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Supervised learning

Training data Learning algorithm

Logistic regression
•
Random forests
•
Neural networks
•
...
•

New input Output

(0,0,0,0,1,0,0,0,0,0)Classifier
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McCulloch and Pitts neuron - 1943

[“A logical calculus of the ideas immanent in nervous activity”, McCulloch and Pitts 1943]

In 1943, portrayed with a simple electrical circuit by neurophysiologist Warren McCulloch
and mathematician Walter Pitts.

A McCulloch-Pitts neuron takes binary inputs, computes a weighted sum and returns 0 if
the result is below threshold and 1 otherwise.
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Donald Hebb took the idea further by propos-
ing that neural pathways strengthen over
each successive use, especially between neu-
rons that tend to fire at the same time.
[The organization of behavior: a neuropsychological theory, Hebb

1949]
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Neural network with one hidden layer



































































































































Generic notations:

W (ℓ)
i,j : weights between the j neuron in

the ℓ− 1 layer and the i neuron of the ℓ
layer.

b(ℓ)
j : bias of the j neuron of the ℓ layer.

a(ℓ)
j : output of the j neuron of the ℓ

layer.

z (ℓ)
j : input of the j neuron of the ℓ

layer, such that a(ℓ)
j = σ(z (ℓ)

j ).
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How to find weights and bias?
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Optimization
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Gradient descent algorithm

The gradient of a function f : Rp → R in θ denoted as ∇f (θ) is the vector of partial
derivatives

∇f (θ) =


∂f

∂θ1
...

∂f
∂θp


Gradient descent

Initialize θ(0) and t = 0.
While not convergence do

▶ θ(t+1) = θ(t) − η∇f (θ(t))
▶ t = t + 1.
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Gradient Descent Algorithm

The prediction of the network is given by fθ(x).

Empirical risk minimization on a batch B ⊂ {1, . . . , n}:

Solve argmin
θ

RB(θ) with RB(θ) = 1
|B|
∑
i∈B

ℓ(Yi , fθ(Xi )).

Computationally more efficient than using the full data set.

Stochastic Gradient descent
▶ Divide the data set into batches B1, . . . , Biter

▶ Initialize θ(0) and t = 0.
▶ While not convergence do

⋆ ℓ = t[iter ]
⋆ θ(t+1) = θ(t) − η∇RBℓ

(θ(t))
⋆ t = t + 1

How to compute ∇θℓi efficiently?
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Backprop Algorithm

How to compute ∇θℓi efficiently?

A Clever Gradient Descent Implementation
Popularized by Rumelhart, McClelland, Hinton in 1986.
Can be traced back to Werbos in 1974.
Nothing but the use of chain rule derivation with a touch of dynamic programing.

Key ingredient to make the Neural Networks work!
Still at the core of Deep Learning algorithm.
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Backpropagation idea
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Backpropagation equations

Neural network with L layers, with vector output, with quadratic cost
C = 1

2∥y − a(L)∥2.

By definition,

δ
(ℓ)
j = ∂C

∂z (ℓ)
j

.

The four fundamental equations of backpropagation are given by

δ(L) = ∇aC ⊙ σ′(z (L)), (1)

δ(ℓ) = ((w (ℓ+1))T δ(ℓ+1))⊙ σ′(z (ℓ)) (2)
∂C

∂b(ℓ)
j

= δ
(ℓ)
j (3)

∂C
∂w (ℓ)

j,k

= a(ℓ−1)
k δ

(ℓ)
j . (4)
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Backpropagation Algorithm

Let
δ

(ℓ)
j = ∂C

∂z (ℓ)
j

,

where z (ℓ)
j is the entry of the neuron j of the layer ℓ.

Neural network training
(a) Initialize randomly the weights and biases in the network.

(b) For all training samples (xi )i∈B in the batch B,
1 Feedforward: Send all samples of the batch through the network and store the values

of activation function and its derivative, for each neuron.
2 Output loss: Compute the neural network loss average on all samples of the batch.
3 Backpropagation (BP): Compute recursively the vectors δ(ℓ) starting from ℓ = L to

ℓ = 1 with BP equations (1) and (2). Compute the gradient with BP equations (3)
and (4).

4 Optimization: Update the weights and biases using a gradient-based optimization
procedure, using the gradient previously computed.

(c) Repeat step (b) until some convergence criterion is reached.

Playing with neural network: http://playground.tensorflow.org/
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What to set in a neural network?
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Number of hidden layers/neurons

No particular rules for choosing the number of layers or the number of neurons per
layer.

Read research papers related to the task you want to solve and test the architecture
they propose.

You may want to change the architecture a bit to see how it influences the
performance.

Beware: there exist many rules of thumbs which are not supported by evidence
(either practical or theoretical).

Use data-driven strategies:
▶ Network pruning following the procedure training/pruning/training/pruning/...

[“What is the state of neural network pruning?”, Blalock et al. 2020]

▶ More complex evolutionary algorithms
[“AgEBO-Tabular: Joint Neural Architecture and Hyperparameter Search with Autotuned Data-Parallel Training for
Tabular Data”, Egele et al. 2020]
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Sigmoid activation function

5 4 3 2 1 0 1 2 3 4 5
0.0

0.5

1.0

Figure: Sigmoid activation function σ

σ : x 7→ exp(x)
1 + exp(x)

Comments:

Saturated function due to horizontal
asymptotes:

▶ Gradient is close to zero in these two
areas (±∞)

▶ Rescaling the inputs of each layer can
help to avoid these areas.

Sigmoid is not a zero-centered function
▶ Rescaling data

Computing exp(x) is a bit costly
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Rectified Linear Unit (ReLU)
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Figure: Rectified Linear Unit (ReLU)

ReLU : x 7→ max(0, x)

Comments:

Not a saturated function in +∞

But saturated (and null!) in the region
x ≤ 0

Computationally efficient

Empirically, convergence is faster than
sigmoid/tanh.

Plus: biologically plausible
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More on ReLU

The idea of ReLU in neural networks seems to appear in [“Cognitron: A self-organizing multilayered

neural network”; “Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition”,

Fukushima 1975; Fukushima and Miyake 1982].

Figure: Good parameter initialization - ReLU is
active

Figure: Bad parameter initialization - ReLU
outputs zero

ReLU output can be zero but positive initial bias can help.

Related to biology [“Deep sparse rectifier neural networks”, Glorot, Bordes, et al. 2011]:
Most of the time, neurons are inactive.
when they activate, their activation is proportional to their input.
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Output units

Linear output unit:
ŷ = W T h + b

→ Linear regression based on the new variables h.

Sigmoid output unit, used to predict {0, 1} outputs:
P(Y = 1|h) = σ(W T h + b),

where σ(t) = et/(1 + et).

→ Logistic regression based on the new variables h.

Softmax output unit, used to predict {1, . . . , K}:

softmax(z)i = ezi∑K
k=1 ezk

where, each zi is the activation of one neuron of the previous layer, given by
zi = W T

i h + bi .

→ Multinomial logistic regression based on the new variables h.
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Cost functions

Mean Square Error (MSE)

1
n

n∑
i=1

ℓ(Yi , fθ(Xi )) = 1
n

n∑
i=1

(Yi − fθ(Xi ))2

Mean Absolute Error

1
n

n∑
i=1

ℓ(Yi , fθ(Xi )) = 1
n

n∑
i=1

|Yi − fθ(Xi )|

Cross entropy (or negative log-likelihood):
ℓ(yi , fθ(xi )) = − log

(
[fθ(xi )]yi

)
(5)

▶ Prevent saturation phenomenon:

− log(P(Y = yi |X = xi )) = − log(σ((2y − 1)(W T h + b))), (6)
with

σ(t) =
et

1 + et

Usually, saturation occurs when (2y − 1)(W T h + b) ≪ −1. In that case, − log(P(Y =
yi |X)) is linear in W and b which makes the gradient easy to compute, and the gradient
descent easy to implement.
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Weight initialization

Idea: the variance of the input should be the same as the variance of the output.

Let wj be any weight between layer j and layer j + 1.
1 He et al. initialization

[“Delving deep into rectifiers: Surpassing human-level performance on imagenet classification”, He et al. 2015]

Initialize bias to zero and weights randomly using

wj ∼ N
(

0,

√
2

nj

)
,

where nj is the size of layer j.
2 Xavier initialization

[“Understanding the difficulty of training deep feedforward neural networks”, Glorot and Bengio 2010]

Initialize bias to zero and weights randomly using

wj ∼ U
[
−

√
6√nj + nj+1

,

√
6√nj + nj+1

]
,

where nj is the size of layer j
→ Not theoretically valid for ReLU

Bonus: [“All you need is a good init”, Mishkin and Matas 2015]
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Regularizing to avoid overfitting

Avoid overfitting by imposing some constraints over the parameter space.

Reducing variance and increasing bias.
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Overfitting

Many different manners to avoid overfitting:

Penalization (L1 or L2)
Replacing the cost function L by L̃(θ, X , y) = L(θ, X , y) + pen(θ).

Soft weight sharing - see CNN lecture
Reduce the parameter space artificially by imposing explicit constraints.

Dropout
Randomly kill some neurons during optimization and predict with the full network.

Batch normalization
Renormalize a layer inside a batch, so that the network does not overfit on this
particular batch.

Early stopping
Stop the gradient descent procedure when the error on the validation set increases.
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Dropout

Dropout refers to dropping out units (hidden and visible) in a neural network, i.e.,
temporarily removing it from the network, along with all its incoming and outgoing
connections.

Each unit is independently dropped with probability
p = 0.5 for hidden units
p ∈ [0, 0.5] for input units, usually p = 0.2.

[“Improving neural networks by preventing co-adaptation of feature detectors”, Hinton, N. Srivastava, et al. 2012]
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Dropout
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Dropout algorithm

Training step. While not convergence

1 Inside one epoch, for each mini-batch of size m,

1 Sample m different mask. A mask consists in one Bernoulli per node of the network
(inner and entry nodes but not output nodes). These Bernoulli variables are i.i.d..
Usually

⋆ the probability of selecting an hidden node is 0.5
⋆ the probability of selecting an input node is 0.8

2 For each one of the m observation in the mini-batch,
⋆ Do a forward pass on the masked network
⋆ Compute backpropagation in the masked network
⋆ Compute the average gradient

3 Update the parameter according to the usual formula.

Prediction step.
Use all neurons in the network with weights given by the previous optimization procedure,
times the probability p of being selected (0.5 for inner nodes, 0.8 for input nodes).
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Batch normalization

The network converges faster if its input are scaled (mean, variance) and decorrelated.
[“Efficient backprop”, LeCun, Bottou, Orr, et al. 1998]

Hard to decorrelate variables: requiring to compute covariance matrix.
[“Batch normalization: Accelerating deep network training by reducing internal covariate shift”, Ioffe and Szegedy 2015]

Ideas:
Improving gradient flows
Allowing higher learning rates
Reducing strond dependence on initialization
Related to regularization (maybe slightly reduces the need for Dropout)
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Algorithm

See [“Batch normalization: Accelerating deep network training by reducing internal covariate shift”, Ioffe and Szegedy 2015]

1 For every neuron k in the first layer, which outputs x (k)
i for the ith observation,

1 µ
(k)
B = 1

m
∑m

i=1 x (k)
i

2 σ2
B,k = 1

m
∑m

i=1(x (k)
i − µ

(k)
B )2

3 x̂ (k)
i =

x(k)
i −µ

(k)
B√

σ2
B,k +ε

4 y (k)
i = γ(k)x̂ (k)

i + β(k) ≡ BNγ(k),β(k) (x (k)
i )

2 y (k)
i is fed to the next layer and the procedure iterates.

3 Backpropagation is performed on the network parameters including (γ(k), β(k)) for all
k = 1, . . . , H1, where H1 ∈ N is the number of neurons in the first layer.

4 For inference, compute the average over many training batches B of size m:
EB[x (k)] = EB[µ(k)

B ] and VB[x (k)] = m
m − 1EB[σ2

B,k ].

5 For inference, replace every function x (k) 7→ BNγ(k),β(k) (x (k)) in the network by

x (k) 7→ γ

(
x (k) −EB[x (k)]√

VB[x (k)] + ε

)
+ β(k).
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Early stopping

Idea:
Store the parameter values that lead to the lowest error on the validation set
Return these values rather than the latest ones.
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Early stopping algorithm

Parameters:
patience p of the algorithm: number of times to observe no improvement on the
validation set error before giving up;
the number of steps n between evaluations.

How to implement early stopping?
First idea: use early stopping to determine the best number of iterations i⋆ and train
on the whole data set for i⋆ iterations.
Second idea: use early stopping to determine the best parameters and the training
error at the best number of iterations. Starting from θ⋆, train on the whole data set
until the error matches the previous early stopping error.
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Neural Network reborn

Renewed interest in 2006: [“A fast learning algorithm for deep belief nets”, Hinton, Osindero, et al. 2006]

Propose a way to train deep neural nets:
Train the first layer.
Add a layer on top of it and train only this layer.
Repeat the process until the network is deep enough.
Use this network as a warm start to train the whole network.

Technical reasons for this new growing interest:
Larger datasets
More powerful computers
Small number of algorithmic changes

1 MSE replaced by cross-entropy
2 ReLU (Fukushima, 1975, 1980)
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Using classical networks for images?

No, for two reasons:
Do not take into account the spatial organization of pixels (if the pixels are
permuted, the output of the network would be the same, whereas the image would
change drastically)
Non robust to image shifting

Idea:
Apply local transformation to a set of nearby pixels (spatial nature of image is used)
Repeat this transformation over the whole image (resulting in a shift-invariant
output)

Not a new idea: trace back to perceptron and studies about the visual cortex of a cat.
The cat is able to

detect oriented edges, end-points, corners (low-level features)
combine them to detect more complex geometrical forms (high-level features)
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Convolutional neural networks (CNNs)

Neural networks that use convolution instead of matrix product in one of the layers

A CNN layer typically includes 3 operations: convolution, activation and pooling

Using the more general idea of parameters sharing, instead of full connection
(convolution instead of matrix product)

Convolution operator in neural networks is as follows

O(i , j) = (I ⋆ K)(i , j) =
∑

k

∑
l

I(i + k, j + l)K(k, l)

I is the input and K is called the kernels
The kernel K will be learned (replaces the weights W in a fully connected layer)
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Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)
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Convolution - RGB

Size of the input image is 8× 8× 3 (height, width, depth)
Size of the kernel is 3× 3× 3

Warning: every filter is small spatially (along width and height), but extends through the
full depth of the input volume.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 46 / 100



Convolution - RGB

Size of the input image is 8× 8× 3 (height, width, depth)
Size of the kernel is 3× 3× 3

Warning: every filter is small spatially (along width and height), but extends through the
full depth of the input volume.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 46 / 100



Parameters of convolutional layer 1/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel (typically 3× 3, 5× 5).
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Parameters of convolutional layer 2/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume, i.e., the number of filters/activation maps/feature
maps.
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Parameters of convolutional layer 3/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume,
The stride, i.e., of how many pixels do we move the filter horizontally and vertically.
Usually, stride is equal to one (rarely to two, and even more rarely larger).
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Parameters of convolutional layer 4/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume,
The stride,
The size of the zero-padding, i.e. the number of zeros we add to the borders of the
image. This can be used to obtain a constant image size between the input and the
output.
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How to choose zero-padding?

Let

I the height/width of the input

O the height/width of the output

P the size of the zero-padding

K the height/width of the filter

S the stride

What is the relation between these quantities? How do we choose the zero-padding to
obtain an output of the same size as the input?

O =
⌊2P + I − K

S

⌋
+ 1
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Why convolution?

Same transformation applied to all parts of the image (takes into account the spatial
dependence between pixels and object-shift invariance)

Input image contains millions of pixel values, but we want to detect small
meaningful features such as edges with kernels that use only few hundred of pixels

When using a matrix product, all input and output units are connected, whereas
convolution connects only output neurons with several pixels of the input image.

Convolution involves weight sharing (a form of regularization) and requires less
parameters which improves memory, is more statistically efficient and
computationally faster.
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Sparse connections

Left: when using matrix multiplication, all outputs are connected to all inputs. We
say that connectivity is dense

Right: in a convolution with a kernel of width 3, only three outputs are affected by
the input x . We say that the connectivity is sparse
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Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
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Pooling

Pooling layers compute each pixel of the output as a summary statistic of
neighboring input pixels at the corresponding location.

The most widely used is the max aggregation, called max-pooling

Pooling helps the representation to become approximately invariant to small
translations of the input

If a small translation is applied, output of the layer is almost unchanged

Very useful if we care more about the presence of some feature than its position in
the image: for face detection (presence of eyes is more important than where they
are)

Pooling also allows to handle inputs with different sizes: pictures can have different
sizes, but the output classification layer must be of fixed size
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A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.
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A possible architecture of a CNN

The pooling layer operates on each feature map separately.
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A possible architecture of a CNN
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A possible architecture of a CNN

A convolutional layer operates on the feature maps output by the pooling layer. Each
kernel is a volume whose depth equals the depth of the input volume.
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A possible architecture of a CNN

At the end of the network, the feature maps are flattened in order to apply a classic
neural networks.
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A possible architecture of a CNN

The full architecture is summarized below.
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CNN Taxonomy

See this very detailed review paper [“A survey of the recent architectures of deep convolutional neural networks”,

Khan et al. 2020]
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Comparison of several CNN

[“An analysis of deep neural network models for practical applications”, Canziani et al. 2016]
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Pose estimation - Deeppose

[“Deeppose: Human pose estimation via deep neural networks”, Toshev and Szegedy 2014]
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Action recognition

[“Actions and attributes from wholes and parts”, Gkioxari et al. 2015]
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Object detection - Exhaustive search vs segmentation

Bottom-up grouping generates hierarchical nested partitioning of the input image.
[“Mean shift: A robust approach toward feature space analysis”; “Efficient graph-based image segmentation”, Comaniciu and

Meer 2002; Felzenszwalb and Huttenlocher 2004]
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Object detection - R-CNN - Regions with CNN features

One of the most famous object proposal based CNN detector is Region-based CNN
(R-CNN) by Girshick, Jeff Donahue, et al. 2014, aiming at

localizing objects with a deep network
training a high-capacity model with only a small quantity of annotated detection
data

1 Generating
category-independent region
proposals via selective search.

2 Training large CNN that
extracts a fixed-length feature
vector from each region
(Supervised pre-training on the
large auxiliary dataset
ILSVRC, followed by
domainspecific fine-tuning on
the small dataset PASCAL).

3 Learning a set of class- specific
linear SVMs.
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Object detection - R-CNN - Regions with CNN features
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YOLO

[“You only look once: Unified, real-time object detection”, Redmon et al. 2016]

The whole detection pipeline is a single network which predicts bounding boxes and class
probabilities from the full image in one evaluation, and can be optimized end-to-end
directly on detection performance.

Drawback
Fails to detect small numerous
objects.
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YOLO
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Videos

Object tracking They propose a target-specific CNN for object tracking, where the CNN
is trained incrementally during tracking with new examples obtained online. They employ
a candidate pool of multiple CNNs as a data-driven model of different instances of the
target object.
[“Deeptrack: Learning discriminative feature representations online for robust visual tracking”, Li et al. 2016]

https://pjreddie.com/darknet/yolo/

Pose/Action recognition They use the two stream CNN (spatial /temporal) on the
localized parts of the human body and show the aggregation of part-based local CNN
descriptors can effectively improve the performance of action recognition.
[“P-cnn: Pose-based cnn features for action recognition”, Chéron et al. 2015]

[“End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation”,

W. Yang et al. 2016]

https://www.youtube.com/watch?v=MKVvQK8FawE

[“Segnet: A deep convolutional encoder-decoder architecture for image segmentation”, Badrinarayanan et al. 2015]

https://www.youtube.com/watch?v=CxanE_W46ts

[“Realtime multi-person 2d pose estimation using part affinity fields”, Cao et al. 2016]

https://www.youtube.com/watch?v=pW6nZXeWlGM
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RNNs offer a lot of variability
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RNNs offer a lot of variability

Vanilla Neural Networks
Image Captioning: image/sequence of words
Sentiment classification: sequence of words/sentiment
Translation: sequence of words/sequence of words
Video classification on frame level: sequence of images/sequence of labels
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RNNs offer a lot of variability

ANNs can’t deal with sequential or “temporal” data
ANNs lack memory
ANNs have a fixed architecture: fixed input size and a fixed output size
RNNs are more “biologically realistic” because of recurrent connectivities found in
the visual cortex of the brain
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Definition of RNN

Input layer - Data comes sequentially: x1, x2, . . .

Hidden Layer - Hidden state of the network at time t: ht

Output layer - For the input xt , the prediction is given by ŷt
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Definition of RNN

Hidden neuron:
ht = tanh(WHHht−1 + WIHxt + bh)

Output neuron:
ŷt = softmax(WHOht + bout)
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Deep RNN
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Bi-directional RNN

Figure: bi-directional recurrent neural network (BRNN)

yt = W−→HO
−→
ht + W←−HO

←−
ht + bo
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Loss

The backpropagation equation is given by
∂LT

∂WHH
= ∂LT

∂ŷT

T∑
k=1

∂ŷT

∂hT

( T∏
m=k+1

∂hm

∂hm−1

)
∂hk

∂WHH
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∂ŷT

∂hT

( T∏
m=k+1

∂hm

∂hm−1

)
∂hk

∂WHH

Erwan Scornet, Professor at Sorbonne Université Deep Learning 78 / 100



Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 79 / 100



Improving hidden units in RNN

Output gate (for reading)
ot = σ(Wo,hht−1 + Wo,x xt + bo)

Input gate (for writing)
it = σ(Wi,hht−1 + Wi,x xt + bi )

Forget gate (for remembering)
ft = σ(Wf ,hht−1 + Wf ,x xt + bf )

Candidate hidden state.
h̃t = tanh(Wh(ot⊙ht−1)+Wx xt +b)

The final state ht is given by

ht = ft ⊙ ht−1 + it ⊙ h̃t .

Warning: the forget gate is used for forgetting, but it actually operates as a remember
gate: 1 in a forget gate means remembering everything not forgetting everything.
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Improving hidden units in RNN: failure

The previous hidden units described by

ht = ft ⊙ ht−1 + it ⊙ h̃t

fail.

Two problems:

The forget gate and the input gate are not synchronized at the beginning of the
training, which can cause the hidden states to become large and unstable.

Since the hidden state is not bounded, the gates can be saturated, which implies
difficulties to train the network.

Empirical evidence:
[“LSTM: A search space odyssey”, Greff et al. 2017]
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Gated Recurrent Unit

One way to circumvent this issue is to specify explicitly the dependence structure
between the forget gate and the writing gate.

For example, we can set the forget gate to 1 minus the writing gate:

ht = (1− it)⊙ ht−1 + it ⊙ h̃t .

In that case, the new hidden state ht is a weighted average of the previous hidden state
ht−1 and the newly created candidate h̃t .

Consequently, ht is bounded if ht−1 and h̃t are, which is the case using bounded
activation functions.

This is exactly the Gated Recurrent Unit.
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Gated Recurrent Unit

[“Empirical evaluation of gated recurrent neural networks on sequence modeling”, Chung et al. 2014]

Reset gate (read gate)
rt = σ(Wr,hht−1 + Wr,x xt + br )

Update gate (forget gate)
zt = σ(Wz,hht−1 + Wz,x xt + bz)

Candidate hidden state
h̃t = tanh(Wh(rt ⊙ ht−1) + Wx xt + b)

Hidden state
ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t
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Long Short Term Memory (LSTM)

LSTM is another way to circumvent the issue of unboundedness of internal states.
[“Long short-term memory”, Hochreiter and Jürgen Schmidhuber 1997]

LSTM equations:

it = σ(Wi,hht−1 + Wi,x xt + bi )
ot = σ(Wo,hht−1 + Wo,x xt + bo)
ft = σ(Wf ,hht−1 + Wf ,x xt + bf )
gt = tanh(Wg,hht−1 + Wg,x xt + bg )

Cell state
ct = ft ⊙ ct−1 + it ⊙ gt

Hidden state
ht = ot ⊙ tanh(ct)

The prediction of the network at time t only
depends on ht and not on ct .
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Loss
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Backpropagation

Problem: one gradient step is too costly. It requires a pass through the entire data set.
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Truncated backpropagation

Choose a small number of steps (usually 100) and back-propagate only onto these data.
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Truncated backpropagation

Propagate the weights and use backpropagation on the second batch of data.
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Truncated backpropagation

Pursue...
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Image Captioning: Neural Image Caption

[“Show and tell: A neural image caption generator”, Vinyals et al. 2015]
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Image Captioning: Neural Image Caption

Aim:
θ⋆ ∈ argmax

θ

∑
(I,S)

log(p(S|I))

where I is the input image and S the sentence describing the image. Since the sentence
length can be arbitrary long, the log probability is rewritten as

log(p(S|I)) =
N∑

t=0

p(St |I, S0, . . . , St−1).
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Image Captioning: Neural Image Caption

Inference time. Two approaches:
Sampling: sample the first word using p1 then use this word as input to sample the
second word according to p2. Repeat the process until the network produces a stop
word.
BeamSearch: Choose the k best sentences of length t then use this set to generate
the k best sentences of length t + 1.

How to compare two sentences?
Example:

Candidate: the the the the the the the
Reference 1: the cat is on the mat
Reference 2: There is a cat on the mat

Metric:
Precision : 7/7
BLEU (bilingual evaluation understudy): 2/7 (maximum number of times a word is
encountered in any reference sentence)

[“BLEU: a method for automatic evaluation of machine translation”, Papineni et al. 2002]
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Image Captioning: Neural Image Caption
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Image Captioning with attention mechanism

[“Show, attend and tell: Neural image caption generation with visual attention”, K. Xu et al. 2015]

Predicted sequence of words:
{y1, . . . , yC}, yi ∈ RK , where K is
the size of the dictionary.

Image features: {a1, . . . , aL}, where
ai ∈ RD is a feature corresponding
to a small precise area in the image
(extraction from a early layer of a
CNN).
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Image Captioning with attention mechanism

ẑt =
L∑

i=1

st,i ai ,

where st,i = 1 if position i in the image should be selected at time t.
P[st,i = 1|sj<t , a] = αt,i ,

eti = fatt(ai , ht−1),

αt,i = exp(eti)∑
j exp(etj)

.
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Image Captioning with attention mechanism
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Image Captioning with attention mechanism
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The End!2

2More content at https://erwanscornet.github.io/, Teaching section.
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LeNet

[“Generalization and network design strategies”, LeCun et al. 1989]

[“Gradient-based learning applied to document recognition”, LeCun, Bottou, Bengio, et al. 1998]
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AlexNet

[“Imagenet classification with deep convolutional neural networks”, Krizhevsky et al. 2012]

Ingredients:
Activation function (ReLU)
Local Response Normalization (LRN)
Overlapping pooling (3× 3 window with a stride S = 2 which reduces overfitting)
Dropout
Data augmentation
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Numerical results

Model Top-1 (val) Top-5 (val) Top-5 (test)
SIFT + FVs[7] − − 26.2%
1CNN 40.7% 18.2% −
5CNNs 38.1% 16.4% 16.4%
1CNN∗ 39.0% 16.6% −
7CNNs∗ 36.7% 15.4% 15.3%

First line is the second runner-up.
Second and third lines are results output by the averaging over 1 or 5 CNN
described before.
Last two lines correspond to networks with an extra convolutional layer after the last
pooling layer which has been trained on Image Net Fall 2011 then “fine-tuned” on
the ImageNet 2012 data base.

AlexNet has a very similar architecture to LeNet, but is deeper, bigger, and features
Convolutional Layers stacked on top of each other: previously, pooling layers followed
immediately each convolutional layer.
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Results
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ZFNet: Improve upon AlexNet

[“Visualizing and understanding convolutional networks”, Zeiler and Fergus 2014]

Aim at finding out what the different feature maps are searching for in order to obtain a
better tuning of network architecture.

In ZFNet, feature maps are not divided across two different GPU. Thus connections
between layers are less sparse than for AlexNet.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 9 / 51



Deconvnet

Find the pixels that maximize the
activation of a given feature map.

How? Invert the network.

Precisely:
Choose a layer
Choose a feature map
Run the network on a
validation set
Choose the image maximizing
the activation of this feature
map
"Backpropagate" this
activation to obtain a stylized
image in the pixel space
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Results

Top 9 activations in a random subset of feature maps across the validation data,
projected down to pixel space using the previous deconvolutional network approach.
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Tiny VGGnet

[“Very deep convolutional networks for large-scale image recognition”, Simonyan and Zisserman 2014b]

Convolutional layers:
Small receptive field: 3× 3 (smallest ones capable of capturing the notion of
top/down, left/right!)
Stride of 1
Spatial resolution is preserved after convolution
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Insightful remark...

If you stack 3 convolutional layers with receptive fields 3 × 3, you obtain a convolutional
layer with receptive fields 7× 7. What is the interest?

1 Stack of 3 convolutional layers of size 3× 3: complexity of 3××3× 3 = 27.

2 One standard convolutional layer of size 7× 7: complexity of 49.

In the first case, we cannot obtain every possible layer: the resulting object is a decom-
position of three consecutive convolutional layers. There are less possibilities hence less
parameters.
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GoogLeNet

[“Going deeper with convolutions”, Szegedy, W. Liu, et al. 2015]

Aim.
Increasing the depth and width of state-of-the-art convolutional neural networks while
keeping the number of parameters small:

Can approximate more complex functions

while being robust to overfitting and computationally appealing.

How.

Specifically, use of 1× 1 convolution layers to reduce the number of parameters +
apply filters of different sizes 3× 3, 5× 5 or 3× 3 max pooling (on each feature
maps).
use auxiliary classifiers

Details.
All convolution layers use ReLU activation functions.
Same spatial resolution for each feature map.
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GoogLeNet - Inception module

Same spatial resolution for each feature map.
Use of 1× 1 convolution layers to reduce the number of parameters then apply filters of
different sizes 3× 3, 5× 5 or 3× 3 max pooling (on each feature maps).
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ResNet (2016)

[“Deep residual learning for image recognition”, He et al. 2016]
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DenseNet

[“Densely Connected Convolutional Networks.”, G. Huang et al. 2017]

Figure: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are
referred to as transition layers and change feature-map sizes via convolution and pooling
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Inception V2-V3

Based on GoogLeNet Inception module
[“Rethinking the inception architecture for computer vision”, Szegedy, Vanhoucke, et al. 2016]

New ideas:
Using asymmetric convolutions 1× n and n × 1 (for n = 3, 5, 7) can be useful in the
middle layers of the networks for feature maps of size m ×m (for 12 ≤ m ≤ 20).
Label smoothing using a uniform distribution over labels
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Xception

[“Xception: Deep learning with depthwise separable convolutions”, Chollet 2017]

Stands for “Extreme Inception” and builds upon Inception module in GoogLeNet.

The main ideas:
Perform 1× 1 convolutions
Apply 3× 3 (or other filter size) convolutions to each previous feature map (the one
created by 1× 1 convolutions) separately.

→ Decoupled the depth (1× 1 convolutions) and the spatial transformations
(convolutions on each feature map separately).
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