Variable importances in random forests

Erwan Scornet (CMAP, École Polytechnique, IP Paris)

Random forests are a class of algorithms created by Breiman [2001a] to solve regression and classification problems

- Among state-of-the-art methods for tabular data
- No need to precisely tune parameters
- Valuable in high-dimension settings
- Based on trees which are interpretable

Random forests are a class of algorithms created by Breiman [2001a] to solve regression and classification problems

- Among state-of-the-art methods for tabular data
- No need to precisely tune parameters
- Valuable in high-dimension settings
- Based on trees which are interpretable

- Difficult to analyze theoretically
- Difficult to interpret

Regression setting

We are given a training set $\mathcal{D}_n = \{(X_1, Y_1), ..., (X_n, Y_n)\}$ where the pairs $(X_i, Y_i) \in [0, 1]^d \times \mathbb{R}$ are *i.i.d.* distributed as (X, Y) and

$$Y = m(\mathbf{X}) + \varepsilon,$$

with $\mathbb{E}[\varepsilon | \mathbf{X}] = 0$.

Aim: estimating the regression function *m* using random forests.

Random forests

• Trees are built recursively by splitting the current cell into two children until some stopping criterion is satisfied.

k = 0

Breiman Random forests are defined by

- 1. A splitting rule : minimize the variance within the resulting cells.
- 2. A stopping rule : stop when each cell contains less than nodesize = 2 observations.

For a split direction $j \in \{1, \dots, d\}$ and a split position $z \in [0, 1]$, the criterion takes the form

$$L_n(j,z) = \frac{1}{N_n(A)} \sum_{i=1}^n \left(Y_i - \bar{Y}_{A_L} \mathbb{1}_{\mathbf{X}_i^{(j)} < z} - \bar{Y}_{A_R} \mathbb{1}_{\mathbf{X}_i^{(j)} \ge z} \right)^2,$$

where

- $A_L = {\mathbf{x} \in A : \mathbf{x}^{(j)} < z}$ and $A_R = {\mathbf{x} \in A : \mathbf{x}^{(j)} \ge z}$
- \overline{Y}_A is the average of the Y_i 's belonging to A.
- $N_n(A)$ is the number of points in A

An example: j = 1 and z = 0.5.

How to perform splits of Breiman's forests?

An example: j = 1 and z = 0.5.

$$L_n(1,0.5) = \frac{1}{N_n(A)} \sum_{i=1}^n \left(Y_i - \underbrace{\bar{\mathbf{Y}}_{A_L} \mathbb{1}_{\mathbf{X}_i^{(1)} < 0.5}}_{\text{Average on } A_L} - \bar{Y}_{A_R} \mathbb{1}_{\mathbf{X}_i^{(1)} \ge 0.5} \right)^2,$$

How to perform splits of Breiman's forests?

An example: j = 1 and z = 0.5.

$$L_n(1,0.5) = \frac{1}{N_n(A)} \sum_{i=1}^n \left(Y_i - \bar{Y}_{A_L} \mathbb{1}_{\mathbf{X}_i^{(1)} < 0.5} - \underbrace{\bar{Y}_{A_R} \mathbb{1}_{\mathbf{X}_i^{(1)} \ge 0.5}}_{\text{Average on } A_R} \right)^2,$$

Construction of random forests

Randomness in tree construction

- Resampling the data set via bootstrap;
- For each cell:
 - Preselecting a subset of $m_{\rm try}$ variables, eligible for splitting.

Breiman tree

- Select a_n observations with replacement among the original sample D_n . Use only these observations to build the tree.
- For each cell,
 - Select randomly mtry coordinates among {1,...,d};
 - Choose the best split along previous direction, the one minimizing the CART criterion.
- Stop when each cell contains less than **nodesize** observations.

Literature

- Random forests were created by Breiman [2001a].
- Theoretical works started by focusing on convergence and upper bounds on the quadratic risk of a forest:
 - stylized forests, whose construction is independent of the dataset [Biau et al., 2008, Biau, 2012, Genuer, 2012, Zhu et al., 2015, Arlot and Genuer, 2014, Scornet, 2016b, Klusowski, 2018, Mourtada et al., 2020]
 - forest algorithms close to the original algorithm
 [Scornet et al., 2015, Scornet, 2016a, Wager and Walther, 2015]
- Another line of work: estimating the variance, proving the asymptotic normality of random forests:

[Mentch and Hooker, 2016, Wager and Athey, 2017]

- Literature review on random forests:
 - Methodological review [Criminisi et al., 2011, Boulesteix et al., 2012],
 - Theoretical review [Biau and Scornet, 2016] with comments by S. Arlot, R. Genuer, P. Geurts, G. Hooker, L. Mentch, S. Wager, L. Wehenkel.

Interpretability

Existing Approaches

• Black-box models

E.g. Neural networks, Random forests

Combined with post-processing E.g. variable importance sensitivity analysis local linearization

Hard to operationalize

Existing Approaches

Black-box models

- E.g. Neural networks, Random forests
- Combined with post-processing E.g. variable importance sensitivity analysis local linearization

Hard to operationalize

- Interpretable models
 - E.g. decision trees, decision rules

Unstable

Going beyong black-box nature of random forests

- Designing simple, interpretable and stable rules extracted from random forests: SIRUS
 - Interpretable Random Forests via Rule Extraction, by C. Bénard, G. Biau, S. Da Veiga, E. Scornet
- Variable importances in random forests:
 - Mean Decrease Accuracy (MDA) [Breiman, 2001a] MDA for random forests: inconsistency, and a practical solution via the Sobol-MDA, by C. Bénard, S. Da Veiga, E. Scornet
 - Mean Decrease Impurity (MDI) [Breiman, 2002] Subject of this talk

Variable importance in random forests: MDI

For a split direction $j \in \{1, \dots, d\}$ and a split position $z \in [0,1]$, the criterion takes the form

$$L_{n,A}(j,z) = \frac{1}{N_n(A)} \sum_{i=1}^n \left(Y_i - \bar{Y}_{A_L} \mathbb{1}_{\mathbf{X}_i^{(j)} < z} - \bar{Y}_{A_R} \mathbb{1}_{\mathbf{X}_i^{(j)} \ge z} \right)^2,$$

where

•
$$A_L = \{ \mathbf{x} \in A : \mathbf{x}^{(j)} < z \}$$
 and $A_R = \{ \mathbf{x} \in A : \mathbf{x}^{(j)} \ge z \}$

- \overline{Y}_A is the average of the Y_i 's belonging to A.
- $N_n(A)$ is the number of points in A

How to compute MDI?

The Mean Decrease in Impurity (MDI) for the variable $X^{(j)}$ computed via a tree \mathcal{T} is defined by

$$\widehat{\mathrm{MDI}}_{\mathcal{T}}(X^{(j)}) = \sum_{\substack{A \in \mathcal{T} \\ j_{n,A} = j}} p_{n,A} \mathcal{L}_{n,A}(j_{n,A}, z_{n,A}),$$
(1)

where the sum ranges over all cells A in \mathcal{T} that are split along variable j and $p_{n,A}$ is the fraction of observations falling into A.

Literature

Empircally known flaws of MDI:

- favor variables with many categories [see, e.g., Strobl et al., 2007, Nicodemus, 2011]
- biased towards variables that possess a category having a high frequency [Nicodemus, 2011, Boulesteix et al., 2011]
- biased in presence of correlated features [Nicodemus and Malley, 2009]

Designing new tree building procedure: [Strobl et al., 2008, 2009].

Theory:

- Louppe et al. [2013]: study of theoretical MDI when all variables are categorical.
- Bias related to in-sample estimation [Li et al., 2019, Zhou and Hooker, 2019]

First result

Proposition [Scornet, 2020]

Let \mathcal{T}_n be the CART tree, based on the data set \mathcal{D}_n . Then,

$$\widehat{\mathbb{V}[Y]} = \sum_{j=1}^{d} \widehat{\mathrm{MDI}}_{\mathcal{T}_n}(X^{(j)}) + R_n(\hat{m}_{\mathcal{T}_n}),$$
(2)

where $\hat{m}_{\mathcal{T}_n}$ is the estimate associated to \mathcal{T}_n .

- Valid for many tree building processes (telescopic sums)
- Relation between $\widehat{\mathrm{MDI}}$ and R^2 :

$$R^{2} = \frac{\sum_{j=1}^{d} \widehat{\mathrm{MDI}}_{\mathcal{T}_{n}}(X^{(j)})}{\widehat{\mathbb{V}[Y]}}$$

• MDI, computed with fully-grown trees is positively biased:

$$\lim_{n\to\infty}\sum_{j=1}^{d}\widehat{\mathrm{MDI}}_{\mathcal{T}_n}(X^{(j)})=\mathbb{V}[m(\mathbf{X})]+\sigma^2.$$

Definition: Additive model

The regression model writes $Y = \sum_{j=1}^{d} m_j(X^{(j)}) + \varepsilon$, where each m_j is continuous; ε is a Gaussian noise $\mathcal{N}(0, \sigma^2)$, independent of **X**; and **X** ~ $\mathcal{U}([0, 1]^d)$.

Theorem [Additive model, Scornet, 2020]

Assume that the Additive Model holds. Let \mathcal{T}_n be the empirical CART tree. Then, for all $\gamma > 0, \rho \in (0, 1]$, there exists K such that, for all k > K, for all n large enough, with probability at least $1 - \rho$, for all j,

$$\widehat{\mathrm{MDI}}_{\mathcal{T}_{n,k}}(X^{(j)}) - \mathbb{V}[m_j(X^{(j)})] \Big| \leq \gamma.$$

Theorem [Additive model, Scornet, 2020]

Assume that the Additive Model holds. Let \mathcal{T}_n be the empirical CART tree. Then, for all $\gamma > 0, \rho \in (0, 1]$, there exists K such that, for all k > K, for all n large enough, with probability at least $1 - \rho$, for all j,

$$\widehat{\mathrm{MDI}}_{\mathcal{T}_{n,k}}(X^{(j)}) - \mathbb{V}[m_j(X^{(j)})] \Big| \leq \gamma.$$

- MDI targets the same value as MDA (up to a constant 2).
- MDI targets the right quantity in an additive model with independent features.
 - \rightarrow MDI can be used to rank and select variables in this context
- MDI is consistent when computed with shallow trees.

Model (Multiplicative model)

Let $\alpha \in \mathbb{R}$. The regression model writes $Y = 2^d \alpha \prod_{j=1}^d X^{(j)} + \varepsilon$, where $\alpha \in \mathbb{R}$; ε is a Gaussian noise $\mathcal{N}(0, \sigma^2)$, independent of \mathbf{X} ; and $\mathbf{X} \sim \mathcal{U}([0, 1]^d)$.

- This model contains interactions between all input variables
- There exists many theoretical trees

An example in dimension two:

With interactions, important splits are not performed at the top of the tree

Two theoretical trees in the previous multiplicative model:

- In this example, the splits in the second level are associated with larger decreases in impurity/variance.
- In presence of interactions, the splits with the largest decreases in variance are not always in the first level of the tree!

A negative result in presence of interactions

Two theoretical trees in the previous multiplicative model:

Lemma [Scornet, 2020]

Assume that Model 1 holds. Then, there exists two theoretical trees \mathcal{T}_1 and \mathcal{T}_2 such that

$$\lim_{k\to\infty} \left(\mathrm{MDI}^{\star}_{\mathcal{T}_{2,k}}(X^{(1)}) - \mathrm{MDI}^{\star}_{\mathcal{T}_{1,k}}(X^{(1)}) \right) = \alpha^2/16.$$

• MDI computed with a single tree is ill-defined

Correlated Model

Let $\beta \in \mathbb{N}$. Assume that $Y = X^{(1)} + X^{(2)} + \alpha X^{(3)} + \varepsilon$, where $(X^{(1)}, X^{(2)}) \sim \mathcal{U}^{\otimes 2^{\beta}}$, $X^{(3)} \sim \mathcal{U}([0, 1])$ is independent of $(X^{(1)}, X^{(2)})$, and ε is an independent noise distributed as $\mathcal{N}(0, \sigma^2)$.

The distribution $\mathcal{U}^{\otimes 2^{\beta}}$ is defined as $\mathcal{U}^{\otimes 2^{\beta}} = \mathcal{U}\left(\bigcup_{j=0}^{2^{\beta}-1} \left[\frac{j}{2^{\beta}}, \frac{j+1}{2^{\beta}}\right)^2\right)$

Figure 1: Illustration of $\mathcal{U}^{\otimes 2^{\beta}}$, with $\beta = 1$ (left) and $\beta = 2$ (right).

Correlated Model

Let $\beta \in \mathbb{N}$. Assume that $Y = X^{(1)} + X^{(2)} + \alpha X^{(3)} + \varepsilon$, where $(X^{(1)}, X^{(2)}) \sim \mathcal{U}^{\otimes 2^{\beta}}$, $X^{(3)} \sim \mathcal{U}([0, 1])$ is independent of $(X^{(1)}, X^{(2)})$, and ε is an independent noise distributed as $\mathcal{N}(0, \sigma^2)$.

Lemma

Let $\beta \in \{0, ..., 5\}$. Assume that the Correlated Model holds. Then, there exists two theoretical trees T_1 and T_2 such that

$$\lim_{k\to\infty}\left(MDI^{\star}_{\mathcal{T}_{2,k}}(X^{(1)})-MDI^{\star}_{\mathcal{T}_{1,k}}(X^{(1)})\right)=\frac{1}{3}-\frac{1}{3}\Big(\frac{1}{4}\Big)^{\beta}.$$

- Many theoretical trees exist.
- MDI computed with a single tree is ill-defined in this model (correlated design).

We let $Y = \alpha_1 X^{(1)} + \alpha_2 X^{(2)} + \alpha_3 X^{(3)} + \varepsilon$, where ε is an independent noise, distributed as $\mathcal{N}(0, \sigma^2)$ and $(X^{(1)}, X^{(2)}, X^{(3)})$ is distributed as $\mathcal{N}(0, \Sigma)$ where

$$\Sigma = egin{pmatrix} 1 &
ho & 0 \
ho & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

For all j, we let $\alpha_j = \sqrt{j}$:

- The variable importance of the *j*-th component is *j* (for $\rho = 0$)
- Studying the impact of the noise σ^2 is easier in this setting.

Figure 2: Importance of the first variable in the previous simulated model, with $\sigma^2 = 3, \rho = 0$ and, from left to right maxnodes = $\lfloor n^{0.6} \rfloor, n$

In presence of noise, the MDI of the first variable is

- positively biased if computed with a fully-grown tree/forest.
- unibased if computed with an early-stopped tree/forest

Figure 3: Percent of correct ranking in the previous simulated model, with $\sigma^2 = 12$ and, from left to right maxnodes $= \lfloor n^{0.6} \rfloor, n$

- Despite the fact that the MDIs are biased, the correct order is accurately retrieved.
- An early-stopped tree/forest produces more accurate rankings than a fully grown tree/forest.

MDI analysis:

- If input variables are independent and in absence of interactions, using MDI to rank variable is ok
 - Proved for an early-stopped tree/forest
 - Empirically correct for fully-grown tree/forest
- In presence of correlation or interaction, the empirical MDI computed with a single tree does not converge, and therefore should not be used.
- In presence of correlation or interaction, the empirical MDI computed with a forest targets a quantity which is currently unknown.

Thank you!

References

- S. Arlot and R. Genuer. Analysis of purely random forests bias. *arXiv:1407.3939*, 2014.
- C. Bénard, G. Biau, S. Da Veiga, and E. Scornet. Sirus: making random forests interpretable. *arXiv preprint arXiv:1908.06852*, 2019.
- G. Biau. Analysis of a random forests model. *Journal of Machine Learning Research*, 13:1063–1095, 2012.
- G. Biau and E. Scornet. A random forest guided tour. Test, 25:197-227, 2016.
- G. Biau, L. Devroye, and G. Lugosi. Consistency of random forests and other averaging classifiers. *Journal of Machine Learning Research*, 9:2015–2033, 2008.

References II

- A.-L. Boulesteix, A. Bender, J. Lorenzo Bermejo, and C. Strobl. Random forest gini importance favours snps with large minor allele frequency: impact, sources and recommendations. *Briefings in Bioinformatics*, 13:292–304, 2011.
- A.-L. Boulesteix, S. Janitza, J. Kruppa, and I.R. König. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery*, 2:493–507, 2012.
- L. Breiman. Random forests. Machine Learning, 45:5-32, 2001a.
- L. Breiman. Statistical modeling: The two cultures (with comments and a rejoinder by the author). *Statistical Science*, 16:199–231, 2001b.
- L. Breiman. Manual on setting up, using, and understanding random forests v3.
 1. Statistics Department University of California Berkeley, CA, USA, 1:58, 2002.

References III

- A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. *Foundations and Trends in Computer Graphics and Vision*, 7:81–227, 2011.
- F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning. *arXiv:1702.08608*, 2017.
- R. Genuer. Variance reduction in purely random forests. Journal of Nonparametric Statistics, 24:543–562, 2012.
- H. Ishwaran and U.B. Kogalur. Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC), 2020. URL https://cran.r-project.org/package=randomForestSRC. R package version 2.9.3.
- J.M. Klusowski. Sharp analysis of a simple model for random forests. *arXiv* preprint arXiv:1805.02587, 2018.
- X. Li, Y. Wang, S. Basu, K. Kumbier, and B. Yu. A debiased mdi feature importance measure for random forests. In *Advances in Neural Information Processing Systems*, pages 8049–8059, New York, 2019.

- A. Liaw and M. Wiener. Classification and regression by randomforest. *R News*, 2:18–22, 2002.
- Z.C. Lipton. The mythos of model interpretability. arXiv:1606.03490, 2016.
- G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts. Understanding variable importances in forests of randomized trees. In *Advances in Neural Information Processing Systems*, pages 431–439, 2013.
- T. A Mara, S. Tarantola, and P. Annoni. Non-parametric methods for global sensitivity analysis of model output with dependent inputs. *Environmental Modelling & Software*, 72:173–183, 2015.
- Lucas Mentch and Giles Hooker. Quantifying uncertainty in random forests via confidence intervals and hypothesis tests. *The Journal of Machine Learning Research*, 17(1):841–881, 2016.
- J. Mourtada, S. Gaïffas, and E. Scornet. Minimax optimal rates for mondrian trees and forests. *Annals of Statistics*, 48(4):2253–2276, 2020.

References V

- W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Interpretable machine learning: Definitions, methods, and applications. arXiv:1901.04592, 2019.
- K. K. Nicodemus. Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures. *Briefings in bioinformatics*, 12(4):369–373, 2011.
- K.K. Nicodemus and J.D. Malley. Predictor correlation impacts machine learning algorithms: implications for genomic studies. *Bioinformatics*, 25:1884–1890, 2009.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825– 2830, 2011.
- A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145:280–297, 2002.

References VI

- E. Scornet. On the asymptotics of random forests. *Journal of Multivariate Analysis*, 146:72–83, 2016a.
- E. Scornet. Trees, forests, and impurity-based variable importance. arXiv preprint arXiv:2001.04295, 2020.
- E. Scornet, G. Biau, and J.-P. Vert. Consistency of random forests. *The Annals of Statistics*, 43:1716–1741, 2015.
- Erwan Scornet. Random forests and kernel methods. *IEEE Transactions on Information Theory*, 62(3):1485–1500, 2016b.
- I.M. Sobol. Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Computational Experiments, 1:407–414, 1993.
- C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance measures: illustrations, sources and a solution. *BMC bioinformatics*, 8:25, 2007.
- C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. Conditional variable importance for random forests. *BMC Bioinformatics*, 9:307, 2008.

References VII

- C. Strobl, T. Hothorn, and A. Zeileis. Party on! 2009.
- S. Wager and S. Athey. Estimation and inference of heterogeneous treatment effects using random forests. *Journal of the American Statistical Association*, (just-accepted), 2017.
- S. Wager and G. Walther. Adaptive concentration of regression trees, with application to random forests. 2015.
- M.N. Wright and A. Ziegler. ranger: a fast implementation of random forests for high dimensional data in c++ and r. *Journal of Statistical Software*, 77: 1–17, 2017.
- B. Yu. Stability. Bernoulli, 19:1484-1500, 2013.
- Z. Zhou and G. Hooker. Unbiased measurement of feature importance in treebased methods. *arXiv preprint arXiv:1903.05179*, 2019.
- R. Zhu, D. Zeng, and M.R. Kosorok. Reinforcement learning trees. Journal of the American Statistical Association, 110(512):1770–1784, 2015.

SIRUS: Stable and Interpretable RUle Set

An example: SIRUS output on Titanic data set [Bénard et al., 2019]

Average survival rate $p_s = 39\%$.					
if	sex is male	then	$p_s = 19\%$	else	$p_s = 74\%$
if	1^{st} or 2^{nd} class	then	$p_s = 56\%$	else	$p_s = 24\%$
if	1 st or 2 nd class & sex is female	then	<i>p</i> _s = 95%	else	p _s = 25%
if	$\texttt{fare} < 10.5 \pounds$	then	$p_s = 20\%$	else	$p_s = 50\%$
if	no parents or children aboard	then	$p_{s} = 35\%$	else	$p_s = 51\%$
if	2 st or 3 nd class & sex is male	then	$p_s = 14\%$	else	$p_{s} = 64\%$
if	sex is male $\&$ age ≥ 15	then	$p_s = 16\%$	else	<i>p</i> _s = 72%

SIRUS

Principle

- Build a random forests and extract all decisions rules from all trees
- Select the rules that appear with a frequence larger than p_0
- Aggregate the rules to obtain the final estimator.

Principle

Frequent paths in random trees = strong and robust patterns in the data.

Technical detail

- Preprocessing: discretize features based on their quantiles
- Random forests: building trees of depth 2

Probability that a Θ -random tree contains a given path $\mathscr{P} \in \Pi$

$$p_n(\mathscr{P}) = \mathbb{P}(\mathscr{P} \in T(\Theta, \mathcal{D}_n) | \mathcal{D}_n)$$

Selected paths

$$\hat{\mathscr{P}}_{M,n,p_0} = \{\mathscr{P} \in \Pi : \hat{p}_{M,n}(\mathscr{P}) > p_0\}$$

where

$$\hat{p}_{M,n}(\mathscr{P}) = \frac{1}{M} \sum_{\ell=1}^{M} \mathbb{1}_{\mathscr{P} \in \mathcal{T}(\Theta_{\ell}, \mathcal{D}_n)}$$

is the Monte-Carlo estimate, directly computed using the random forest with M trees parametrized by $\Theta_1, ..., \Theta_M$.

Define

- \mathcal{D}'_n , Θ' independent copies of \mathcal{D}_n and Θ
- $\hat{p}'_{M,n}(\mathscr{P}), \ \hat{\mathscr{P}}'_{M,n,p_0}$ built with $\mathcal{D}'_n, \ \Theta'$

Dice-Sorensen index

$$\hat{S}_{M,n,p_0} = \frac{2|\hat{\mathscr{P}}_{M,n,p_0} \cap \hat{\mathscr{P}}'_{M,n,p_0}|}{|\hat{\mathscr{P}}_{M,n,p_0}| + |\hat{\mathscr{P}}'_{M,n,p_0}|}.$$

- (A1) The subsampling rate a_n satisfies $\lim_{n\to\infty} a_n = \infty$ and $\lim_{n\to\infty} \frac{a_n}{n} = 0$.
- (A2) The number of trees M_n satisfies $\lim_{n \to \infty} M_n = \infty$.
- (A3) **X** has a density f with respect to the Lebesgue measure, continuous, bounded, and strictly positive.

Let $\mathcal{U}^* = \{p^*(\mathscr{P}), \mathscr{P} \in \Pi\}$ be the set of all theoretical probabilities of appearance of all paths.

Proposition Bénard et al. [2019]

Assume that Assumptions (A1)-(A3) are satisfied. Then, provided $p_0\in[0,1]\backslash\mathcal{U}^{\star},$ we have

$$\lim_{n\to\infty} \hat{S}_{M_n,n,p_0} = 1, \quad \text{in probability.}$$