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Random forests are great!

Random forests are a class of algorithms created by Breiman [2001a] to solve

regression and classification problems

• Among state-of-the-art methods for

tabular data

• No need to precisely tune parameters

• Valuable in high-dimension settings

• Based on trees which are interpretable

• Difficult to analyze theoretically

• Difficult to interpret
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General mathematical framework

Regression setting

We are given a training set Dn = {(X1,Y1), ..., (Xn,Yn)} where the pairs

(Xi ,Yi ) ∈ [0, 1]d × R are i .i .d . distributed as (X ,Y ) and

Y = m(X) + ε,

with E[ε|X] = 0.

Aim: estimating the regression function m using random forests.
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Random forests



How to build a tree?

• Trees are built recursively by splitting the current cell into two children

until some stopping criterion is satisfied.

4



How to build a tree?

• Trees are built recursively by splitting the current cell into two children

until some stopping criterion is satisfied.

4



How to build a tree?

• Trees are built recursively by splitting the current cell into two children

until some stopping criterion is satisfied.

4



How to build a tree?

• Trees are built recursively by splitting the current cell into two children

until some stopping criterion is satisfied.

4



How to build a tree?

• Trees are built recursively by splitting the current cell into two children

until some stopping criterion is satisfied.

4



How to build a tree?

• Trees are built recursively by splitting the current cell into two children

until some stopping criterion is satisfied.

4



How to build a tree?

• Trees are built recursively by splitting the current cell into two children

until some stopping criterion is satisfied.

4



How to build a tree?

Breiman Random forests are defined by

1. A splitting rule : minimize the variance within the resulting cells.

2. A stopping rule : stop when each cell contains less than nodesize = 2

observations.
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How to perform splits?

For a split direction j ∈ {1, . . . , d} and a split position z ∈ [0, 1] , the

criterion takes the form

Ln(j , z) =
1

Nn(A)

n∑
i=1

(
Yi − ȲAL

1
X

(j)
i <z
− ȲAR

1
X

(j)
i ≥z

)2

,

where

• AL = {x ∈ A : x(j) < z} and AR = {x ∈ A : x(j) ≥ z}
• ȲA is the average of the Yi ’s belonging to A.

• Nn(A) is the number of points in A
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How to perform splits of Breiman’s forests?

An example: j = 1 and z = 0.5.
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Construction of random forests

Randomness in tree construction

• Resampling the data set via bootstrap;

• For each cell:

• Preselecting a subset of mtry variables, eligible for splitting.
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Construction of Breiman forests

Breiman tree

• Select an observations with replacement among the original sample

Dn. Use only these observations to build the tree.

• For each cell,

• Select randomly mtry coordinates among {1, . . . , d};
• Choose the best split along previous direction, the one minimizing

the CART criterion.

• Stop when each cell contains less than nodesize observations.
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Literature

• Random forests were created by Breiman [2001a].

• Theoretical works started by focusing on convergence and upper bounds

on the quadratic risk of a forest:

• stylized forests, whose construction is independent of the dataset

[Biau et al., 2008, Biau, 2012, Genuer, 2012, Zhu et al., 2015, Arlot and

Genuer, 2014, Scornet, 2016b, Klusowski, 2018, Mourtada et al., 2020]

• forest algorithms close to the original algorithm

[Scornet et al., 2015, Scornet, 2016a, Wager and Walther, 2015]

• Another line of work: estimating the variance, proving the asymptotic

normality of random forests:

[Mentch and Hooker, 2016, Wager and Athey, 2017]

• Literature review on random forests:

• Methodological review [Criminisi et al., 2011, Boulesteix et al., 2012],

• Theoretical review [Biau and Scornet, 2016] with comments by S. Arlot,

R. Genuer, P. Geurts, G. Hooker, L. Mentch, S. Wager, L. Wehenkel. 9



Interpretability



Existing Approaches

• Black-box models

E.g. Neural networks, Random

forests

Combined with post-processing

E.g. variable importance

sensitivity analysis

local linearization

• Interpretable models

E.g. decision trees, decision rules

X (2) < 1.2 X (2) ≥ 1.2

X (1) < 6.2

X (1) ≥ 6.2

X (1) < 0.3

X (1) ≥ 0.3

Hard to operationalize

Unstable
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Going beyong black-box nature of random forests

• Designing simple, interpretable and stable rules extracted from

random forests: SIRUS

• Interpretable Random Forests via Rule Extraction,

by C. Bénard, G. Biau, S. Da Veiga, E. Scornet

• Variable importances in random forests:

• Mean Decrease Accuracy (MDA) [Breiman, 2001a]

MDA for random forests: inconsistency, and a practical solution via

the Sobol-MDA,

by C. Bénard, S. Da Veiga, E. Scornet

• Mean Decrease Impurity (MDI) [Breiman, 2002]

Subject of this talk
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Variable importance in random

forests: MDI



How to perform splits?

For a split direction j ∈ {1, . . . , d} and a split position z ∈ [0, 1] , the

criterion takes the form

Ln,A(j , z) =
1

Nn(A)

n∑
i=1

(
Yi − ȲAL

1
X

(j)
i <z
− ȲAR

1
X

(j)
i ≥z

)2

,

where

• AL = {x ∈ A : x(j) < z} and AR = {x ∈ A : x(j) ≥ z}
• ȲA is the average of the Yi ’s belonging to A.

• Nn(A) is the number of points in A
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How to compute MDI?

The Mean Decrease in Impurity (MDI) for the variable X (j) computed via

a tree T is defined by

M̂DIT (X (j)) =
∑
A∈T
jn,A=j

pn,ALn,A(jn,A, zn,A), (1)

where the sum ranges over all cells A in T that are split along variable j

and pn,A is the fraction of observations falling into A.
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Literature

Empircally known flaws of MDI:

• favor variables with many categories [see, e.g., Strobl et al., 2007,

Nicodemus, 2011]

• biased towards variables that possess a category having a high

frequency [Nicodemus, 2011, Boulesteix et al., 2011]

• biased in presence of correlated features [Nicodemus and Malley,

2009]

Designing new tree building procedure: [Strobl et al., 2008, 2009].

Theory:

• Louppe et al. [2013]: study of theoretical MDI when all variables are

categorical.

• Bias related to in-sample estimation [Li et al., 2019, Zhou and

Hooker, 2019]
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First result

Proposition [Scornet, 2020]

Let Tn be the CART tree, based on the data set Dn. Then,

V̂[Y ] =
d∑

j=1

M̂DITn(X (j)) + Rn(m̂Tn), (2)

where m̂Tn is the estimate associated to Tn.

• Valid for many tree building processes (telescopic sums)

• Relation between M̂DI and R2:

R2 =

∑d
j=1 M̂DITn(X (j))

V̂[Y ]

• MDI, computed with fully-grown trees is positively biased:

lim
n→∞

d∑
j=1

M̂DITn(X (j)) = V[m(X)] + σ2.
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Additive models

Definition: Additive model

The regression model writes Y =
∑d

j=1 mj(X
(j)) + ε, where each mj is

continuous; ε is a Gaussian noise N (0, σ2), independent of X; and

X ∼ U([0, 1]d).

Theorem [Additive model, Scornet, 2020]

Assume that the Additive Model holds. Let Tn be the empirical CART

tree. Then, for all γ > 0, ρ ∈ (0, 1], there exists K such that, for all

k > K , for all n large enough, with probability at least 1− ρ, for all j ,∣∣∣M̂DITn,k (X (j))−V[mj(X
(j))]
∣∣∣ ≤ γ.
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Additive model - theoretical results

Theorem [Additive model, Scornet, 2020]

Assume that the Additive Model holds. Let Tn be the empirical CART

tree. Then, for all γ > 0, ρ ∈ (0, 1], there exists K such that, for all

k > K , for all n large enough, with probability at least 1− ρ, for all j ,∣∣∣M̂DITn,k (X (j))−V[mj(X
(j))]
∣∣∣ ≤ γ.

• MDI targets the same value as MDA (up to a constant 2).

• MDI targets the right quantity in an additive model with

independent features.

→ MDI can be used to rank and select variables in this context

• MDI is consistent when computed with shallow trees.
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Moving beyond additivity

Model (Multiplicative model)

Let α ∈ R. The regression model writes Y = 2dα
∏d

j=1 X
(j) + ε, where

α ∈ R; ε is a Gaussian noise N (0, σ2), independent of X; and

X ∼ U([0, 1]d).

• This model contains interactions between all input variables

• There exists many theoretical trees

An example in dimension two:
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With interactions, important splits are not performed at the top

of the tree

Two theoretical trees in the previous multiplicative model:

• In this example, the splits in the second level are associated with

larger decreases in impurity/variance.

• In presence of interactions, the splits with the largest decreases in

variance are not always in the first level of the tree!
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A negative result in presence of interactions

Two theoretical trees in the previous multiplicative model:

Lemma [Scornet, 2020]

Assume that Model 1 holds. Then, there exists two theoretical trees T1

and T2 such that

lim
k→∞

(
MDI?T2,k

(X (1))−MDI?T1,k
(X (1))

)
= α2/16.

• MDI computed with a single tree is ill-defined
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A correlation framework

Correlated Model

Let β ∈ N. Assume that Y = X (1) + X (2) + αX (3) + ε, where

(X (1),X (2)) ∼ U⊗2β , X (3) ∼ U([0, 1]) is independent of (X (1),X (2)), and

ε is an independent noise distributed as N (0, σ2).

The distribution U⊗2β is defined as U⊗2β = U
(
∪2β−1
j=0

[
j

2β
, j+1

2β

)2
)

Figure 1: Illustration of U⊗2β , with β = 1 (left) and β = 2 (right).
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Correlated Model

Let β ∈ N. Assume that Y = X (1) + X (2) + αX (3) + ε, where

(X (1),X (2)) ∼ U⊗2β , X (3) ∼ U([0, 1]) is independent of (X (1),X (2)), and

ε is an independent noise distributed as N (0, σ2).

Lemma

Let β ∈ {0, . . . , 5}. Assume that the Correlated Model holds. Then,

there exists two theoretical trees T1 and T2 such that

lim
k→∞

(
MDI?T2,k

(X (1))−MDI?T1,k
(X (1))

)
=

1

3
− 1

3

(1

4

)β
.

• Many theoretical trees exist.

• MDI computed with a single tree is ill-defined in this model

(correlated design).
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Experiments

We let Y = α1X
(1) +α2X

(2) +α3X
(3) +ε, where ε is an independent noise,

distributed as N (0, σ2) and (X (1),X (2),X (3)) is distributed as N (0,Σ)

where

Σ =

1 ρ 0

ρ 1 0

0 0 1

 .

For all j , we let αj =
√
j :

• The variable importance of the j-th component is j (for ρ = 0)

• Studying the impact of the noise σ2 is easier in this setting.
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Figure 2: Importance of the first variable in the previous simulated model, with

σ2 = 3, ρ = 0 and, from left to right maxnodes = bn0.6c, n

In presence of noise, the MDI of the first variable is

• positively biased if computed with a fully-grown tree/forest.

• unibased if computed with an early-stopped tree/forest
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Figure 3: Percent of correct ranking in the previous simulated model, with

σ2 = 12 and, from left to right maxnodes = bn0.6c, n

• Despite the fact that the MDIs are biased, the correct order is

accurately retrieved.

• An early-stopped tree/forest produces more accurate rankings than a

fully grown tree/forest.
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Take-home messages

MDI analysis:

• If input variables are independent and in absence of interactions, using

MDI to rank variable is ok

• Proved for an early-stopped tree/forest

• Empirically correct for fully-grown tree/forest

• In presence of correlation or interaction, the empirical MDI computed

with a single tree does not converge, and therefore should not be used.

• In presence of correlation or interaction, the empirical MDI computed

with a forest targets a quantity which is currently unknown.
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Thank you!
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SIRUS: Stable and Interpretable RUle Set

An example: SIRUS output on Titanic data set [Bénard et al., 2019]

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%

if 1st or 2nd class
& sex is female

then ps = 95% else ps = 25%

if fare < 10.5£ then ps = 20% else ps = 50%

if no parents or
children aboard

then ps = 35% else ps = 51%

if 2st or 3nd class
& sex is male

then ps = 14% else ps = 64%

if sex is male
& age ≥ 15

then ps = 16% else ps = 72%
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SIRUS

Principle

• Build a random forests and extract all decisions rules from all trees

• Select the rules that appear with a frequence larger than p0

• Aggregate the rules to obtain the final estimator.

Principle

Frequent paths in random trees = strong and robust patterns in the data.
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Technical detail

• Preprocessing: discretize features based on their quantiles

• Random forests: building trees of depth 2

Probability that a Θ-random tree contains a given path P ∈ Π

pn(P) = P(P ∈ T (Θ,Dn)|Dn)

Selected paths

P̂M,n,p0 = {P ∈ Π : p̂M,n (P) > p0}

where

p̂M,n(P) =
1

M

M∑
`=1

1P∈T (Θ`,Dn)

is the Monte-Carlo estimate, directly computed using the random forest

with M trees parametrized by Θ1, ...,ΘM .
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Stability - definition

Define

• D′n, Θ′ independent copies of Dn and Θ

• p̂′M,n(P), P̂ ′
M,n,p0

built with D′n, Θ′

Dice-Sorensen index

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+
∣∣P̂ ′

M,n,p0

∣∣ .
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Stability - a theoretical result

(A1) The subsampling rate an satisfies lim
n→∞

an =∞ and lim
n→∞

an
n = 0.

(A2) The number of trees Mn satisfies lim
n→∞

Mn =∞.

(A3) X has a density f with respect to the Lebesgue measure, continuous,

bounded, and strictly positive.

Let U? = {p?(P),P ∈ Π} be the set of all theoretical probabilities of

appearance of all paths.

Proposition Bénard et al. [2019]

Assume that Assumptions (A1)-(A3) are satisfied. Then, provided

p0 ∈ [0, 1]\U?, we have

lim
n→∞

ŜMn,n,p0 = 1, in probability.
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