Is interpolation benign for Random Forest regression?

Erwan Scornet
joint work with Ludovic Arnould (Paris 6) and Claire Boyer (Paris 6)
Outline

Interpolation regimes in ML

Interpolation in random forests
 Non-adaptive RF: centered RF (CRF)
 Non-adaptive RF: KeRF
 Semi-adaptive RF: median RF
 Adaptive RF: Breiman RF
Interpolation regimes in ML
• Supervised learning: we assume to be given a training set $\mathcal{D}_n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ composed of i.i.d. pairs (X_i, Y_i), distributed as the generic pair (X, Y) with $X \in \mathbb{R}^d$ and $Y \in \mathbb{R}$ (regression).
Supervised learning: we assume to be given a training set $\mathcal{D}_n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ composed of i.i.d. pairs (X_i, Y_i), distributed as the generic pair (X, Y) with $X \in \mathbb{R}^d$ and $Y \in \mathbb{R}$ (regression).

Our goal is to “learn” a predictor f_n, based on the training set \mathcal{D}_n, such that

$$f_n(X) \underset{\text{prediction on test (unseen) data}}{\simeq} Y.$$

Performance measure of a predictor f: $\text{Risk}(f) = \mathbb{E}\left[(Y - f(X))^2\right]$.

The minimizer f^* of the risk is called the Bayes predictor.
• Supervised learning: we assume to be given a training set $\mathcal{D}_n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ composed of i.i.d. pairs (X_i, Y_i), distributed as the generic pair (X, Y) with $X \in \mathbb{R}^d$ and $Y \in \mathbb{R}$ (regression).

• Our goal is to “learn” a predictor f_n, based on the training set \mathcal{D}_n, such that

\[
\overbrace{f_n(X)} \approx Y. \\
\text{prediction on test (unseen) data}
\]

• Performance measure of a predictor f: $\text{Risk}(f) = \mathbb{E}\left[(Y - f(X))^2 \right]

• The minimizer f^* of the risk is called the \textbf{Bayes predictor}

• Consistency: We say that a predictor f_n is \textbf{consistent} when

\[
\text{Risk}(f_n) \xrightarrow{n \to +\infty} \text{Risk}(f^*).
\]
Complexity tuning

- Usually the constructed predictor f_n is constrained to live in a class \mathcal{F} of functions
- Complexity of the model \equiv Size of \mathcal{F}
- How to choose it?
 Statistical wisdom: take care of the so-called bias-variance tradeoff

Bias: systematic error, the predictor model is too simple to grasp data complexity

Variance: how much the predictions for a given point vary between different realizations of the model
Going beyond the traditional bias-variance tradeoff

New insights in the parametric world: adding another billion parameters to a neural network improves the predictive performances.

Fig. 1: Nakkiran et al. [2021]

Double descent phenomenon at least well-understood in linear models. [Hastie et al. 2019]
Over-parametrization in neural networks

The risk can be always decomposed as follows

$$\text{Risk} = \text{approximation error} + \text{estimation error} + \text{optimisation error}$$

Why does not overparametrization hurt NN training?

- **approximation error**: more parameters, better approx capacities
- **optimisation error**: more parameters, nicer optimisation space
 \[\text{NGuyen et al. 2019, Nguyen 2020}\]
- **estimation error**: more parameters, implicit regularisation
 \[\text{Deep learning: a statistical viewpoint, Bartlett, Montanari, Rakhlin, 21}\]
Interpolation and non-parametric methods

- Non-parametric learning
 No fixed number of parameters a priori
Interpolation and non-parametric methods

- Non-parametric learning

 No fixed number of parameters a priori

- Nearest neighbour predictor

 ✔ Simplest interpolator

\[\text{Risk}(f_{\text{NN}}) \xrightarrow{n \to +\infty} \text{Risk}(f^\star) \]

- Local-means estimator:

 \[f(x) = \frac{\sum_{i=1}^{n} Y_i K(\|x - X_i\|_h)}{\sum_{i=1}^{n} K(\|x - X_i\|_h)} \]

 \[K(x) = \frac{1}{\|x\|_p} \]

Interpolator Consistent [Devroye et al. 1998] [Belkin et al. 2019]
Interpolation and non-parametric methods

- Non-parametric learning
 No fixed number of parameters a priori

- Nearest neighbour predictor
 ✓ Simplest interpolator
 ✗ Inconsistent (apart from the noiseless setting) i.e. [Biau et al. 2015]

\[
\text{Risk}(f^{1\text{NN}}) \not\xrightarrow{n \to +\infty} \text{Risk}(f^*)
\]
Interpolation and non-parametric methods

- Non-parametric learning
 No fixed number of parameters a priori

- Nearest neighbour predictor
 ✓ Simplest interpolator
 ✗ Inconsistent (apart from the noiseless setting) i.e. [Biau et al. 2015]

$$\text{Risk}(f^{1NN}) \xrightarrow[n \to +\infty]{} \text{Risk}(f^*)$$

- Local-means estimator:
 $$f(x) = \frac{\sum_{i=1}^{n} Y_i K\left(\frac{\|x - X_i\|}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{\|x - X_i\|}{h}\right)} \quad \text{with} \quad K(x) = \frac{1}{\|x\|^p}$$
Interpolation and non-parametric methods

- Non-parametric learning
 No fixed number of parameters a priori

- Nearest neighbour predictor
 ✓ Simplest interpolator
 ✗ Inconsistent (apart from the noiseless setting) i.e. [Biau et al. 2015]

\[
\text{Risk}(f_{1NN}) \xrightarrow{n \to +\infty} \text{Risk}(f^*)
\]

- Local-means estimator:
 \[f(x) = \frac{\sum_{i=1}^{n} Y_i K\left(\frac{\|x - X_i\|}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{\|x - X_i\|}{h}\right)} \text{ with } K(x) = \frac{1}{\|x\|^p} \]
 ✓ Interpolator
 ✓ Consistent

 [Devroye et al. 1998]
 [Belkin et al. 2019]
Consistency of singular kernels

Belkin et al. [2019] consider Nadaraya-Watson predictors of the form

\[f_{a,h,n}(x) = \frac{\sum_{i=1}^{n} Y_i K_a \left(\frac{\|x-X_i\|}{h} \right)}{\sum_{i=1}^{n} K_a \left(\frac{\|x-X_i\|}{h} \right)} , \]

with singular kernels \(K_a(x) = \|x\|^{-a} 1_{\|x\| \leq 1} \).
Belkin et al. [2019] consider Nadaraya-Watson predictors of the form

$$f_{a,h,n}(x) = \frac{\sum_{i=1}^{n} Y_i K_a\left(\frac{\|x-X_i\|}{h}\right)}{\sum_{i=1}^{n} K_a\left(\frac{\|x-X_i\|}{h}\right)} ,$$

with singular kernels $K_a(x) = \|x\|^{-a}1_{\|x\| \leq 1}$.

Fig. 2: Singular kernel above for $a = 0.5$
Consistency of singular kernels

Belkin et al. [2019] consider Nadaraya-Watson predictors of the form

\[f_{a,h,n}(x) = \frac{\sum_{i=1}^{n} Y_i K_a \left(\frac{\|x-X_i\|}{h} \right)}{\sum_{i=1}^{n} K_a \left(\frac{\|x-X_i\|}{h} \right)} , \]

with singular kernels \(K_a(x) = \|x\|^{-a} 1_{\|x\| \leq 1} \).

Regression model: \(Y = f^*(X) + \varepsilon \) with

- \(\mathbb{E}[\varepsilon^2 | X] \leq \sigma^2 \) a.s.
- \(X \sim \mathcal{U}([0, 1]^d) \)
- and \(f^* \) Lipschitz.

Theorem (Belkin et al. [2019] - A specific case)

Let \(0 < a < d/2 \). Letting \(h_n = n^{-1/(2+d)} \), we have

\[\text{Risk}(f_{a,h_n,n}) \leq C n^{-2/(d+2)} . \]
Fig. 3: Interpolation with $K(x) = \|x\|^{-a} \mathbb{1}_{\|x\| \leq 1}$ and $a = 0.49$, [Belkin et al., 2019]
Spiked-smooth estimates

Spiked: the influence of interpolation is very localized around training points.

Smooth: anywhere else, the estimated function remains “smooth”.

\[f_n(x) = f^{\text{smooth}}(x) + \Delta^{\text{spiky}}(x) \]

Fig. 4: From [Belkin et al. 2019]
Spiked-smooth estimates

Fig. 4: From [Belkin et al. 2019]

Spiked: the influence of interpolation is very localized around training points.

Smooth: anywhere else, the estimated function remains “smooth”.

$$f_n(x) = f_{\text{smooth}}(x) + \Delta_{\text{spiky}}(x)$$

Beyond kernel methods

Can the same be said for random forests?
Interpolation in random forests
Random Forest

Random forest (RF) $f_{M,n}(x) = \frac{1}{M} \sum_{m=1}^{M} t_n(x, \theta_m)$

- Non-parametric method
- Based on bagging and random feature selections
- Aggregate the predictions of M trees
Random Forest

Random forest (RF) $f_{M,n}(x) = \frac{1}{M} \sum_{m=1}^{M} t_n(x, \theta_m)$

- Non-parametric method
- Based on bagging and random feature selections
- Aggregate the predictions of M trees

Decision Trees (DT)

- DT is a way to partition the input space along coordinates axes
- At each step, the DT finds a feature j and a threshold τ for splitting (usually according to some diversity criterion (entropy, ...))
Decision tree

\[t_n(x, \theta) = \sum_{i=1}^{n} Y_i \left(\frac{1_{x_i \in A_n(x, \theta)}}{N_n(x, \theta)} \right) \]

\(\theta \equiv \text{randomized cuts} \)

\(A_n(x, \theta) \equiv \text{leaf containing } x \)

\(N_n(x, \theta) \equiv \text{number of data points in } A_n(x, \Theta) \)
A classical random forest

- Training Data
- Bootstrap samples
- Tree 1
- Tree 2
- Tree M
- Average in regression
- Majority vote in classification
- Prediction
RF are powerful predictors in practice

- Consistency has been proved for several simpler RF models with label-independent splits.
- Most convergence results are based on a control of the tree depth, preventing trees to be fully grown, and thus avoiding interpolation.

Goal

- Is there any random forest model that both interpolate and exhibit consistency properties? In other words,

\[
\text{Risk (interpolating RF)} \xrightarrow{\text{n} \to +\infty} \text{Risk}(f^*)
\]
Research statement

Goal

- Study of the **consistency** of RF in **interpolation** regimes in **regression**

\[
\text{Risk (interpolating RF)} \xrightarrow{\,n \to +\infty\,} \text{Risk}(f^*)
\]

<table>
<thead>
<tr>
<th>RF type</th>
<th>Cuts depend on X_i</th>
<th>Cuts depend on Y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-adaptive</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>(centered RF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>semi-adaptive</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>(Median RF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adaptive</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(Breiman RF)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• The generative model satisfies

\[Y = f^*(X) + \varepsilon, \]

with \(X \sim U([0, 1]^d) \) and \(\mathbb{E} [\varepsilon | X] = 0 \) almost surely.

• Risk of \(f_n \)

\[\text{Risk}(f_n) = \mathbb{E} [(f_n(X) - Y)^2] \]

• Forest predictor

\[f_{M,n}(x) = \frac{1}{M} \sum_{m=1}^{M} t_n(x, \theta_j) \]

• Infinite forest predictor

\[f_{\infty,n}(x) = \mathbb{E}_{\Theta} [t_n(x, \Theta)] \]
Interpolation regimes in ML

Interpolation in random forests

Non-adaptive RF: centered RF (CRF)
Non-adaptive RF: KeRF
Semi-adaptive RF: median RF
Adaptive RF: Breiman RF
Non-adaptive RF: Centered RF (CRF)

Construction of a centered tree: at each step,

1. a feature is uniformly chosen among all possible d features
2. the split along the chosen feature is made at the center of the current cell

If the new point x falls into an empty cell, the tree arbitrarily predicts 0.
Non-adaptive RF: Centered RF (CRF)

Standard CRF

\[f_{M,n}(x, \Theta_M) = \frac{1}{M} \sum_{m=1}^{M} t_n(x, \Theta_m) \quad f_{\infty,n}(x) = \mathbb{E}_\Theta[f_n(x, \Theta)] \]

Theorem [Klusowski, 2021]

The risk of the infinite centered forest \(f_{\infty,n}^{\text{CRF}} \) satisfies, for any depth \(k_n \),

\[
\text{Risk}(f_{\infty,n}^{\text{CRF}}(X)) - \text{Risk}(f^*) \leq d \sum_{j=1}^{d} \| \partial_j f^* \|_{\infty} 2^{2k_n \log(1 - 1/(2d))}
+ 12\sigma^2 8^d d^{d/2} \frac{2^{k_n}}{n} \frac{1}{k_n^{(d-1)/2}}
+ B^2 \exp \left(-\frac{n}{2^{k_n+1}} \right) .
\]

- approximation error
- estimation error
- bias related to empty cells
Non-adaptive RF: Centered RF (CRF)

Standard CRF

\[
f_{M,n}(x, \Theta_M) = \frac{1}{M} \sum_{m=1}^{M} t_n(x, \Theta_m) \quad f_{\infty,n}(x) = \mathbb{E}_\Theta[f_n(x, \Theta)]
\]

Theorem [Klusowski, 2021]

The risk of the infinite centered forest \(f_{\infty,n}^{\text{CRF}} \) satisfies, for a depth \(k_n = \log_2 n \),

\[
\text{Risk}(f_{\infty,n}^{\text{CRF}}(X)) - \text{Risk}(f^*) \leq d \sum_{j=1}^{d} \| \partial_j f^* \|_\infty n^2 \log(1 - 1/(2d))
\]

\[
+ 12\sigma^2 8^d d^{d/2} \frac{1}{(\log_2 n)^{(d-1)/2}} + B^2 \exp \left(-\frac{1}{2} \right)
\]

approximation error

estimation error

bias related to empty cells
Non-adaptive RF: Centered RF (CRF)

Standard CRF

\[
f_{M,n}(x, \Theta_M) = \frac{1}{M} \sum_{m=1}^{M} t_n(x, \Theta_m) \quad f_{\infty,n}(x) = \mathbb{E}_{\Theta}[f_n(x, \Theta)]
\]

Unfortunately...

Proposition [Arnould et al., 2023]

Assume that \(\mathbb{E}[f^*(X)^2] > 0 \). Then, in the mean interpolating regime (one point/cell in average, \(k = \lfloor \log_2(n) \rfloor \)), the CRF \(f_{\infty,n}^{\text{CRF}} \) is not consistent.
Non-adaptive RF: Centered RF (CRF)

Addressing the problem of empty cells by not averaging over them!

Void-free CRF

\[f_{VF}^{M,n}(x, \Theta_M) \propto \sum_{m=1}^{M} t_n(x, \Theta_m) \mathbb{1}_{N_n(x, \Theta_m) > 0} \]

\[f_{\infty,n}(x) = \mathbb{E}_\Theta [f_n(x, \Theta) | N_n(x, \Theta) > 0] \]
Non-adaptive RF: Centered RF (CRF)

Addressing the problem of empty cells by not averaging over them!

Void-free CRF

\[f_{M,n}^{\text{VF}}(x, \Theta_M) \propto \sum_{m=1}^{M} t_n(x, \Theta_m) \mathbb{1}_{N_n(x, \Theta_m) > 0} \]

\[f_{\infty,n}^{\text{VF}}(x) = \mathbb{E}_\Theta [f_n(x, \Theta) | N_n(x, \Theta) > 0] \]

Proposition [Arnould et al., 2023]

Assume that \(f^* \) has bounded partial derivatives. Then, in the mean interpolating regime (\(k = \lceil \log_2 n \rceil \)), the infinite void-free-CRF \(f_{\infty,n}^{\text{VF}} \) is consistent in a noiseless setting (\(\sigma = 0 \)), and, for all \(n > 1 \),

\[
\mathcal{R} (f_{\infty,n}^{\text{VF}}(X)) \leq C_d \left(\frac{n}{\log_2 n} \right)^{2 \log_2 \left(1 - \frac{1}{2d} \right)} + (C_d + 2) n^{-1/(2 \ln 2)},
\]

where \(C_d = 4d \left(\sum_{j=1}^{d} \| \partial f_{j}^* \|_\infty^2 \right) \).
Centered RF: ideas of proof

Aggregating all cells,

\[
\text{Risk}(f_{\infty,n}^{\text{RF}}(X)) - \text{Risk}(f^*) \geq \mathbb{E} \left[f^*(X)^2 \mathbb{P}(N_n(X, \Theta) = 0 | X) \right].
\]

Aggregating non-empty cells (noiseless setting)

\[
\text{Risk}(f_{\infty,n}^{\text{VF}}(X)) - \text{Risk}(f^*) \leq \text{bias}^2 + \|f\|_\infty^2 \mathbb{P}(\forall \Theta, N_n(\Theta, X) = 0).
\]

<table>
<thead>
<tr>
<th>CRF vs Void-free CRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{P}(N_n(X, \Theta) = 0)) falling into an empty leaf in a single random tree of the infinite forest.</td>
</tr>
<tr>
<td>vs.</td>
</tr>
<tr>
<td>(\mathbb{P}_{X, D_n}[\forall \Theta, N_n(X, \Theta) = 0].) falling into empty leaves in all trees of the infinite forest.</td>
</tr>
</tbody>
</table>
Outline

Interpolation regimes in ML

Interpolation in random forests

- Non-adaptive RF: centered RF (CRF)
- Non-adaptive RF: KeRF
- Semi-adaptive RF: median RF
- Adaptive RF: Breiman RF
Kernel RF (KeRF)

Still in the mean interpolation regime, one can study KeRF

- to avoid the problem of empty cells
- to control the risk (variance)
Kernel RF (KeRF)

Still in the mean interpolation regime, one can study KeRF

- to avoid the problem of **empty cells**
- to control the risk (**variance**)

KeRF

1. grow all centered trees
2. average along all points contained in the leaves in which \(x \) falls

\[
f_{M,n}^{KeRF}(x, \Theta) = \frac{\sum_{i=1}^{n} Y_i K_{M,n}(x, X_i)}{\sum_{i=1}^{n} K_{M,n}(x, X_i)} = \frac{\sum_{i=1}^{n} Y_i \sum_{m=1}^{M} \mathbb{1}_{X_i \in A_n(x, \Theta_m)}}{\sum_{i=1}^{n} \sum_{m=1}^{M} \mathbb{1}_{X_i \in A_n(x, \Theta_m)}}
\]
Kernel RF (KeRF)

Still in the mean interpolation regime, one can study KeRF

- to avoid the problem of empty cells
- to control the risk (variance)

KeRF

1. grow all centered trees
2. average along all points contained in the leaves in which x falls

$$f_{M,n}^{\text{KeRF}}(x, \Theta) = \frac{\sum_{i=1}^{n} Y_i K_{M,n}(x, X_i)}{\sum_{i=1}^{n} K_{M,n}(x, X_i)} = \frac{\sum_{i=1}^{n} Y_i \sum_{m=1}^{M} 1_{X_i \in A_n(x, \Theta_m)}}{\sum_{i=1}^{n} \sum_{m=1}^{M} 1_{X_i \in A_n(x, \Theta_m)}}$$

Infinite KeRF

$$f_{\infty,n}^{\text{KeRF}}(x) = \frac{\sum_{i=1}^{n} Y_i K_{n}(x, X_i)}{\sum_{i=1}^{n} K_{n}(x, X_i)} = \frac{\sum_{i=1}^{n} Y_i 1_{\Theta} [X_i \in A_n(x, \Theta)]}{\sum_{i=1}^{n} 1_{\Theta} [X_i \in A_n(x, \Theta)]]}$$
Assume that f^* is Lipschitz continuous and $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. Let $d > 5$. Then, in the mean interpolation regime, $k_n = \lfloor \log_2(n) \rfloor$,

$$\text{Risk}(f_{\infty,n}^{\text{KeRF}}) - \text{Risk}(f^*) \leq C_d \log(n)^{-\frac{d-5}{6}},$$

with $C_d > 0$ a constant depending on $\sigma, d, \|f^*\|_\infty$.

Remarks

- In the mean interpolation regime, the infinite KeRF is consistent.
- Slow convergence rate.
- Almost matching the lower bound $\log(n) - d + 1$ for the optimal convergence rate of deep non-adaptive RF [Lin & Jeon, 2006].
Theorem [Arnould et al., 2023]

Assume that f^* is Lipschitz continuous and $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. Let $d > 5$. Then, in the mean interpolation regime, $k_n = \lfloor \log_2(n) \rfloor$,

$$\text{Risk}(f_{\infty,n}^{\text{KeRF}}) - \text{Risk}(f^*) \leq C_d \log(n)^{-(d-5)/6},$$

with $C_d > 0$ a constant depending on $\sigma, d, \|f^*\|_\infty$.

Remarks

- In the **mean interpolation** regime, the infinite KeRF is **consistent**
- **Slow** convergence rate
- Almost matching the lower bound $\log(n)^{-d+1}$ for the optimal convergence rate of deep non-adaptive RF \[\text{Lin & Jeon, 2006}\]
Outline

Interpolation regimes in ML

Interpolation in random forests

Non-adaptive RF: centered RF (CRF)

Non-adaptive RF: KeRF

Semi-adaptive RF: median RF

Adaptive RF: Breiman RF
Towards strict interpolation

- So far, study in the mean interpolation regime only
- To analyze the strict interpolation case, we have to consider semi-adaptive RF
Towards strict interpolation

- So far, study in the mean interpolation regime only
- To analyze the strict interpolation case, we have to consider semi-adaptive RF

Semi-adaptive median RF

1. Median tree
 - Select a_n observations without replacement among the original sample D_n. Use only these observations to build the tree.
 - For each cell,
 - Select randomly $\text{mtry} = 1$ coordinate among $\{1, \ldots, d\}$;
 - Split at the location of the empirical median of X_i.
 - Stop when each cell contains exactly $\text{nodesize} = 1$ observation.

2. Median RF: aggregation of median trees
Assumption (H1)

The model writes $Y = f^*(X) + \varepsilon$, where ε is a centred noise such that $\mathbb{V}[\varepsilon|X = x] \leq \sigma^2$, X has a density on $[0, 1]^d$ and f^* is continuous.
What we know about Median RF

<table>
<thead>
<tr>
<th>Assumption (H1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The model writes $Y = f^*(X) + \varepsilon$, where ε is a centred noise such that $\mathbb{V}[\varepsilon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem [Scornet, 2016]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Assumption (H1). Then, provided $a_n \to \infty$ and $a_n/n \to 0$, the infinite median forest $f_{\infty, n}^{\text{MedRF}}$ is consistent, i.e.,</td>
</tr>
<tr>
<td>$\lim_{n \to \infty} \text{Risk}(f_{\infty, n}^{\text{MedRF}}) = \text{Risk}(f^*)$.</td>
</tr>
</tbody>
</table>
What we know about Median RF

Assumption (H1)

The model writes \(Y = f^*(X) + \varepsilon \), where \(\varepsilon \) is a centred noise such that \(\mathbb{V}[\varepsilon | X = x] \leq \sigma^2 \), \(X \) has a density on \([0, 1]^d\) and \(f^* \) is continuous.

Theorem [Scornet, 2016]

Grant Assumption (H1). Then, provided \(a_n \to \infty \) and \(a_n/n \to 0 \), the infinite median forest \(f_{\infty,n}^{\text{MedRF}} \) is consistent, i.e.,

\[
\lim_{n \to \infty} \text{Risk}(f_{\infty,n}^{\text{MedRF}}) = \text{Risk}(f^*).
\]

Remarks

- First (and only) consistency results for fully grown trees.
- Each tree is not consistent but the forest is, because of subsampling.
What we know about Median RF

Assumption (H1)
The model writes \(Y = f^*(X) + \varepsilon \), where \(\varepsilon \) is a centred noise such that \(\mathbb{V}[\varepsilon | X = x] \leq \sigma^2 \), \(X \) has a density on \([0,1]^d\) and \(f^* \) is continuous.

Theorem [Scornet, 2016]
Grant Assumption (H1). Then, provided \(a_n \to \infty \) and \(a_n/n \to 0 \), the infinite median forest \(f_{\infty,n}^{\text{MedRF}} \) is consistent, i.e.,

\[
\lim_{n \to \infty} \text{Risk} \left(f_{\infty,n}^{\text{MedRF}} \right) = \text{Risk}(f^*).
\]

Remarks

- First (and only) consistency results for fully grown trees.
- Each tree is not consistent but the forest is, because of subsampling.

Unsatisfying result because forest interpolation only occurs when \(a_n = n \).
Theorem [Arnould et al., 2023]

Suppose that f^* has bounded partial derivatives and that n is a power of two. Then, the infinite interpolating Median RF $f_{\infty, n}^{\text{MedRF}}$ is consistent and verifies:

$$
\mathcal{R}(f_{\infty, n}^{\text{MedRF}}) \leq C_1 d \left(\sum_{\ell=1}^{d} \| \partial_\ell f^* \|^2_\infty \right) \left(1 - \frac{3}{4d} \right)^{\log_2 n} + \sigma^2 C_{2,d} (\log_2 n)^{-(d-1)/2},
$$

where C_1 and $C_{2,d}$ are explicit constants.
Theorem [Arnould et al., 2023]

Suppose that \(f^* \) has bounded partial derivatives and that \(n \) is a power of two. Then, the infinite interpolating Median RF \(f_{\infty,n}^{\text{MedRF}} \) is consistent and verifies:

\[
\mathcal{R} (f_{\infty,n}^{\text{MedRF}}) \leq C_1 d \left(\sum_{\ell=1}^{d} \| \partial_{\ell} f^* \|_\infty^2 \right) \left(1 - \frac{3}{4d} \right)^{\log_2 n} + \sigma^2 C_{2,d} (\log_2 n)^{- (d-1)/2},
\]

where \(C_1 \) and \(C_{2,d} \) are explicit constants.

- Interpolating (median) RF are consistent in a noisy setting (first result).
- Slow rate as expected
- Each tree is not consistent but the forest is (due to the randomization of splitting directions).
- First result to highlight the asymptotic benefit of split randomization (making the forest consistent).
Interpolation regimes in ML

Interpolation in random forests

- Non-adaptive RF: centered RF (CRF)
- Non-adaptive RF: KeRF
- Semi-adaptive RF: median RF
- Adaptive RF: Breiman RF
Adaptive RF: Breiman forests

- Widely used
- Cuts depend on X_i and Y_i

Breiman random forests

- Data sampling: **bootstrap**
- At each cell, select randomly m_{try} coordinates among $\{1, \ldots, d\}$.
- Choose the split by minimizing the CART-split criterion on the cell along the m_{try} selected coordinates.
- Stop when each cell contains exactly one point.

- Aggregate CART trees

Hard to theoretically analyze (even in non-interpolation regimes)
Numerical XP with interpolating Breiman RF

- Simulated data with 4 different models
- 500 trees per forest, (max-depth = None)
- 2 types of forests
 - max-feature = ⌈d/3⌉ + bootstrap off (interpolating)
 - max-feature = d + bootstrap on (non-interpolating)
Numerical XP with interpolating Breiman RF

- Simulated data with 4 different models
- 500 trees per forest, (max-depth=None)
- 2 types of forests
 - \(\text{max-feature} = \lceil \frac{d}{3} \rceil + \text{bootstrap off} \) (interpolating)
 - \(\text{max-feature} = d + \text{bootstrap on} \) (non-interpolating)

![Graphs showing excess risk for different models and n values](image-url)
Numerical XP with interpolating Breiman RF

- Simulated data with 4 different models
- 500 trees per forest, (max-depth = None)
- 2 types of forests
 - \(\text{max-feature} = \lceil d/3 \rceil + \text{bootstrap off} \) (interpolating)
 - \(\text{max-feature} = d \) + bootstrap on (non-interpolating)

Conclusion

Interpolating Breiman RF seem to be consistent even in the noisy setting.
Breiman RF: how about the interpolation zone?

- Theoretical analysis of interpolating Breiman RF consistency: out of reach for now
- Study of the interpolation zone instead!
- Partition of the RF \(\equiv \) intersection of the partitions of the trees of the RF
Breiman RF: how about the interpolation zone?

✗ Theoretical analysis of interpolating Breiman RF consistency: out of reach for now

- Study of the interpolation zone instead!
- Partition of the RF ≡ intersection of the partitions of the trees of the RF

Interpolation zone

Area of the space where the prediction relies on only one point of the dataset
Breiman RF: volume of the interpolation zone

Proposition [Arnould et al., 2023]

Consider an infinite Breiman forest constructed without bootstrap, with \text{max-features} fixed to 1. Then, the volume of its interpolation zone \(Z_n \) verifies

\[
\mathbb{E}[\text{vol}(Z_n)] \leq \frac{1}{n^{d-1}}(1 - 2^{-n})^d
\]

- The risk can be decomposed as

\[
\text{Risk}(f_n(X)) - \text{Risk}(f^*) = \underbrace{\text{Risk}((f_n(X) - f^*(X))1_{X \in Z_n})}_{\geq \sigma^2 \mathbb{E}[\text{vol}(Z_n)]} + \text{Risk}((f_n(X) - f^*(X))1_{X \notin Z_n})
\]

- **Necessary condition for consistency:** \(\mathbb{E}[\text{vol}(Z_n)] \to 0 \) as \(n \to \infty \)

- For most points of the space, more than one point are involved in the prediction of the RF

\[\sim \text{ self-averaging property}\]
Conclusion

• Non-adaptive interpolating RF are **not consistent** (empty cells)
Conclusion

- Non-adaptive interpolating RF are not consistent (empty cells)
- Adaptive RF: interpolation and consistency become compatible when self-regularisation processes occur
 - Theoretically proved for Median RF
 - Empirical evidence for Breiman RF
Conclusion

- Non-adaptive interpolating RF are **not consistent** (empty cells)
- Adaptive RF: **interpolation and consistency** become compatible when **self-regularisation** processes occur
 - Theoretically proved for Median RF
 - Empirical evidence for Breiman RF
- RF vs kernel methods:
 - Singular Kernel (any bandwidth) versus **interpolating RF (large depth)**
 - Slow rate of consistency
Conclusion - Thank you!

- Non-adaptive interpolating RF are not consistent (empty cells)
- Adaptive RF: interpolation and consistency become compatible when self-regularisation processes occur
 - Theoretically proved for Median RF
 - Empirical evidence for Breiman RF
- RF vs kernel methods:
 - Singular Kernel (any bandwidth) versus interpolating RF (large depth)
 - Slow rate of consistency
Summary of theoretical contributions

<table>
<thead>
<tr>
<th>Mean interpolation regime (non-adaptive RF)</th>
<th>Conditions for consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managed the empty cells issue</td>
<td>Regardless of the noise scenario</td>
</tr>
<tr>
<td>Controlling the bias</td>
<td></td>
</tr>
<tr>
<td>Controlling the variance</td>
<td></td>
</tr>
<tr>
<td>Decreasing volume of the interpolation zone</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean interpolation regime (non-adaptive RF)</th>
<th>Centered RF</th>
<th>Void-free CRF</th>
<th>Centered KeRF</th>
<th>Median RF</th>
<th>Breiman RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managed the empty cells issue</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Controlling the bias</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlling the variance</td>
<td>✓</td>
<td>?</td>
<td>✓</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Decreasing volume of the interpolation zone</td>
<td></td>
<td>?</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Models in numerical XP

- **Model 1:** $d = 2$, $Y = 2X_1^2 + \exp(-X_2^2)$ (noiseless)
- **Model 2:** $d = 8$, $Y = X_1X_2 + X_3^2 - X_4X_5 + X_6X_7 - X_8^2 + \mathcal{N}(0, 0.5)$
- **Model 3:** $d = 6$, $Y = X_1^2 + X_2^2X_3e^{-|X_4|} + X_5 - X_6 + \mathcal{N}(0, 0.5)$
- **Model 4:** $d = 5$,
 $Y = 1/(1 + \exp(-10(\sum_{i=1}^{d} X_i - 1/2))) + \mathcal{N}(0, 0.05)$