
Foundations of modern NN

Erwan Scornet, Professor at Sorbonne Université

1

1More content at https://erwanscornet.github.io/, Teaching section.
Erwan Scornet, Professor at Sorbonne Université Deep Learning 1 / 100

https://erwanscornet.github.io/

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 2 / 100

Erwan Scornet, Professor at Sorbonne Université Deep Learning 3 / 100

Supervised learning

Training data Learning algorithm

Logistic regression
•
Random forests
•
Neural networks
•
...
•

New input Output

(0,0,0,0,1,0,0,0,0,0)Classifier

Erwan Scornet, Professor at Sorbonne Université Deep Learning 4 / 100

Erwan Scornet, Professor at Sorbonne Université Deep Learning 5 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 6 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 7 / 100

McCulloch and Pitts neuron - 1943

[“A logical calculus of the ideas immanent in nervous activity”, McCulloch and Pitts 1943]

In 1943, portrayed with a simple electrical circuit by neurophysiologist Warren McCulloch
and mathematician Walter Pitts.

A McCulloch-Pitts neuron takes binary inputs, computes a weighted sum and returns 0 if
the result is below threshold and 1 otherwise.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 8 / 100

McCulloch and Pitts neuron - 1943

[“A logical calculus of the ideas immanent in nervous activity”, McCulloch and Pitts 1943]

In 1943, portrayed with a simple electrical circuit by neurophysiologist Warren McCulloch
and mathematician Walter Pitts.

A McCulloch-Pitts neuron takes binary inputs, computes a weighted sum and returns 0 if
the result is below threshold and 1 otherwise.

Donald Hebb took the idea further by propos-
ing that neural pathways strengthen over
each successive use, especially between neu-
rons that tend to fire at the same time.
[The organization of behavior: a neuropsychological theory, Hebb

1949]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 8 / 100

Neural network with one hidden layer

Generic notations:

W (ℓ)
i,j : weights between the j neuron in

the ℓ− 1 layer and the i neuron of the ℓ
layer.

b(ℓ)
j : bias of the j neuron of the ℓ layer.

a(ℓ)
j : output of the j neuron of the ℓ

layer.

z (ℓ)
j : input of the j neuron of the ℓ

layer, such that a(ℓ)
j = σ(z (ℓ)

j).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 9 / 100

How to find weights and bias?

Erwan Scornet, Professor at Sorbonne Université Deep Learning 10 / 100

Optimization

Erwan Scornet, Professor at Sorbonne Université Deep Learning 11 / 100

Gradient descent algorithm

The gradient of a function f : Rp → R in θ denoted as ∇f (θ) is the vector of partial
derivatives

∇f (θ) =


∂f

∂θ1
...

∂f
∂θp


Gradient descent

Initialize θ(0) and t = 0.
While not convergence do

▶ θ(t+1) = θ(t) − η∇f (θ(t))
▶ t = t + 1.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 12 / 100

Gradient Descent Algorithm

The prediction of the network is given by fθ(x).

Empirical risk minimization on a batch B ⊂ {1, . . . , n}:

Solve argmin
θ

RB(θ) with RB(θ) = 1
|B|
∑
i∈B

ℓ(Yi , fθ(Xi)).

Computationally more efficient than using the full data set.

Stochastic Gradient descent
▶ Divide the data set into batches B1, . . . , Biter

▶ Initialize θ(0) and t = 0.
▶ While not convergence do

⋆ ℓ = t[iter]
⋆ θ(t+1) = θ(t) − η∇RBℓ

(θ(t))
⋆ t = t + 1

How to compute ∇θℓi efficiently?

Erwan Scornet, Professor at Sorbonne Université Deep Learning 13 / 100

Gradient Descent Algorithm

The prediction of the network is given by fθ(x).

Empirical risk minimization on a batch B ⊂ {1, . . . , n}:

Solve argmin
θ

RB(θ) with RB(θ) = 1
|B|
∑
i∈B

ℓ(Yi , fθ(Xi)).

Computationally more efficient than using the full data set.

Stochastic Gradient descent
▶ Divide the data set into batches B1, . . . , Biter

▶ Initialize θ(0) and t = 0.
▶ While not convergence do

⋆ ℓ = t[iter]
⋆ θ(t+1) = θ(t) − η∇RBℓ

(θ(t))
⋆ t = t + 1

How to compute ∇θℓi efficiently?

Erwan Scornet, Professor at Sorbonne Université Deep Learning 13 / 100

Backprop Algorithm

How to compute ∇θℓi efficiently?

A Clever Gradient Descent Implementation
Popularized by Rumelhart, McClelland, Hinton in 1986.
Can be traced back to Werbos in 1974.
Nothing but the use of chain rule derivation with a touch of dynamic programing.

Key ingredient to make the Neural Networks work!
Still at the core of Deep Learning algorithm.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 14 / 100

Backpropagation idea

Erwan Scornet, Professor at Sorbonne Université Deep Learning 15 / 100

Backpropagation equations

Neural network with L layers, with vector output, with quadratic cost
C = 1

2∥y − a(L)∥2.

By definition,

δ
(ℓ)
j = ∂C

∂z (ℓ)
j

.

The four fundamental equations of backpropagation are given by

δ(L) = ∇aC ⊙ σ′(z (L)), (1)

δ(ℓ) = ((w (ℓ+1))T δ(ℓ+1))⊙ σ′(z (ℓ)) (2)
∂C

∂b(ℓ)
j

= δ
(ℓ)
j (3)

∂C
∂w (ℓ)

j,k

= a(ℓ−1)
k δ

(ℓ)
j . (4)

Erwan Scornet, Professor at Sorbonne Université Deep Learning 16 / 100

Backpropagation Algorithm

Let
δ

(ℓ)
j = ∂C

∂z (ℓ)
j

,

where z (ℓ)
j is the entry of the neuron j of the layer ℓ.

Neural network training
(a) Initialize randomly the weights and biases in the network.

(b) For all training samples (xi)i∈B in the batch B,
1 Feedforward: Send all samples of the batch through the network and store the values

of activation function and its derivative, for each neuron.
2 Output loss: Compute the neural network loss average on all samples of the batch.
3 Backpropagation (BP): Compute recursively the vectors δ(ℓ) starting from ℓ = L to

ℓ = 1 with BP equations (1) and (2). Compute the gradient with BP equations (3)
and (4).

4 Optimization: Update the weights and biases using a gradient-based optimization
procedure, using the gradient previously computed.

(c) Repeat step (b) until some convergence criterion is reached.

Playing with neural network: http://playground.tensorflow.org/
Erwan Scornet, Professor at Sorbonne Université Deep Learning 17 / 100

http://playground.tensorflow.org/

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 18 / 100

What to set in a neural network?

Erwan Scornet, Professor at Sorbonne Université Deep Learning 19 / 100

What to set in a neural network?

Erwan Scornet, Professor at Sorbonne Université Deep Learning 19 / 100

Number of hidden layers/neurons

No particular rules for choosing the number of layers or the number of neurons per
layer.

Read research papers related to the task you want to solve and test the architecture
they propose.

You may want to change the architecture a bit to see how it influences the
performance.

Beware: there exist many rules of thumbs which are not supported by evidence
(either practical or theoretical).

Use data-driven strategies:
▶ Network pruning following the procedure training/pruning/training/pruning/...

[“What is the state of neural network pruning?”, Blalock et al. 2020]

▶ More complex evolutionary algorithms
[“AgEBO-Tabular: Joint Neural Architecture and Hyperparameter Search with Autotuned Data-Parallel Training for
Tabular Data”, Egele et al. 2020]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 20 / 100

Sigmoid activation function

5 4 3 2 1 0 1 2 3 4 5
0.0

0.5

1.0

Figure: Sigmoid activation function σ

σ : x 7→ exp(x)
1 + exp(x)

Comments:

Saturated function due to horizontal
asymptotes:

▶ Gradient is close to zero in these two
areas (±∞)

▶ Rescaling the inputs of each layer can
help to avoid these areas.

Sigmoid is not a zero-centered function
▶ Rescaling data

Computing exp(x) is a bit costly

Erwan Scornet, Professor at Sorbonne Université Deep Learning 21 / 100

Rectified Linear Unit (ReLU)

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

Figure: Rectified Linear Unit (ReLU)

ReLU : x 7→ max(0, x)

Comments:

Not a saturated function in +∞

But saturated (and null!) in the region
x ≤ 0

Computationally efficient

Empirically, convergence is faster than
sigmoid/tanh.

Plus: biologically plausible

Erwan Scornet, Professor at Sorbonne Université Deep Learning 22 / 100

More on ReLU

The idea of ReLU in neural networks seems to appear in [“Cognitron: A self-organizing multilayered

neural network”; “Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition”,

Fukushima 1975; Fukushima and Miyake 1982].

Figure: Good parameter initialization - ReLU is
active

Figure: Bad parameter initialization - ReLU
outputs zero

ReLU output can be zero but positive initial bias can help.

Related to biology [“Deep sparse rectifier neural networks”, Glorot, Bordes, et al. 2011]:
Most of the time, neurons are inactive.
when they activate, their activation is proportional to their input.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 23 / 100

Output units

Linear output unit:
ŷ = W T h + b

→ Linear regression based on the new variables h.

Sigmoid output unit, used to predict {0, 1} outputs:
P(Y = 1|h) = σ(W T h + b),

where σ(t) = et/(1 + et).

→ Logistic regression based on the new variables h.

Softmax output unit, used to predict {1, . . . , K}:

softmax(z)i = ezi∑K
k=1 ezk

where, each zi is the activation of one neuron of the previous layer, given by
zi = W T

i h + bi .

→ Multinomial logistic regression based on the new variables h.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 24 / 100

Cost functions

Mean Square Error (MSE)

1
n

n∑
i=1

ℓ(Yi , fθ(Xi)) = 1
n

n∑
i=1

(Yi − fθ(Xi))2

Mean Absolute Error

1
n

n∑
i=1

ℓ(Yi , fθ(Xi)) = 1
n

n∑
i=1

|Yi − fθ(Xi)|

Cross entropy (or negative log-likelihood):
ℓ(yi , fθ(xi)) = − log

(
[fθ(xi)]yi

)
(5)

▶ Prevent saturation phenomenon:

− log(P(Y = yi |X = xi)) = − log(σ((2y − 1)(W T h + b))), (6)
with

σ(t) =
et

1 + et

Usually, saturation occurs when (2y − 1)(W T h + b) ≪ −1. In that case, − log(P(Y =
yi |X)) is linear in W and b which makes the gradient easy to compute, and the gradient
descent easy to implement.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 25 / 100

Weight initialization

Idea: the variance of the input should be the same as the variance of the output.

Let wj be any weight between layer j and layer j + 1.
1 He et al. initialization

[“Delving deep into rectifiers: Surpassing human-level performance on imagenet classification”, He et al. 2015]

Initialize bias to zero and weights randomly using

wj ∼ N
(

0,

√
2

nj

)
,

where nj is the size of layer j.
2 Xavier initialization

[“Understanding the difficulty of training deep feedforward neural networks”, Glorot and Bengio 2010]

Initialize bias to zero and weights randomly using

wj ∼ U
[
−

√
6√nj + nj+1

,

√
6√nj + nj+1

]
,

where nj is the size of layer j
→ Not theoretically valid for ReLU

Bonus: [“All you need is a good init”, Mishkin and Matas 2015]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 26 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 27 / 100

Regularizing to avoid overfitting

Avoid overfitting by imposing some constraints over the parameter space.

Reducing variance and increasing bias.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 28 / 100

Overfitting

Many different manners to avoid overfitting:

Penalization (L1 or L2)
Replacing the cost function L by L̃(θ, X , y) = L(θ, X , y) + pen(θ).

Soft weight sharing - see CNN lecture
Reduce the parameter space artificially by imposing explicit constraints.

Dropout
Randomly kill some neurons during optimization and predict with the full network.

Batch normalization
Renormalize a layer inside a batch, so that the network does not overfit on this
particular batch.

Early stopping
Stop the gradient descent procedure when the error on the validation set increases.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 29 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 30 / 100

Dropout

Dropout refers to dropping out units (hidden and visible) in a neural network, i.e.,
temporarily removing it from the network, along with all its incoming and outgoing
connections.

Each unit is independently dropped with probability
p = 0.5 for hidden units
p ∈ [0, 0.5] for input units, usually p = 0.2.

[“Improving neural networks by preventing co-adaptation of feature detectors”, Hinton, N. Srivastava, et al. 2012]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 31 / 100

Dropout

At train time At test time

At train time At test time

Erwan Scornet, Professor at Sorbonne Université Deep Learning 32 / 100

Dropout algorithm

Training step. While not convergence

1 Inside one epoch, for each mini-batch of size m,

1 Sample m different mask. A mask consists in one Bernoulli per node of the network
(inner and entry nodes but not output nodes). These Bernoulli variables are i.i.d..
Usually

⋆ the probability of selecting an hidden node is 0.5
⋆ the probability of selecting an input node is 0.8

2 For each one of the m observation in the mini-batch,
⋆ Do a forward pass on the masked network
⋆ Compute backpropagation in the masked network
⋆ Compute the average gradient

3 Update the parameter according to the usual formula.

Prediction step.
Use all neurons in the network with weights given by the previous optimization procedure,
times the probability p of being selected (0.5 for inner nodes, 0.8 for input nodes).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 33 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 34 / 100

Batch normalization

The network converges faster if its input are scaled (mean, variance) and decorrelated.
[“Efficient backprop”, LeCun, Bottou, Orr, et al. 1998]

Hard to decorrelate variables: requiring to compute covariance matrix.
[“Batch normalization: Accelerating deep network training by reducing internal covariate shift”, Ioffe and Szegedy 2015]

Ideas:
Improving gradient flows
Allowing higher learning rates
Reducing strond dependence on initialization
Related to regularization (maybe slightly reduces the need for Dropout)

Erwan Scornet, Professor at Sorbonne Université Deep Learning 35 / 100

Algorithm

See [“Batch normalization: Accelerating deep network training by reducing internal covariate shift”, Ioffe and Szegedy 2015]

1 For every neuron k in the first layer, which outputs x (k)
i for the ith observation,

1 µ
(k)
B = 1

m
∑m

i=1 x (k)
i

2 σ2
B,k = 1

m
∑m

i=1(x (k)
i − µ

(k)
B)2

3 x̂ (k)
i =

x(k)
i −µ

(k)
B√

σ2
B,k +ε

4 y (k)
i = γ(k)x̂ (k)

i + β(k) ≡ BNγ(k),β(k) (x (k)
i)

2 y (k)
i is fed to the next layer and the procedure iterates.

3 Backpropagation is performed on the network parameters including (γ(k), β(k)) for all
k = 1, . . . , H1, where H1 ∈ N is the number of neurons in the first layer.

4 For inference, compute the average over many training batches B of size m:
EB[x (k)] = EB[µ(k)

B] and VB[x (k)] = m
m − 1EB[σ2

B,k].

5 For inference, replace every function x (k) 7→ BNγ(k),β(k) (x (k)) in the network by

x (k) 7→ γ

(
x (k) −EB[x (k)]√

VB[x (k)] + ε

)
+ β(k).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 36 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 37 / 100

Early stopping

Idea:
Store the parameter values that lead to the lowest error on the validation set
Return these values rather than the latest ones.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 38 / 100

Early stopping algorithm

Parameters:
patience p of the algorithm: number of times to observe no improvement on the
validation set error before giving up;
the number of steps n between evaluations.

How to implement early stopping?
First idea: use early stopping to determine the best number of iterations i⋆ and train
on the whole data set for i⋆ iterations.
Second idea: use early stopping to determine the best parameters and the training
error at the best number of iterations. Starting from θ⋆, train on the whole data set
until the error matches the previous early stopping error.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 39 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 40 / 100

Neural Network reborn

Renewed interest in 2006: [“A fast learning algorithm for deep belief nets”, Hinton, Osindero, et al. 2006]

Propose a way to train deep neural nets:
Train the first layer.
Add a layer on top of it and train only this layer.
Repeat the process until the network is deep enough.
Use this network as a warm start to train the whole network.

Technical reasons for this new growing interest:
Larger datasets
More powerful computers
Small number of algorithmic changes

1 MSE replaced by cross-entropy
2 ReLU (Fukushima, 1975, 1980)

Erwan Scornet, Professor at Sorbonne Université Deep Learning 41 / 100

Using classical networks for images?

No, for two reasons:
Do not take into account the spatial organization of pixels (if the pixels are
permuted, the output of the network would be the same, whereas the image would
change drastically)
Non robust to image shifting

Idea:
Apply local transformation to a set of nearby pixels (spatial nature of image is used)
Repeat this transformation over the whole image (resulting in a shift-invariant
output)

Not a new idea: trace back to perceptron and studies about the visual cortex of a cat.
The cat is able to

detect oriented edges, end-points, corners (low-level features)
combine them to detect more complex geometrical forms (high-level features)

Erwan Scornet, Professor at Sorbonne Université Deep Learning 42 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 43 / 100

Convolutional neural networks (CNNs)

Neural networks that use convolution instead of matrix product in one of the layers

A CNN layer typically includes 3 operations: convolution, activation and pooling

Using the more general idea of parameters sharing, instead of full connection
(convolution instead of matrix product)

Convolution operator in neural networks is as follows

O(i , j) = (I ⋆ K)(i , j) =
∑

k

∑
l

I(i + k, j + l)K(k, l)

I is the input and K is called the kernels
The kernel K will be learned (replaces the weights W in a fully connected layer)

Erwan Scornet, Professor at Sorbonne Université Deep Learning 44 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Size of the kernel is 3× 3× 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Size of the kernel is 3× 3× 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Size of the kernel is 3× 3× 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Size of the kernel is 3× 3× 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Size of the kernel is 3× 3× 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Size of the kernel is 3× 3× 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Size of the kernel is 3× 3× 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Size of the kernel is 3× 3× 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - Black and White images

Size of the input image is 8× 8× 1 (height, width, depth)

Size of the kernel is 3× 3× 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 100

Convolution - RGB

Size of the input image is 8× 8× 3 (height, width, depth)
Size of the kernel is 3× 3× 3

Warning: every filter is small spatially (along width and height), but extends through the
full depth of the input volume.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 46 / 100

Convolution - RGB

Size of the input image is 8× 8× 3 (height, width, depth)
Size of the kernel is 3× 3× 3

Warning: every filter is small spatially (along width and height), but extends through the
full depth of the input volume.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 46 / 100

Parameters of convolutional layer 1/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel (typically 3× 3, 5× 5).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 47 / 100

Parameters of convolutional layer 2/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume, i.e., the number of filters/activation maps/feature
maps.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 48 / 100

Parameters of convolutional layer 3/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume,
The stride, i.e., of how many pixels do we move the filter horizontally and vertically.
Usually, stride is equal to one (rarely to two, and even more rarely larger).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 49 / 100

Parameters of convolutional layer 4/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume,
The stride,
The size of the zero-padding, i.e. the number of zeros we add to the borders of the
image. This can be used to obtain a constant image size between the input and the
output.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 50 / 100

How to choose zero-padding?

Let

I the height/width of the input

O the height/width of the output

P the size of the zero-padding

K the height/width of the filter

S the stride

What is the relation between these quantities? How do we choose the zero-padding to
obtain an output of the same size as the input?

O =
⌊2P + I − K

S

⌋
+ 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 51 / 100

How to choose zero-padding?

Let

I the height/width of the input

O the height/width of the output

P the size of the zero-padding

K the height/width of the filter

S the stride

What is the relation between these quantities? How do we choose the zero-padding to
obtain an output of the same size as the input?

O =
⌊2P + I − K

S

⌋
+ 1

Erwan Scornet, Professor at Sorbonne Université Deep Learning 51 / 100

Why convolution?

Same transformation applied to all parts of the image (takes into account the spatial
dependence between pixels and object-shift invariance)

Input image contains millions of pixel values, but we want to detect small
meaningful features such as edges with kernels that use only few hundred of pixels

When using a matrix product, all input and output units are connected, whereas
convolution connects only output neurons with several pixels of the input image.

Convolution involves weight sharing (a form of regularization) and requires less
parameters which improves memory, is more statistically efficient and
computationally faster.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 52 / 100

Sparse connections

Left: when using matrix multiplication, all outputs are connected to all inputs. We
say that connectivity is dense

Right: in a convolution with a kernel of width 3, only three outputs are affected by
the input x . We say that the connectivity is sparse

Erwan Scornet, Professor at Sorbonne Université Deep Learning 53 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 54 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
Erwan Scornet, Professor at Sorbonne Université Deep Learning 55 / 100

Pooling

Pooling layers compute each pixel of the output as a summary statistic of
neighboring input pixels at the corresponding location.

The most widely used is the max aggregation, called max-pooling

Pooling helps the representation to become approximately invariant to small
translations of the input

If a small translation is applied, output of the layer is almost unchanged

Very useful if we care more about the presence of some feature than its position in
the image: for face detection (presence of eyes is more important than where they
are)

Pooling also allows to handle inputs with different sizes: pictures can have different
sizes, but the output classification layer must be of fixed size

Erwan Scornet, Professor at Sorbonne Université Deep Learning 56 / 100

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

A convolutional layer operates on the feature maps output by the pooling layer. Each
kernel is a volume whose depth equals the depth of the input volume.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

A convolutional layer operates on the feature maps output by the pooling layer. Each
kernel is a volume whose depth equals the depth of the input volume.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

A convolutional layer operates on the feature maps output by the pooling layer. Each
kernel is a volume whose depth equals the depth of the input volume.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

At the end of the network, the feature maps are flattened in order to apply a classic
neural networks.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

At the end of the network, the feature maps are flattened in order to apply a classic
neural networks.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

At the end of the network, the feature maps are flattened in order to apply a classic
neural networks.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

A possible architecture of a CNN

The full architecture is summarized below.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 57 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 58 / 100

CNN Taxonomy

See this very detailed review paper [“A survey of the recent architectures of deep convolutional neural networks”,

Khan et al. 2020]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 59 / 100

Comparison of several CNN

[“An analysis of deep neural network models for practical applications”, Canziani et al. 2016]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 60 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 61 / 100

Pose estimation - Deeppose

[“Deeppose: Human pose estimation via deep neural networks”, Toshev and Szegedy 2014]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 62 / 100

Action recognition

[“Actions and attributes from wholes and parts”, Gkioxari et al. 2015]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 63 / 100

Object detection - Exhaustive search vs segmentation

Bottom-up grouping generates hierarchical nested partitioning of the input image.
[“Mean shift: A robust approach toward feature space analysis”; “Efficient graph-based image segmentation”, Comaniciu and

Meer 2002; Felzenszwalb and Huttenlocher 2004]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 64 / 100

Object detection - R-CNN - Regions with CNN features

One of the most famous object proposal based CNN detector is Region-based CNN
(R-CNN) by Girshick, Jeff Donahue, et al. 2014, aiming at

localizing objects with a deep network
training a high-capacity model with only a small quantity of annotated detection
data

1 Generating
category-independent region
proposals via selective search.

2 Training large CNN that
extracts a fixed-length feature
vector from each region
(Supervised pre-training on the
large auxiliary dataset
ILSVRC, followed by
domainspecific fine-tuning on
the small dataset PASCAL).

3 Learning a set of class- specific
linear SVMs.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 65 / 100

Object detection - R-CNN - Regions with CNN features

Erwan Scornet, Professor at Sorbonne Université Deep Learning 66 / 100

YOLO

[“You only look once: Unified, real-time object detection”, Redmon et al. 2016]

The whole detection pipeline is a single network which predicts bounding boxes and class
probabilities from the full image in one evaluation, and can be optimized end-to-end
directly on detection performance.

Drawback
Fails to detect small numerous
objects.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 67 / 100

YOLO

Erwan Scornet, Professor at Sorbonne Université Deep Learning 68 / 100

Videos

Object tracking They propose a target-specific CNN for object tracking, where the CNN
is trained incrementally during tracking with new examples obtained online. They employ
a candidate pool of multiple CNNs as a data-driven model of different instances of the
target object.
[“Deeptrack: Learning discriminative feature representations online for robust visual tracking”, Li et al. 2016]

https://pjreddie.com/darknet/yolo/

Pose/Action recognition They use the two stream CNN (spatial /temporal) on the
localized parts of the human body and show the aggregation of part-based local CNN
descriptors can effectively improve the performance of action recognition.
[“P-cnn: Pose-based cnn features for action recognition”, Chéron et al. 2015]

[“End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation”,

W. Yang et al. 2016]

https://www.youtube.com/watch?v=MKVvQK8FawE

[“Segnet: A deep convolutional encoder-decoder architecture for image segmentation”, Badrinarayanan et al. 2015]

https://www.youtube.com/watch?v=CxanE_W46ts

[“Realtime multi-person 2d pose estimation using part affinity fields”, Cao et al. 2016]

https://www.youtube.com/watch?v=pW6nZXeWlGM

Erwan Scornet, Professor at Sorbonne Université Deep Learning 69 / 100

https://pjreddie.com/darknet/yolo/
https://www.youtube.com/watch?v=MKVvQK8FawE
https://www.youtube.com/watch?v=CxanE_W46ts
https://www.youtube.com/watch?v=pW6nZXeWlGM

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 70 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 71 / 100

RNNs offer a lot of variability

Erwan Scornet, Professor at Sorbonne Université Deep Learning 72 / 100

RNNs offer a lot of variability

Vanilla Neural Networks
Image Captioning: image/sequence of words
Sentiment classification: sequence of words/sentiment
Translation: sequence of words/sequence of words
Video classification on frame level: sequence of images/sequence of labels

Erwan Scornet, Professor at Sorbonne Université Deep Learning 72 / 100

RNNs offer a lot of variability

ANNs can’t deal with sequential or “temporal” data
ANNs lack memory
ANNs have a fixed architecture: fixed input size and a fixed output size
RNNs are more “biologically realistic” because of recurrent connectivities found in
the visual cortex of the brain

Erwan Scornet, Professor at Sorbonne Université Deep Learning 72 / 100

Definition of RNN

Input layer - Data comes sequentially: x1, x2, . . .

Hidden Layer - Hidden state of the network at time t: ht

Output layer - For the input xt , the prediction is given by ŷt

Erwan Scornet, Professor at Sorbonne Université Deep Learning 73 / 100

Definition of RNN

Hidden neuron:
ht = tanh(WHHht−1 + WIHxt + bh)

Output neuron:
ŷt = softmax(WHOht + bout)

Erwan Scornet, Professor at Sorbonne Université Deep Learning 74 / 100

Deep RNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 75 / 100

Bi-directional RNN

Figure: bi-directional recurrent neural network (BRNN)

yt = W−→HO
−→
ht + W←−HO

←−
ht + bo

Erwan Scornet, Professor at Sorbonne Université Deep Learning 76 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 77 / 100

Loss

The backpropagation equation is given by
∂LT

∂WHH
= ∂LT

∂ŷT

T∑
k=1

∂ŷT

∂hT

(T∏
m=k+1

∂hm

∂hm−1

)
∂hk

∂WHH

Erwan Scornet, Professor at Sorbonne Université Deep Learning 78 / 100

Loss

The backpropagation equation is given by
∂LT

∂WHH
= ∂LT

∂ŷT

T∑
k=1

∂ŷT

∂hT

(T∏
m=k+1

∂hm

∂hm−1

)
∂hk

∂WHH

Erwan Scornet, Professor at Sorbonne Université Deep Learning 78 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 79 / 100

Improving hidden units in RNN

Output gate (for reading)
ot = σ(Wo,hht−1 + Wo,x xt + bo)

Input gate (for writing)
it = σ(Wi,hht−1 + Wi,x xt + bi)

Forget gate (for remembering)
ft = σ(Wf ,hht−1 + Wf ,x xt + bf)

Candidate hidden state.
h̃t = tanh(Wh(ot⊙ht−1)+Wx xt +b)

The final state ht is given by

ht = ft ⊙ ht−1 + it ⊙ h̃t .

Warning: the forget gate is used for forgetting, but it actually operates as a remember
gate: 1 in a forget gate means remembering everything not forgetting everything.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 80 / 100

Improving hidden units in RNN: failure

The previous hidden units described by

ht = ft ⊙ ht−1 + it ⊙ h̃t

fail.

Two problems:

The forget gate and the input gate are not synchronized at the beginning of the
training, which can cause the hidden states to become large and unstable.

Since the hidden state is not bounded, the gates can be saturated, which implies
difficulties to train the network.

Empirical evidence:
[“LSTM: A search space odyssey”, Greff et al. 2017]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 81 / 100

Gated Recurrent Unit

One way to circumvent this issue is to specify explicitly the dependence structure
between the forget gate and the writing gate.

For example, we can set the forget gate to 1 minus the writing gate:

ht = (1− it)⊙ ht−1 + it ⊙ h̃t .

In that case, the new hidden state ht is a weighted average of the previous hidden state
ht−1 and the newly created candidate h̃t .

Consequently, ht is bounded if ht−1 and h̃t are, which is the case using bounded
activation functions.

This is exactly the Gated Recurrent Unit.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 82 / 100

Gated Recurrent Unit

[“Empirical evaluation of gated recurrent neural networks on sequence modeling”, Chung et al. 2014]

Reset gate (read gate)
rt = σ(Wr,hht−1 + Wr,x xt + br)

Update gate (forget gate)
zt = σ(Wz,hht−1 + Wz,x xt + bz)

Candidate hidden state
h̃t = tanh(Wh(rt ⊙ ht−1) + Wx xt + b)

Hidden state
ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t

Erwan Scornet, Professor at Sorbonne Université Deep Learning 83 / 100

Long Short Term Memory (LSTM)

LSTM is another way to circumvent the issue of unboundedness of internal states.
[“Long short-term memory”, Hochreiter and Jürgen Schmidhuber 1997]

LSTM equations:

it = σ(Wi,hht−1 + Wi,x xt + bi)
ot = σ(Wo,hht−1 + Wo,x xt + bo)
ft = σ(Wf ,hht−1 + Wf ,x xt + bf)
gt = tanh(Wg,hht−1 + Wg,x xt + bg)

Cell state
ct = ft ⊙ ct−1 + it ⊙ gt

Hidden state
ht = ot ⊙ tanh(ct)

The prediction of the network at time t only
depends on ht and not on ct .

Erwan Scornet, Professor at Sorbonne Université Deep Learning 84 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 85 / 100

Loss

Erwan Scornet, Professor at Sorbonne Université Deep Learning 86 / 100

Backpropagation

Problem: one gradient step is too costly. It requires a pass through the entire data set.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 87 / 100

Truncated backpropagation

Choose a small number of steps (usually 100) and back-propagate only onto these data.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 88 / 100

Truncated backpropagation

Propagate the weights and use backpropagation on the second batch of data.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 89 / 100

Truncated backpropagation

Pursue...

Erwan Scornet, Professor at Sorbonne Université Deep Learning 90 / 100

Outline

1 Neural Network - MLP
Architecture
Hyperparameters

2 MLP Regularization
Dropout
Batch normalization
Early stopping

3 Foundations of CNN
Convolution layer
Pooling layer
A variety of CNNs
Applications

4 Foundations of RNN
Architecture
Long-term dependencies
GRU and LSTM
Truncated backpropagation
A RNN application

Erwan Scornet, Professor at Sorbonne Université Deep Learning 91 / 100

Image Captioning: Neural Image Caption

[“Show and tell: A neural image caption generator”, Vinyals et al. 2015]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 92 / 100

Image Captioning: Neural Image Caption

Aim:
θ⋆ ∈ argmax

θ

∑
(I,S)

log(p(S|I))

where I is the input image and S the sentence describing the image. Since the sentence
length can be arbitrary long, the log probability is rewritten as

log(p(S|I)) =
N∑

t=0

p(St |I, S0, . . . , St−1).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 93 / 100

Image Captioning: Neural Image Caption

Inference time. Two approaches:
Sampling: sample the first word using p1 then use this word as input to sample the
second word according to p2. Repeat the process until the network produces a stop
word.
BeamSearch: Choose the k best sentences of length t then use this set to generate
the k best sentences of length t + 1.

How to compare two sentences?
Example:

Candidate: the the the the the the the
Reference 1: the cat is on the mat
Reference 2: There is a cat on the mat

Metric:
Precision : 7/7
BLEU (bilingual evaluation understudy): 2/7 (maximum number of times a word is
encountered in any reference sentence)

[“BLEU: a method for automatic evaluation of machine translation”, Papineni et al. 2002]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 94 / 100

Image Captioning: Neural Image Caption

Erwan Scornet, Professor at Sorbonne Université Deep Learning 95 / 100

Image Captioning with attention mechanism

[“Show, attend and tell: Neural image caption generation with visual attention”, K. Xu et al. 2015]

Predicted sequence of words:
{y1, . . . , yC}, yi ∈ RK , where K is
the size of the dictionary.

Image features: {a1, . . . , aL}, where
ai ∈ RD is a feature corresponding
to a small precise area in the image
(extraction from a early layer of a
CNN).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 96 / 100

Image Captioning with attention mechanism

ẑt =
L∑

i=1

st,i ai ,

where st,i = 1 if position i in the image should be selected at time t.
P[st,i = 1|sj<t , a] = αt,i ,

eti = fatt(ai , ht−1),

αt,i = exp(eti)∑
j exp(etj)

.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 97 / 100

Image Captioning with attention mechanism

Erwan Scornet, Professor at Sorbonne Université Deep Learning 98 / 100

Image Captioning with attention mechanism

Erwan Scornet, Professor at Sorbonne Université Deep Learning 99 / 100

The End!2

2More content at https://erwanscornet.github.io/, Teaching section.
Erwan Scornet, Professor at Sorbonne Université Deep Learning 100 / 100

https://erwanscornet.github.io/

Outline

5 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 1 / 51

Outline

5 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 2 / 51

LeNet

[“Generalization and network design strategies”, LeCun et al. 1989]

[“Gradient-based learning applied to document recognition”, LeCun, Bottou, Bengio, et al. 1998]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 3 / 51

Outline

5 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 4 / 51

AlexNet

[“Imagenet classification with deep convolutional neural networks”, Krizhevsky et al. 2012]

Ingredients:
Activation function (ReLU)
Local Response Normalization (LRN)
Overlapping pooling (3× 3 window with a stride S = 2 which reduces overfitting)
Dropout
Data augmentation

Erwan Scornet, Professor at Sorbonne Université Deep Learning 5 / 51

Numerical results

Model Top-1 (val) Top-5 (val) Top-5 (test)
SIFT + FVs[7] − − 26.2%
1CNN 40.7% 18.2% −
5CNNs 38.1% 16.4% 16.4%
1CNN∗ 39.0% 16.6% −
7CNNs∗ 36.7% 15.4% 15.3%

First line is the second runner-up.
Second and third lines are results output by the averaging over 1 or 5 CNN
described before.
Last two lines correspond to networks with an extra convolutional layer after the last
pooling layer which has been trained on Image Net Fall 2011 then “fine-tuned” on
the ImageNet 2012 data base.

AlexNet has a very similar architecture to LeNet, but is deeper, bigger, and features
Convolutional Layers stacked on top of each other: previously, pooling layers followed
immediately each convolutional layer.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 6 / 51

Results

Erwan Scornet, Professor at Sorbonne Université Deep Learning 7 / 51

Outline

5 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 8 / 51

ZFNet: Improve upon AlexNet

[“Visualizing and understanding convolutional networks”, Zeiler and Fergus 2014]

Aim at finding out what the different feature maps are searching for in order to obtain a
better tuning of network architecture.

In ZFNet, feature maps are not divided across two different GPU. Thus connections
between layers are less sparse than for AlexNet.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 9 / 51

Deconvnet

Find the pixels that maximize the
activation of a given feature map.

How? Invert the network.

Precisely:
Choose a layer
Choose a feature map
Run the network on a
validation set
Choose the image maximizing
the activation of this feature
map
"Backpropagate" this
activation to obtain a stylized
image in the pixel space

Erwan Scornet, Professor at Sorbonne Université Deep Learning 10 / 51

Results

Top 9 activations in a random subset of feature maps across the validation data,
projected down to pixel space using the previous deconvolutional network approach.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 11 / 51

Outline

5 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 12 / 51

Tiny VGGnet

[“Very deep convolutional networks for large-scale image recognition”, Simonyan and Zisserman 2014b]

Convolutional layers:
Small receptive field: 3× 3 (smallest ones capable of capturing the notion of
top/down, left/right!)
Stride of 1
Spatial resolution is preserved after convolution

Erwan Scornet, Professor at Sorbonne Université Deep Learning 13 / 51

Insightful remark...

If you stack 3 convolutional layers with receptive fields 3 × 3, you obtain a convolutional
layer with receptive fields 7× 7. What is the interest?

1 Stack of 3 convolutional layers of size 3× 3: complexity of 3××3× 3 = 27.

2 One standard convolutional layer of size 7× 7: complexity of 49.

In the first case, we cannot obtain every possible layer: the resulting object is a decom-
position of three consecutive convolutional layers. There are less possibilities hence less
parameters.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 14 / 51

Outline

5 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 15 / 51

GoogLeNet

[“Going deeper with convolutions”, Szegedy, W. Liu, et al. 2015]

Aim.
Increasing the depth and width of state-of-the-art convolutional neural networks while
keeping the number of parameters small:

Can approximate more complex functions

while being robust to overfitting and computationally appealing.

How.

Specifically, use of 1× 1 convolution layers to reduce the number of parameters +
apply filters of different sizes 3× 3, 5× 5 or 3× 3 max pooling (on each feature
maps).
use auxiliary classifiers

Details.
All convolution layers use ReLU activation functions.
Same spatial resolution for each feature map.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 16 / 51

GoogLeNet - Inception module

Same spatial resolution for each feature map.
Use of 1× 1 convolution layers to reduce the number of parameters then apply filters of
different sizes 3× 3, 5× 5 or 3× 3 max pooling (on each feature maps).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 17 / 51

Outline

5 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 18 / 51

ResNet (2016)

[“Deep residual learning for image recognition”, He et al. 2016]

Erwan Scornet, Professor at Sorbonne Université Deep Learning 19 / 51

Outline

5 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 20 / 51

DenseNet

[“Densely Connected Convolutional Networks.”, G. Huang et al. 2017]

Figure: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are
referred to as transition layers and change feature-map sizes via convolution and pooling

Erwan Scornet, Professor at Sorbonne Université Deep Learning 21 / 51

Outline

5 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

Erwan Scornet, Professor at Sorbonne Université Deep Learning 22 / 51

Inception V2-V3

Based on GoogLeNet Inception module
[“Rethinking the inception architecture for computer vision”, Szegedy, Vanhoucke, et al. 2016]

New ideas:
Using asymmetric convolutions 1× n and n × 1 (for n = 3, 5, 7) can be useful in the
middle layers of the networks for feature maps of size m ×m (for 12 ≤ m ≤ 20).
Label smoothing using a uniform distribution over labels

Erwan Scornet, Professor at Sorbonne Université Deep Learning 23 / 51

Xception

[“Xception: Deep learning with depthwise separable convolutions”, Chollet 2017]

Stands for “Extreme Inception” and builds upon Inception module in GoogLeNet.

The main ideas:
Perform 1× 1 convolutions
Apply 3× 3 (or other filter size) convolutions to each previous feature map (the one
created by 1× 1 convolutions) separately.

→ Decoupled the depth (1× 1 convolutions) and the spatial transformations
(convolutions on each feature map separately).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 24 / 51

[Abd+14] Ossama Abdel-Hamid et al. “Convolutional neural networks for speech
recognition”. In: IEEE/ACM Transactions on audio, speech, and language
processing 22.10 (2014), pp. 1533–1545.

[Aiz64] Mark A Aizerman. “Theoretical foundations of the potential function
method in pattern recognition learning”. In: Automation and remote control
25 (1964), pp. 821–837.

[AP81] RS Anderssen and PM Prenter. “A formal comparison of methods proposed
for the numerical solution of first kind integral equations”. In: The ANZIAM
Journal 22.4 (1981), pp. 488–500.

[Bah+16] Dzmitry Bahdanau et al. “End-to-end attention-based large vocabulary
speech recognition”. In: Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on. IEEE. 2016, pp. 4945–4949.

[Ben+06] Yoshua Bengio et al. “Convex neural networks”. In: Advances in neural
information processing systems. 2006, pp. 123–130.

[Bis95] Chris M Bishop. “Training with noise is equivalent to Tikhonov
regularization”. In: Neural computation 7.1 (1995), pp. 108–116.

[BKC15] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation”. In:
arXiv preprint arXiv:1511.00561 (2015).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 25 / 51

[Bla+20] Davis Blalock et al. “What is the state of neural network pruning?” In:
arXiv preprint arXiv:2003.03033 (2020).

[Blo62] Hans-Dieter Block. “The perceptron: A model for brain functioning. i”. In:
Reviews of Modern Physics 34.1 (1962), p. 123.

[Bre00] Leo Breiman. “Randomizing outputs to increase prediction accuracy”. In:
Machine Learning 40.3 (2000), pp. 229–242.

[Bri90] John S Bridle. “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition”. In:
Neurocomputing. Springer, 1990, pp. 227–236.

[BS85] Widrow Bernard and D Stearns Samuel. “Adaptive signal processing”. In:
Englewood Cliffs, NJ, Prentice-Hall, Inc 1 (1985), p. 491.

[BT07] Peter L Bartlett and Mikhail Traskin. “Adaboost is consistent”. In: Journal
of Machine Learning Research 8.Oct (2007), pp. 2347–2368.

[Cao+16] Zhe Cao et al. “Realtime multi-person 2d pose estimation using part affinity
fields”. In: arXiv preprint arXiv:1611.08050 (2016).

[Che+16] Yan Chen et al. “Cnntracker: Online discriminative object tracking via deep
convolutional neural network”. In: Applied Soft Computing 38 (2016),
pp. 1088–1098.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 26 / 51

[Che+18] Liang-Chieh Chen et al. “Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs”. In: IEEE
transactions on pattern analysis and machine intelligence 40.4 (2018),
pp. 834–848.

[Cho17] François Chollet. “Xception: Deep learning with depthwise separable
convolutions”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 1251–1258.

[Chu+14] Junyoung Chung et al. “Empirical evaluation of gated recurrent neural
networks on sequence modeling”. In: arXiv preprint arXiv:1412.3555 (2014).

[CLG01] Rich Caruana, Steve Lawrence, and C Lee Giles. “Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping”. In: Advances in
neural information processing systems. 2001, pp. 402–408.

[CLS15] Guilhem Chéron, Ivan Laptev, and Cordelia Schmid. “P-cnn: Pose-based
cnn features for action recognition”. In: Proceedings of the IEEE
international conference on computer vision. 2015, pp. 3218–3226.

[CM02] Dorin Comaniciu and Peter Meer. “Mean shift: A robust approach toward
feature space analysis”. In: IEEE Transactions on pattern analysis and
machine intelligence 24.5 (2002), pp. 603–619.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 27 / 51

[CPC16] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. “An analysis of
deep neural network models for practical applications”. In: arXiv preprint
arXiv:1605.07678 (2016).

[CSL13] Meng Cai, Yongzhe Shi, and Jia Liu. “Deep maxout neural networks for
speech recognition”. In: Automatic Speech Recognition and Understanding
(ASRU), 2013 IEEE Workshop on. IEEE. 2013, pp. 291–296.

[CUH15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and
accurate deep network learning by exponential linear units (elus)”. In: arXiv
preprint arXiv:1511.07289 (2015).

[Don+15] Jeffrey Donahue et al. “Long-term recurrent convolutional networks for
visual recognition and description”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 2625–2634.

[EF15] David Eigen and Rob Fergus. “Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional architecture”. In:
Proceedings of the IEEE International Conference on Computer Vision.
2015, pp. 2650–2658.

[Ege+20] Romain Egele et al. “AgEBO-Tabular: Joint Neural Architecture and
Hyperparameter Search with Autotuned Data-Parallel Training for Tabular
Data”. In: arXiv preprint arXiv:2010.16358 (2020).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 28 / 51

[EH14] Ian Endres and Derek Hoiem. “Category-independent object proposals with
diverse ranking”. In: IEEE transactions on pattern analysis and machine
intelligence 36.2 (2014), pp. 222–234.

[EKK11] Moataz El Ayadi, Mohamed S Kamel, and Fakhri Karray. “Survey on
speech emotion recognition: Features, classification schemes, and
databases”. In: Pattern Recognition 44.3 (2011), pp. 572–587.

[ES02a] Douglas Eck and Juergen Schmidhuber. “A first look at music composition
using lstm recurrent neural networks”. In: Istituto Dalle Molle Di Studi Sull
Intelligenza Artificiale 103 (2002).

[ES02b] Douglas Eck and Juergen Schmidhuber. “Finding temporal structure in
music: Blues improvisation with LSTM recurrent networks”. In: Neural
Networks for Signal Processing, 2002. Proceedings of the 2002 12th IEEE
Workshop on. IEEE. 2002, pp. 747–756.

[Fan+14] Yuchen Fan et al. “TTS synthesis with bidirectional LSTM based recurrent
neural networks”. In: Fifteenth Annual Conference of the International
Speech Communication Association. 2014.

[Fer+14] Raul Fernandez et al. “Prosody contour prediction with long short-term
memory, bi-directional, deep recurrent neural networks.”. In: Interspeech.
2014, pp. 2268–2272.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 29 / 51

[FH04] Pedro F Felzenszwalb and Daniel P Huttenlocher. “Efficient graph-based
image segmentation”. In: International journal of computer vision 59.2
(2004), pp. 167–181.

[FM82] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recognition”. In:
Competition and cooperation in neural nets. Springer, 1982, pp. 267–285.

[FS99] Yoav Freund and Robert E Schapire. “Large margin classification using the
perceptron algorithm”. In: Machine learning 37.3 (1999), pp. 277–296.

[Fuk75] Kunihiko Fukushima. “Cognitron: A self-organizing multilayered neural
network”. In: Biological cybernetics 20.3-4 (1975), pp. 121–136.

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth
international conference on artificial intelligence and statistics. 2010,
pp. 249–256.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks”. In: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. 2011, pp. 315–323.

[GFS07] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber.
“Multi-Dimensional Recurrent Neural Networks”. In: CoRR abs/0705.2011
(2007). arXiv: 0705.2011. url: http://arxiv.org/abs/0705.2011.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 30 / 51

https://arxiv.org/abs/0705.2011
http://arxiv.org/abs/0705.2011

[GG16] Yarin Gal and Zoubin Ghahramani. “A theoretically grounded application of
dropout in recurrent neural networks”. In: Advances in neural information
processing systems. 2016, pp. 1019–1027.

[GGM15] Georgia Gkioxari, Ross Girshick, and Jitendra Malik. “Actions and attributes
from wholes and parts”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2015, pp. 2470–2478.

[Gha+16] Marjan Ghazvininejad et al. “Generating topical poetry”. In: Proceedings of
the 2016 Conference on Empirical Methods in Natural Language
Processing. 2016, pp. 1183–1191.

[Gir+14] Ross Girshick, Jeff Donahue, et al. “Rich feature hierarchies for accurate
object detection and semantic segmentation”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2014, pp. 580–587.

[Gir+15] Ross Girshick, Forrest Iandola, et al. “Deformable part models are
convolutional neural networks”. In: Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition. 2015, pp. 437–446.

[GJ14] Alex Graves and Navdeep Jaitly. “Towards end-to-end speech recognition
with recurrent neural networks”. In: International Conference on Machine
Learning. 2014, pp. 1764–1772.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 31 / 51

[GK17] Lluís Gómez and Dimosthenis Karatzas. “Textproposals: a text-specific
selective search algorithm for word spotting in the wild”. In: Pattern
Recognition 70 (2017), pp. 60–74.

[Goo+13a] Ian J Goodfellow, Mehdi Mirza, et al. “An empirical investigation of
catastrophic forgetting in gradient-based neural networks”. In: arXiv
preprint arXiv:1312.6211 (2013).

[Goo+13b] Ian J Goodfellow, David Warde-Farley, et al. “Maxout networks”. In: arXiv
preprint arXiv:1302.4389 (2013).

[Gra+06] Alex Graves, Santiago Fernández, Faustino Gomez, et al. “Connectionist
temporal classification: labelling unsegmented sequence data with recurrent
neural networks”. In: Proceedings of the 23rd international conference on
Machine learning. ACM. 2006, pp. 369–376.

[Gra11] Alex Graves. “Practical variational inference for neural networks”. In:
Advances in Neural Information Processing Systems. 2011, pp. 2348–2356.

[Gra13] Alex Graves. “Generating sequences with recurrent neural networks”. In:
arXiv preprint arXiv:1308.0850 (2013).

[Gre+17] Klaus Greff et al. “LSTM: A search space odyssey”. In: IEEE transactions
on neural networks and learning systems 28.10 (2017), pp. 2222–2232.

[GSS14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
harnessing adversarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 32 / 51

[Gu+15] Jiuxiang Gu et al. “Recent advances in convolutional neural networks”. In:
arXiv preprint arXiv:1512.07108 (2015).

[He+14] Kaiming He et al. “Spatial pyramid pooling in deep convolutional networks
for visual recognition”. In: European conference on computer vision.
Springer. 2014, pp. 346–361.

[He+15] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification”. In: Proceedings of the IEEE
international conference on computer vision. 2015, pp. 1026–1034.

[He+16] Kaiming He et al. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770–778.

[Heb49] DO Hebb. The organization of behavior: a neuropsychological theory.
Wiley, 1949.

[Hin+12] Geoffrey E Hinton, Nitish Srivastava, et al. “Improving neural networks by
preventing co-adaptation of feature detectors”. In: arXiv preprint
arXiv:1207.0580 (2012).

[HK70] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased
estimation for nonorthogonal problems”. In: Technometrics 12.1 (1970),
pp. 55–67.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 33 / 51

[Hon+15] Seunghoon Hong et al. “Online tracking by learning discriminative saliency
map with convolutional neural network”. In: International Conference on
Machine Learning. 2015, pp. 597–606.

[HOT06] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning
algorithm for deep belief nets”. In: Neural computation 18.7 (2006),
pp. 1527–1554.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[Hu64] Michael Jen-Chao Hu. “Application of the adaline system to weather
forecasting”. PhD thesis. Department of Electrical Engineering, Stanford
University, 1964.

[Hua+17] Gao Huang et al. “Densely Connected Convolutional Networks.”. In: CVPR.
Vol. 1. 2. 2017, p. 3.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: arXiv preprint
arXiv:1502.03167 (2015).

[Jad+16] Max Jaderberg, Karen Simonyan, et al. “Reading text in the wild with
convolutional neural networks”. In: International Journal of Computer
Vision 116.1 (2016), pp. 1–20.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 34 / 51

[Jai+15] Navdeep Jaitly et al. “A neural transducer”. In: arXiv preprint
arXiv:1511.04868 (2015).

[JGH96] Kam-Chuen Jim, C Lee Giles, and Bill G Horne. “An analysis of noise in
recurrent neural networks: convergence and generalization”. In: IEEE
Transactions on neural networks 7.6 (1996), pp. 1424–1438.

[Ji+13] Shuiwang Ji et al. “3D convolutional neural networks for human action
recognition”. In: IEEE transactions on pattern analysis and machine
intelligence 35.1 (2013), pp. 221–231.

[JKF16] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. “Densecap: Fully
convolutional localization networks for dense captioning”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 4565–4574.

[JKL+09] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. “What is the best
multi-stage architecture for object recognition?” In: Computer Vision, 2009
IEEE 12th International Conference on. IEEE. 2009, pp. 2146–2153.

[Jou+16] Armand Joulin et al. “Bag of tricks for efficient text classification”. In: arXiv
preprint arXiv:1607.01759 (2016).

[JVZ14] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. “Deep features for
text spotting”. In: European conference on computer vision. Springer. 2014,
pp. 512–528.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 35 / 51

[Kar+98] Orhan Karaali et al. “Text-to-speech conversion with neural networks: A
recurrent TDNN approach”. In: arXiv preprint cs/9811032 (1998).

[KGB14] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A
convolutional neural network for modelling sentences”. In: arXiv preprint
arXiv:1404.2188 (2014).

[Kha+20] Asifullah Khan et al. “A survey of the recent architectures of deep
convolutional neural networks”. In: Artificial Intelligence Review 53.8
(2020), pp. 5455–5516.

[KM15] David Krueger and Roland Memisevic. “Regularizing rnns by stabilizing
activations”. In: arXiv preprint arXiv:1511.08400 (2015).

[Kra+15] Jonathan Krause et al. “Fine-grained recognition without part annotations”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 5546–5555.

[Kru+16] David Krueger, Tegan Maharaj, et al. “Zoneout: Regularizing rnns by
randomly preserving hidden activations”. In: arXiv preprint
arXiv:1606.01305 (2016).

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances in
neural information processing systems. 2012, pp. 1097–1105.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 36 / 51

[Lai+15] Siwei Lai et al. “Recurrent Convolutional Neural Networks for Text
Classification.”. In: AAAI. Vol. 333. 2015, pp. 2267–2273.

[LeC+89] Yann LeCun et al. “Generalization and network design strategies”. In:
Connectionism in perspective (1989), pp. 143–155.

[LeC+98a] Yann LeCun, Léon Bottou, Yoshua Bengio, et al. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11
(1998), pp. 2278–2324.

[LeC+98b] Yann LeCun, Léon Bottou, Genevieve B Orr, et al. “Efficient backprop”. In:
Neural networks: Tricks of the trade. Springer, 1998, pp. 9–50.

[Lee+15] Chen-Yu Lee et al. “Deeply-supervised nets”. In: Artificial Intelligence and
Statistics. 2015, pp. 562–570.

[LH15] Ming Liang and Xiaolin Hu. “Recurrent convolutional neural network for
object recognition”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2015, pp. 3367–3375.

[Lin+15] Di Lin et al. “Deep lac: Deep localization, alignment and classification for
fine-grained recognition”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2015, pp. 1666–1674.

[Liu+16] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European
conference on computer vision. Springer. 2016, pp. 21–37.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 37 / 51

[LJH15] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. “A simple way to
initialize recurrent networks of rectified linear units”. In: arXiv preprint
arXiv:1504.00941 (2015).

[LJL16] Yongxi Lu, Tara Javidi, and Svetlana Lazebnik. “Adaptive object detection
using adjacency and zoom prediction”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016,
pp. 2351–2359.

[LLP16] Hanxi Li, Yi Li, and Fatih Porikli. “Deeptrack: Learning discriminative
feature representations online for robust visual tracking”. In: IEEE
Transactions on Image Processing 25.4 (2016), pp. 1834–1848.

[LT15] Jinkyu Lee and Ivan Tashev. “High-level feature representation using
recurrent neural network for speech emotion recognition”. In: (2015).

[Mar10] James Martens. “Deep learning via Hessian-free optimization.”. In: ICML.
Vol. 27. 2010, pp. 735–742.

[Mas+00] Llew Mason et al. “Boosting algorithms as gradient descent”. In: Advances
in neural information processing systems. 2000, pp. 512–518.

[MHN13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier
nonlinearities improve neural network acoustic models”. In: Proc. icml.
Vol. 30. 1. 2013, p. 3.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 38 / 51

[Mik+11] Tomáš Mikolov et al. “Empirical evaluation and combination of advanced
language modeling techniques”. In: Twelfth Annual Conference of the
International Speech Communication Association. 2011.

[Mik+13] Tomas Mikolov, Ilya Sutskever, et al. “Distributed representations of words
and phrases and their compositionality”. In: Advances in neural information
processing systems. 2013, pp. 3111–3119.

[Mik+14] Tomas Mikolov, Armand Joulin, et al. “Learning longer memory in recurrent
neural networks”. In: arXiv preprint arXiv:1412.7753 (2014).

[MM15] Dmytro Mishkin and Jiri Matas. “All you need is a good init”. In: arXiv
preprint arXiv:1511.06422 (2015).

[Moo+15] Taesup Moon et al. “Rnndrop: A novel dropout for rnns in asr”. In:
Automatic Speech Recognition and Understanding (ASRU), 2015 IEEE
Workshop on. IEEE. 2015, pp. 65–70.

[MP43] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics
5.4 (1943), pp. 115–133.

[MP69] Marvin Minsky and Seymour Papert. “Perceptrons.”. In: (1969).
[MR13] Mehryar Mohri and Afshin Rostamizadeh. “Perceptron mistake bounds”. In:

arXiv preprint arXiv:1305.0208 (2013).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 39 / 51

[NH92] Steven J Nowlan and Geoffrey E Hinton. “Simplifying neural networks by
soft weight-sharing”. In: Neural computation 4.4 (1992), pp. 473–493.

[NLO16] Duc Thanh Nguyen, Wanqing Li, and Philip O Ogunbona. “Human
detection from images and videos: A survey”. In: Pattern Recognition 51
(2016), pp. 148–175.

[Nov63] Albert B Novikoff. On convergence proofs for perceptrons. Tech. rep.
STANFORD RESEARCH INST MENLO PARK CA, 1963.

[NP95] Steven J Nowlan and John C Platt. “A convolutional neural network hand
tracker”. In: Advances in neural information processing systems (1995),
pp. 901–908.

[Ola96] Mikel Olazaran. “A sociological study of the official history of the
perceptrons controversy”. In: Social Studies of Science 26.3 (1996),
pp. 611–659.

[Pap+02] Kishore Papineni et al. “BLEU: a method for automatic evaluation of
machine translation”. In: Proceedings of the 40th annual meeting on
association for computational linguistics. Association for Computational
Linguistics. 2002, pp. 311–318.

[Pau+14] Mattis Paulin et al. “Transformation pursuit for image classification”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2014, pp. 3646–3653.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 40 / 51

[PC14] Pedro HO Pinheiro and Ronan Collobert. “Recurrent convolutional neural
networks for scene labeling”. In: 31st International Conference on Machine
Learning (ICML). EPFL-CONF-199822. 2014.

[Pis+13] Leonid Pishchulin et al. “Poselet conditioned pictorial structures”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2013, pp. 588–595.

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of
training recurrent neural networks”. In: International Conference on
Machine Learning. 2013, pp. 1310–1318.

[PRR15] Peter Potash, Alexey Romanov, and Anna Rumshisky. “GhostWriter: Using
an LSTM for automatic rap lyric generation”. In: Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing. 2015,
pp. 1919–1924.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove:
Global vectors for word representation”. In: Proceedings of the 2014
conference on empirical methods in natural language processing (EMNLP).
2014, pp. 1532–1543.

[Red+16] Joseph Redmon et al. “You only look once: Unified, real-time object
detection”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 779–788.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 41 / 51

[Ren+15] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with
region proposal networks”. In: Advances in neural information processing
systems. 2015, pp. 91–99.

[Rif+11] Salah Rifai et al. “Adding noise to the input of a model trained with a
regularized objective”. In: arXiv preprint arXiv:1104.3250 (2011).

[Rip07] Brian D Ripley. Pattern recognition and neural networks. Cambridge
university press, 2007.

[Ros60] Frank Rosenblatt. “Perceptron simulation experiments”. In: Proceedings of
the IRE 48.3 (1960), pp. 301–309.

[Ros61] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory
of brain mechanisms. Tech. rep. CORNELL AERONAUTICAL LAB INC
BUFFALO NY, 1961.

[Rus+15] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”.
In: International Journal of Computer Vision 115.3 (2015), pp. 211–252.

[RZL17] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for
activation functions”. In: arXiv preprint arXiv:1710.05941 (2017).

[Sal+17] Hojjat Salehinejad et al. “Recent Advances in Recurrent Neural Networks”.
In: arXiv preprint arXiv:1801.01078 (2017).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 42 / 51

[SB17] Justin Salamon and Juan Pablo Bello. “Deep convolutional neural networks
and data augmentation for environmental sound classification”. In: IEEE
Signal Processing Letters 24.3 (2017), pp. 279–283.

[SB98] Holger Schwenk and Yoshua Bengio. “Training methods for adaptive
boosting of neural networks”. In: Advances in neural information processing
systems. 1998, pp. 647–653.

[Sch99] Michael Schuster. “On supervised learning from sequential data with
applications for speech recognition”. In: Daktaro disertacija, Nara Institute
of Science and Technology 45 (1999).

[SG16] Tom Sercu and Vaibhava Goel. “Advances in very deep convolutional neural
networks for lvcsr”. In: arXiv preprint arXiv:1604.01792 (2016).

[SGS15a] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Training very
deep networks”. In: Advances in neural information processing systems.
2015, pp. 2377–2385.

[SGS15b] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Highway
networks”. In: arXiv preprint arXiv:1505.00387 (2015).

[Shu+16] Bing Shuai et al. “Dag-recurrent neural networks for scene labeling”. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 3620–3629.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 43 / 51

[Sri+14] Nitish Srivastava et al. “Dropout: A simple way to prevent neural networks
from overfitting”. In: The Journal of Machine Learning Research 15.1
(2014), pp. 1929–1958.

[SSB14] Haşim Sak, Andrew Senior, and Françoise Beaufays. “Long short-term
memory based recurrent neural network architectures for large vocabulary
speech recognition”. In: arXiv preprint arXiv:1402.1128 (2014).

[SSB16] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. “Recurrent
dropout without memory loss”. In: arXiv preprint arXiv:1603.05118 (2016).

[SSN12] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. “LSTM neural
networks for language modeling”. In: Thirteenth annual conference of the
international speech communication association. 2012.

[STE13] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. “Deep neural
networks for object detection”. In: Advances in neural information
processing systems. 2013, pp. 2553–2561.

[SZ14a] Karen Simonyan and Andrew Zisserman. “Two-stream convolutional
networks for action recognition in videos”. In: Advances in neural
information processing systems. 2014, pp. 568–576.

[SZ14b] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

Erwan Scornet, Professor at Sorbonne Université Deep Learning 44 / 51

[Sze+15] Christian Szegedy, Wei Liu, et al. “Going deeper with convolutions”. In:
Cvpr. 2015.

[Sze+16] Christian Szegedy, Vincent Vanhoucke, et al. “Rethinking the inception
architecture for computer vision”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, pp. 2818–2826.

[TGK63] LR Talbert, GF Groner, and JS Koford. “Real-Time Adaptive
Speech-Recognition System”. In: The Journal of the Acoustical Society of
America 35.5 (1963), pp. 807–807.

[Tib96] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In:
Journal of the Royal Statistical Society. Series B (Methodological) (1996),
pp. 267–288.

[TQL15] Duyu Tang, Bing Qin, and Ting Liu. “Document modeling with gated
recurrent neural network for sentiment classification”. In: Proceedings of the
2015 conference on empirical methods in natural language processing. 2015,
pp. 1422–1432.

[TR93] Christine Tuerk and Tony Robinson. “Speech synthesis using artificial neural
networks trained on cepstral coefficients”. In: Third European Conference
on Speech Communication and Technology. 1993.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 45 / 51

[Tri+16] George Trigeorgis et al. “Adieu features? end-to-end speech emotion
recognition using a deep convolutional recurrent network”. In: Acoustics,
Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on. IEEE. 2016, pp. 5200–5204.

[TS14] Alexander Toshev and Christian Szegedy. “Deeppose: Human pose
estimation via deep neural networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2014,
pp. 1653–1660.

[TV15] Sachin S Talathi and Aniket Vartak. “Improving performance of recurrent
neural network with relu nonlinearity”. In: arXiv preprint arXiv:1511.03771
(2015).

[Uij+13] Jasper RR Uijlings et al. “Selective search for object recognition”. In:
International journal of computer vision 104.2 (2013), pp. 154–171.

[Van+16] Aäron Van Den Oord et al. “WaveNet: A generative model for raw audio.”.
In: SSW. 2016, p. 125.

[Ven+14] Subhashini Venugopalan et al. “Translating videos to natural language using
deep recurrent neural networks”. In: arXiv preprint arXiv:1412.4729 (2014).

[Vin+15] Oriol Vinyals et al. “Show and tell: A neural image caption generator”. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 3156–3164.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 46 / 51

[VML94] Régis Vaillant, Christophe Monrocq, and Yann Le Cun. “Original approach
for the localisation of objects in images”. In: IEE Proceedings-Vision, Image
and Signal Processing 141.4 (1994), pp. 245–250.

[VZQ15] Vivek Veeriah, Naifan Zhuang, and Guo-Jun Qi. “Differential recurrent
neural networks for action recognition”. In: 2015 IEEE International
Conference on Computer Vision (ICCV). IEEE. 2015, pp. 4041–4049.

[Wah87] Grace Wahba. “Three topics in ill-posed problems”. In: Inverse and ill-posed
problems. Elsevier, 1987, pp. 37–51.

[Wan+12] Tao Wang et al. “End-to-end text recognition with convolutional neural
networks”. In: Pattern Recognition (ICPR), 2012 21st International
Conference on. IEEE. 2012, pp. 3304–3308.

[Wan+13] Li Wan et al. “Regularization of neural networks using dropconnect”. In:
International conference on machine learning. 2013, pp. 1058–1066.

[WH60] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits.
Tech. rep. Stanford Univ Ca Stanford Electronics Labs, 1960.

[Wie15] Wessel N van Wieringen. “Lecture notes on ridge regression”. In: arXiv
preprint arXiv:1509.09169 (2015).

[WM13] Sida Wang and Christopher Manning. “Fast dropout training”. In:
international conference on machine learning. 2013, pp. 118–126.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 47 / 51

[Wöl+08] Martin Wöllmer et al. “Abandoning emotion classes-towards continuous
emotion recognition with modelling of long-range dependencies”. In: Proc.
9th Interspeech 2008 incorp. 12th Australasian Int. Conf. on Speech Science
and Technology SST 2008, Brisbane, Australia. 2008, pp. 597–600.

[WW88] Capt Rodney Winter and B Widrow. “Madaline Rule II: a training algorithm
for neural networks”. In: Second Annual International Conference on Neural
Networks. 1988, pp. 1–401.

[WWW18] Zhenhua Wang, Xingxing Wang, and Gang Wang. “Learning fine-grained
features via a CNN tree for large-scale classification”. In: Neurocomputing
275 (2018), pp. 1231–1240.

[WYW17] Yuting Wei, Fanny Yang, and Martin J Wainwright. “Early stopping for
kernel boosting algorithms: A general analysis with localized complexities”.
In: Advances in Neural Information Processing Systems. 2017,
pp. 6067–6077.

[Xia+14] Tianjun Xiao et al. “Error-driven incremental learning in deep convolutional
neural network for large-scale image classification”. In: Proceedings of the
22nd ACM international conference on Multimedia. ACM. 2014,
pp. 177–186.

[XT15] Saining Xie and Zhuowen Tu. “Holistically-nested edge detection”. In:
Proceedings of the IEEE international conference on computer vision. 2015,
pp. 1395–1403.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 48 / 51

[Xu+15a] Bing Xu et al. “Empirical evaluation of rectified activations in convolutional
network”. In: arXiv preprint arXiv:1505.00853 (2015).

[Xu+15b] Kelvin Xu et al. “Show, attend and tell: Neural image caption generation
with visual attention”. In: International conference on machine learning.
2015, pp. 2048–2057.

[Yan+15] Zhicheng Yan et al. “HD-CNN: hierarchical deep convolutional neural
networks for large scale visual recognition”. In: Proceedings of the IEEE
international conference on computer vision. 2015, pp. 2740–2748.

[Yan+16] Wei Yang et al. “End-to-end learning of deformable mixture of parts and
deep convolutional neural networks for human pose estimation”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, pp. 3073–3082.

[Yao+15] Li Yao et al. “Video description generation incorporating spatio-temporal
features and a soft-attention mechanism”. In: arXiv preprint
arXiv:1502.08029 (2015).

[Yoo+15] Donggeun Yoo et al. “Attentionnet: Aggregating weak directions for
accurate object detection”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2015, pp. 2659–2667.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 49 / 51

[YP15] Heng Yang and Ioannis Patras. “Mirror, mirror on the wall, tell me, is the
error small?” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2015, pp. 4685–4693.

[YRC07] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. “On early stopping in
gradient descent learning”. In: Constructive Approximation 26.2 (2007),
pp. 289–315.

[YS16] Wenpeng Yin and Hinrich Schütze. “Multichannel variable-size convolution
for sentence classification”. In: arXiv preprint arXiv:1603.04513 (2016).

[ZF14] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding
convolutional networks”. In: European conference on computer vision.
Springer. 2014, pp. 818–833.

[ZH05] Hui Zou and Trevor Hastie. “Regularization and variable selection via the
elastic net”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 67.2 (2005), pp. 301–320.

[Zha+16] Yu Zhang et al. “Weakly supervised fine-grained categorization with
part-based image representation”. In: IEEE Transactions on Image
Processing 25.4 (2016), pp. 1713–1725.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 50 / 51

[ZL14] Xingxing Zhang and Mirella Lapata. “Chinese poetry generation with
recurrent neural networks”. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2014,
pp. 670–680.

[ZS15] Heiga Zen and Haşim Sak. “Unidirectional long short-term memory
recurrent neural network with recurrent output layer for low-latency speech
synthesis”. In: Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE. 2015, pp. 4470–4474.

[ZY+05] Tong Zhang, Bin Yu, et al. “Boosting with early stopping: Convergence and
consistency”. In: The Annals of Statistics 33.4 (2005), pp. 1538–1579.

Erwan Scornet, Professor at Sorbonne Université Deep Learning 51 / 51

	Neural Network - MLP
	Architecture
	Hyperparameters

	MLP Regularization
	Dropout
	Batch normalization
	Early stopping

	Foundations of CNN
	Convolution layer
	Pooling layer
	A variety of CNNs
	Applications

	Foundations of RNN
	Architecture
	Long-term dependencies
	GRU and LSTM
	Truncated backpropagation
	A RNN application

	Appendix
	Famous CNN
	LeNet (1998)
	AlexNet (2012)
	ZFNet (2013)
	VGGNet (2014)
	GoogLeNet (2014)
	ResNet (2016)
	DenseNet (2017)
	Many other CNN

	References

