iterative)
learning algorithm

Start with w̃ = 0.
Repeat over all samples:

▶ if yi < w̃, x̃i >≤ 0 modify w̃ into
w̃ + yi x̃i ,

▶ otherwise do not modify w̃.

Gradient descent:

1 Start with w̃ = w̃0

2 Update w̃← w̃− η∇L(w̃), where L is
the loss to be minimized.

3 Stop when w̃ does not vary too much.

E. Scornet Deep Learning 12 / 92

Perceptron as a stochastic gradient descent

Perceptron Algorithm
Repeat over all samples:

▶ if yi < w̃, x̃i >≤ 0 modify w̃ into
w̃ + yi x̃i ,

▶ otherwise do not modify w̃.

A sample is misclassified if yi < w̃, x̃i >≤ 0.
Thus we want to minimize the loss

L(w̃) = −
∑

i∈Mw̃

yi < w̃, x̃i >,

where Mw̃ is the set of indices misclassified
by the hyperplane w̃.

Stochastic Gradient Descent:
1 Select randomly i ∈Mw̃

2 Update w̃← w̃− η∇Li (w̃) = w̃ + ηyi x̃i

Perceptron algorithm: η = 1.

E. Scornet Deep Learning 13 / 92

Convergence of the Perceptron algorithm

Figure: From http://image.diku.dk/
kstensbo/notes/perceptron.pdf

Let R = maxi ∥xi∥. Let w̃⋆ be the optimal
hyperplane of margin

γ = min
i

yi⟨w̃⋆, x̃i⟩,
with

∥w̃⋆∥ = 1.
E. Scornet Deep Learning 14 / 92

http://image.diku.dk/kstensbo/notes/perceptron.pdf
http://image.diku.dk/kstensbo/notes/perceptron.pdf

Convergence of the Perceptron algorithm

Let R = maxi ∥xi∥. Let w̃⋆ be the optimal
hyperplane of margin

γ = min
i

yi⟨w̃⋆, x̃i⟩,
with

∥w̃⋆∥ = 1.

Theorem (Block 1962; Novikoff 1963)
Assume that the training set Dn =
{(x1, yi), . . . , (xn, yn)} is linearly separable
(γ > 0). Start with w̃0 = 0. Then the num-
ber of updates k of the perceptron algorithm
is bounded by

k + 1 ≤ 1 + R2

γ2 .

E. Scornet Deep Learning 14 / 92

Perceptron - Summary and drawbacks

Perceptron algorithm
We have a data set Dn = {(xi , yi), i =
1, . . . , n}
We use the perceptron algorithm to learn
the weight vector w and the bias b.
We predict using f(w,b)(x) = 1⟨w,x⟩+b>0.

Limitations

The decision frontier is linear! Too sim-
ple model.
The perceptron algorithm does not con-
verge if data are not linearly separable:
in this case, the algorithm must not be
used.
In practice, we do not know if data are
linearly separable... Perceptron should
never be used!

E. Scornet Deep Learning 15 / 92

Perceptron - Summary and drawbacks

Perceptron algorithm
We have a data set Dn = {(xi , yi), i =
1, . . . , n}
We use the perceptron algorithm to learn
the weight vector w and the bias b.
We predict using f(w,b)(x) = 1⟨w,x⟩+b>0.

Limitations
The decision frontier is linear! Too sim-
ple model.
The perceptron algorithm does not con-
verge if data are not linearly separable:
in this case, the algorithm must not be
used.
In practice, we do not know if data are
linearly separable... Perceptron should
never be used!

E. Scornet Deep Learning 15 / 92

Perceptron will make machine intelligent... or not!

The Perceptron project led by Rosenblatt was funded by the US Office of Naval Research.

The Navy revealed the embryo of an electronic computer today that it expects will be
able to walk, talk, see, write, reproduce itself and be conscious of its existence. Later

perceptrons will be able to recognize people and call out their names and instantly
translate speech in one language to speech and writing in another language [...]

Press conference, 7 July 1958, New York Times.

For an extensive study of the perceptron, [Principles of neurodynamics. perceptrons and the theory of brain

mechanisms, Rosenblatt 1961]

E. Scornet Deep Learning 16 / 92

AI winter

In 1969, Minsky and Papert exhibit the fact that it was difficult for perceptron to
detect parity (number of activated pixels)
detect connectedness (are the pixels connected?)
represent simple non linear function like XOR

There is no reason to suppose that any of [the virtue of perceptrons] carry over to the
many-layered version. Nevertheless, we consider it to be an important research problem

to elucidate (or reject) our intuitive judgement that the extension is sterile. Perhaps some
powerful convergence theorem will be discovered, or some profound reason for the failure
to produce an interesting "learning theorem" for the multilayered machine will be found.

[“Perceptrons.”, Minsky and Papert 1969]

This book is the starting point of the period known as “AI winter”, a significant decline
in funding of neural network research.

Controversy between Rosenblatt, Minsky, Papert:
[“A sociological study of the official history of the perceptrons controversy”, Olazaran 1996]

E. Scornet Deep Learning 17 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 18 / 92

Moving forward - ADALINE, MADALINE

In 1959 at Stanford, Bernard Widrow and
Marcian Hoff developed AdaLinE (ADAptive
LINear Elements) and MAdaLinE (Multiple
AdaLinE) the latter being the first network
successfully applied to a real world problem.
[Adaptive switching circuits, Bernard Widrow and Hoff 1960]

E. Scornet Deep Learning 19 / 92

Moving forward - ADALINE, MADALINE

[Adaptive switching circuits, Bernard Widrow and Hoff 1960]

Loss: square difference between a
weighted sum of inputs and the output
Optimization procedure: trivial gradient
descent

E. Scornet Deep Learning 19 / 92

MADALINE

Many Adalines: network with one hidden
layer composed of many Adaline units.
[“Madaline Rule II: a training algorithm for neural networks”,

Winter and Widrow 1988]

E. Scornet Deep Learning 20 / 92

MADALINE

Many Adalines: network with one hidden
layer composed of many Adaline units.
[“Madaline Rule II: a training algorithm for neural networks”,

Winter and Widrow 1988]

Applications:
Speech and pattern recognition
[“Real-Time Adaptive Speech-Recognition System”,

Talbert et al. 1963]

Weather forecasting
[“Application of the adaline system to weather

forecasting”, Hu 1964]

Adaptive filtering and adaptive signal
processing
[“Adaptive signal processing”, Bernard and Samuel 1985]

E. Scornet Deep Learning 20 / 92

Neural network with one hidden layer

E. Scornet Deep Learning 21 / 92

How to find weights and bias?

Perceptron algorithm does not work anymore!

E. Scornet Deep Learning 22 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 23 / 92

How to find weights and bias?

E. Scornet Deep Learning 24 / 92

Gradient Descent Algorithm

The prediction of the network is given
by fθ(x).

Empirical risk minimization:

argmin
θ

1
n

n∑
i=1

ℓ(Yi , fθ(Xi))︸ ︷︷ ︸
ℓi (θ)

.

Stochastic Gradient descent rule:
While |θt − θt−1| ≥ ε do

▶ Sample It ⊂ {1, . . . , n}
▶

θt+1 = θt − ηt

(1
|It |

∑
i∈It

∇θℓi (θt)
)

How to compute ∇θℓi efficiently?

E. Scornet Deep Learning 25 / 92

Gradient Descent Algorithm

The prediction of the network is given
by fθ(x).

Empirical risk minimization:

argmin
θ

1
n

n∑
i=1

ℓ(Yi , fθ(Xi))︸ ︷︷ ︸
ℓi (θ)

.

Stochastic Gradient descent rule:
While |θt − θt−1| ≥ ε do

▶ Sample It ⊂ {1, . . . , n}
▶

θt+1 = θt − ηt

(1
|It |

∑
i∈It

∇θℓi (θt)
)

How to compute ∇θℓi efficiently?

E. Scornet Deep Learning 25 / 92

Backprop Algorithm

How to compute ∇θℓi efficiently?

A Clever Gradient Descent
Implementation

Popularized by Rumelhart, McClelland,
Hinton in 1986.
Can be traced back to Werbos in 1974.
Nothing but the use of chain rule
derivation with a touch of dynamic
programing.

Key ingredient to make the Neural
Networks work!
Still at the core of Deep Learning
algorithm.

E. Scornet Deep Learning 26 / 92

Backpropagation idea

E. Scornet Deep Learning 27 / 92

Backpropagation equations

Neural network with L layers, with vector
output, with quadratic cost

C = 1
2∥y − a(L)∥2.

By definition,

δ
(ℓ)
j = ∂C

∂z (ℓ)
j

.

The four fundamental equations of backprop-
agation are given by

δ(L) = ∇aC ⊙ σ′(z (L)), (1)

δ(ℓ) = ((w (ℓ+1))T δ(ℓ+1))⊙ σ′(z (ℓ)) (2)
∂C

∂b(ℓ)
j

= δ
(ℓ)
j (3)

∂C
∂w (ℓ)

j,k

= a(ℓ−1)
k δ

(ℓ)
j . (4)

E. Scornet Deep Learning 28 / 92

Backpropagation Algorithm

Let
δ

(ℓ)
j = ∂C

∂z (ℓ)
j

,

where z (ℓ)
j is the entry of the neuron j of the layer ℓ.

Neural network training
(a) Initialize randomly the weights and biases in the network.

(b) For all training samples (xi)i∈B in the batch B,
1 Feedforward: Send all samples of the batch through the network and store the values

of activation function and its derivative, for each neuron.
2 Output loss: Compute the neural network loss average on all samples of the batch.
3 Backpropagation (BP): Compute recursively the vectors δ(ℓ) starting from ℓ = L to

ℓ = 1 with BP equations (1) and (2). Compute the gradient with BP equations (3)
and (4).

4 Optimization: Update the weights and biases using a gradient-based optimization
procedure, using the gradient previously computed.

(c) Repeat step (b) until some convergence criterion is reached.

E. Scornet Deep Learning 29 / 92

Neural Network terminology

(Mini) Batch size: number of training
examples in one forward/backward pass.
The higher the batch size is, the more
memory space you’ll need.

Number of iterations: Number of param-
eters updates during the whole training.

Epoch: number of iterations required for
the network to have seen the whole train-
ing set.

For example, for a data set with 12800 train-
ing examples, if you set the batch size at
128, it will take 100 iterations to complete
1 epoch.

E. Scornet Deep Learning 30 / 92

	Neural Network architecture
	Neurons
	A historical model/algorithm - the perceptron
	Going beyond perceptron - multilayer neural networks
	Neural network training

