Convolutional Neural Networks
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Neural Network reborn

Renewed interest in 2006: [“A fast learning algorithm for deep belief nets”, Hinton et al. 2006]
Propose a way to train deep neural nets:

@ Train the first layer.

o Add a layer on top of it and train only this layer.

@ Repeat the process until the network is deep enough.

@ Use this network as a warm start to train the whole network.

Technical reasons for this new growing interest:
o Larger datasets

@ More powerful computers
@ Small number of algorithmic changes

@ MSE replaced by cross-entropy
@ RelLU (Fukushima, 1975, 1980)
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Using classical networks for images?

No, for two reasons:

@ Do not take into account the spatial organization of pixels (if the pixels are
permuted, the output of the network would be the same, whereas the image would
change drastically)

@ Non robust to image shifting

Idea:
o Apply local transformation to a set of nearby pixels (spatial nature of image is used)

@ Repeat this transformation over the whole image (resulting in a shift-invariant
output)

Not a new idea: trace back to perceptron and studies about the visual cortex of a cat.
The cat is able to

o detect oriented edges, end-points, corners (low-level features)

@ combine them to detect more complex geometrical forms (high-level features)
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Outline

© Foundations of CNN
@ Convolution layer
@ Pooling layer
@ Data preprocessing
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Convolutional neural networks (CNNs)

@ Neural networks that use convolution instead of matrix product in one of the layers
@ A CNN layer typically includes 3 operations: convolution, activation and pooling

@ Using the more general idea of parameters sharing, instead of full connection
(convolution instead of matrix product)

Convolution operator in neural networks is as follows
Oi,j) = (1% K)(i,j) = > > i+ koj+ K (k1)
koo

@ [ is the input and K is called the kernels

@ The kernel K will be learned (replaces the weights W in a fully connected layer)
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Convolution - Black and White images

@ Size of the input image is 8 X 8 x 1 (height, width, depth)
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Convolution - Black and White images

@ Size of the input image is 8 X 8 x 1 (height, width, depth)

@ Size of the kernel is 3 x 3 x 1
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Convolution - Black and White images

@ Size of the input image is 8 X 8 x 1 (height, width, depth)

@ Size of the kernel is 3 x 3 x 1
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Convolution - Black and White images

@ Size of the input image is 8 x 8 x 1 (height, width, depth)

@ Size of the kernel is 3 x 3 x 1
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Convolution - Black and White images

@ Size of the input image is 8 x 8 x 1 (height, width, depth)
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Convolution - Black and White images
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Convolution - RGB

@ Size of the input image is 8 X 8 x 3 (height, width, depth)
@ Size of the kernel is 3 x 3 x 3
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Warning: every filter is small spatially (along width and height), but extends through the
full depth of the input volume.
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Convolution - RGB

@ Size of the input image is 8 x 8 x 3 (height, width, depth)
@ Size of the kernel is 3 x 3 x 3
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Warning: every filter is small spatially (along width and height), but extends through the
full depth of the input volume.
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Parameters of convolutional layer 1/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

@ The size of the kernel (typically 3 x 3, 5 x 5).
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Parameters of convolutional layer 2/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

@ The size of the kernel,

@ The depth of the output volume, i.e., the number of filters/activation maps/feature
maps.
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Parameters of convolutional layer 3/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

@ The size of the kernel,
@ The depth of the output volume,

@ The stride, i.e., of how many pixels do we move the filter horizontally and vertically.
Usually, stride is equal to one (rarely to two, and even more rarely larger).
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Parameters of convolutional layer 4/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.
@ The size of the kernel,
@ The depth of the output volume,
@ The stride,
@ The size of the zero-padding, i.e. the number of zeros we add to the borders of the
image. This can be used to obtain a constant image size between the input and the
output.
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How to choose zero-padding?

Let

@ [ the height/width of the input

O the height/width of the output

@ P the size of the zero-padding

K the height/width of the filter
@ S the stride

What is the relation between these quantities? How do we choose the zero-padding to
obtain an output of the same size as the input?

E. Scornet Deep Learning



How to choose zero-padding?

Let

@ [ the height/width of the input

O the height/width of the output

@ P the size of the zero-padding

K the height/width of the filter
@ S the stride
What is the relation between these quantities? How do we choose the zero-padding to

obtain an output of the same size as the input?

0— [2P+I—K

5 J-l—l

E. Scornet Deep Learning



Why convolution?

@ Same transformation applied to all parts of the image (takes into account the spatial
dependence between pixels and object-shift invariance)

@ Input image contains millions of pixel values, but we want to detect small
meaningful features such as edges with kernels that use only few hundred of pixels

@ When using a matrix product, all input and output units are connected, whereas
convolution connects only output neurons with several pixels of the input image.

Convolution involves weight sharing (a form of regularization) and requires less
parameters which improves memory, is more statistically efficient and
computationally faster.
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Sparse connections

o Left: when using matrix multiplication, all outputs are connected to all inputs. We
say that connectivity is dense

@ Right: in a convolution with a kernel of width 3, only three outputs are affected by
the input x. We say that the connectivity is sparse
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Outline
© Foundations of CNN

@ Pooling layer
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Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
@ Stride S =2
@ Spatial extend F =2
Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
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Pooling

@ Pooling layers compute each pixel of the output as a summary statistic of
neighboring input pixels at the corresponding location.

@ The most widely used is the max aggregation, called max-pooling

@ Pooling helps the representation to become approximately invariant to small
translations of the input

o If a small translation is applied, output of the layer is almost unchanged

@ Very useful if we care more about the presence of some feature than its position in
the image: for face detection (presence of eyes is more important than where they
are)

@ Pooling also allows to handle inputs with different sizes: pictures can have different
sizes, but the output classification layer must be of fixed size
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A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.
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A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.
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A possible architecture of a CNN

The pooling layer operates on each feature map separately.
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A possible architecture of a CNN
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A possible architecture of a CNN

A convolutional layer operates on the feature maps output by the pooling layer. Each
kernel is a volume whose depth equals the depth of the input volume.
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A possible architecture of a CNN
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A possible architecture of a CNN
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A possible architecture of a CNN

At the end of the network, the feature maps are flattened in order to apply a classic
neural networks.
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A possible architecture of a CNN

The full architecture is summarized below.
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Outline

© Foundations of CNN

@ Data preprocessing

E. Scornet Deep Learning



Data processing

Normalizing data

For each channel R, G, B, compute the pixels mean over all images in the whole data set.
Subtract this value to each channel of each image. — you do not lose relative
information between images.

Data augmentation
o Sampllng [“Imagenet large scale visual recognition challenge”, Russakovsky et al. 2015]
e Tra nslation/shifting [“Deep convolutional neural networks and data augmentation for environmental sound
classification”, Salamon and Bello 2017]
e Horizontal reflection/mirroring [“Mirror, mirror on the wall, tell me, is the error small?”, H. Yang and Patras
2015]
0 Rotating [“Holistically-nested edge detection”, Xie and Tu 2015]

e Various photometric transformations [“Predicting depth, surface normals and semantic labels with a
common multi-scale convolutional architecture”, Eigen and Fergus 2015]
Prediction
At test time, patches are extracted from the new images together with some of its
reflection /translation/... A prediction is made for each of these artificial images and they
are aggregated to make the final prediction.
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Adding noise - Data augmentation and regularization

@ Add noise to input
[“Training with noise is equivalent to Tikhonov regularization”, Bishop 1995]
[“Adding noise to the input of a model trained with a regularized objective”, Rifai et al. 2011]

[“Explaining and harnessing adversarial examples”, Goodfellow et al. 2014]

@ Add noise to weights
[“An analysis of noise in recurrent neural networks: convergence and generalization”, Jim et al. 1996]

[“Practical variational inference for neural networks”, Graves 2011]

@ Add noise to output

[“Randomizing outputs to increase prediction accuracy”, Breiman 2000]

@ Select the best data transformations (computationally expensive, many re-training
steps).

[“Transformation pursuit for image classification”, Paulin et al. 2014]
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Outline

© Famous CNN
o LeNet (1998)
@ AlexNet (2012)
o ZFNet (2013)
o VGGNet (2014)
@ GoogleNet (2014)
@ ResNet (2016)
@ DenseNet (2017)
@ Many other CNN
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Outline

© Famous CNN
o LeNet (1998)
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LeNet

[“Generalization and network design strategies”, LeCun et al. 1989]

[“Gradient-based learning applied to document recognition”, LeCun et al. 1998]
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LeNet
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First layer: convolutional layer C1
@ Kernel size =5 x 5 + a bias
Stride = 1 (overlapping contiguous receptive fields)
Zero-padding = 0
Output: 6 different feature maps, each one resulting from the convolution with a
kernel 5 x 5 to which the activation function o is applied.
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Second layer: subsampling/pooling layer S2

Third-layer: convolutional layer C3

Type of pooling: averaging.

Kernel size = 2 x 2

Stride = 2 (non-overlapping receptive fields)
Zero-padding = 0

Output: one feature map per input feature map resulting from the operation

o((2 x 2 averaging)w + b).

o Warning: this layer operates on several feature maps whereas layer C1 operates on

the input image (depth = 1).

@ Here each feature map is connected to some specific input feature maps in order to

» Reduce the number of connections
> Break the symmetry between the different layers of the network.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 X X X X X X X X X X
1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X X X X X X X X X
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What about the remaining layers
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What about the remaining layers
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S4: Pooling layer as before

C5: Convolutional layer connected to all previous feature maps.
F6: fully-connected layer with 84 units

Output: a specific layer

Bi-pyramidal structure: the number of feature maps increases while the spatial resolution
decreases.
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Output layer

Radial Basis function units
The jth neuron of the output layer computes

84
2
Iz = will3 = (i = ),
i=1
where z is the vector of size 84 produced by layer F6 and w; = (wj1,..., wj ) is the

weight vector of the jth neuron.

Gaussian connections
Assuming that the vector in layer F6 are Gaussian, neuron j outputs the negative log
likelihood of a Gaussian distribution with mean w; and covariance matrix /.

In other words, each neuron outputs the square euclidean distance between its parameter
vector and the input.

Question.
How to choose w; € {—1,1}%'?
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Output layer and activation function

To choose wy € {—1,1}%, use a stylized version of the image of 0 of size 7 x 12 = 84.
The pixel of this image are the parameters w; of the output neuron j = 0.
Why do not use a one-hot encodage?

LeCun et al. 1998 states that it does not work with more than few dozens of classes since
it requires output units to be off most of the time which is difficult to achieve with
sigmoid functions.

Activation function

o(x) = Atanh(ax),
where A =1.7159, ao = 2/3.

— Prevent saturation since neurons outputs belong to {—1,1}
e o(l)=1
e o(—1)=-1.
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Criterion to optimize

Let [fa(x)]; = ||z — w;||3 be the output of the jth neuron of the output layer, where z is
the vector produced by layer F6.
Then the error for one observation (x, y) is defined as

o 9
E(0) = Z[fg(x)]jﬂy:j + log (e*C + Z e—[fe(x)]j)7
j=0 =

where C > 0 is a constant.

The second term acts as a regularization since it forces the parameters of the neurons
j # y to be far from the input vector of layer F6.
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Let [fa(x)]; = ||z — w;||3 be the output of the jth neuron of the output layer, where z is
the vector produced by layer F6.
Then the error for one observation (x, y) is defined as

o 9
E(0) = Z[fg(x)]jﬂy:j + log (e*C + Z e—[fe(x)]j)7
j=0 =

where C > 0 is a constant.

The second term acts as a regularization since it forces the parameters of the neurons
j # y to be far from the input vector of layer F6.

This is equivalent to

(o | e o (ly
()——og(_c+Z )

which is very close to the negative log likelihood of a softmax output layer.
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Optimization procedure

Related to stochastic gradient descent:

gkt _ gk _ 1 OE;
/ Tt by 007
where E; is the loss of a single observation, 7 is the initial learning rate, ;1 a hand-picked
constant and hj; is the jth diagonal element of the Hessian matrix associated to E;.

The expression of hjj is quite complicated since 6; appears in different connections:

Z Z 8u,m8uk/

(lmEV(kIEV

where ujm is the connection between units i and m, and Vj is the set of pairs (i, m) such
that the connection between i and m involves the weight 6;.

An approximation of each diagonal terms hj; is performed at the beginning of each epoch,
using the first 500 observations (whole data set being composed of 60000 observations).
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Parameters

Weight initialization: uniform distribution U([—2.4/F;,2.4/Fj]), where F; is the number

of inputs (fan-in) of the unit which the connection belongs to.

— Keep the weighted sum in the same range for each unit.

Gradient descent

g _ _m_ OE
7 pthy 00

(k+1)
01‘

with p = 0.02.

Optimization lasts 20 epochs:

7 = 0.0005 for the first two epochs,
7 = 0.0002 for the next three epochs,
1 = 0.0001 for the next three epochs,
7 = 0.00005 for the next four epochs,

7 = 0.00001 for the remaining epochs,

E. Scornet Deep Learning
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Results
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The 82 patterns misclassified by LeNet5. Below each image is displayed the correct answer (left)

and the prediction (right). These errors are mostly caused by genuinely ambiguous patterns, or

by digits written in a style that are under represented in the training set.
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Outline

© Famous CNN

@ AlexNet (2012)
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AlexNet

[“Imagenet classification with deep convolutional neural networks”, Krizhevsky et al. 2012]

Ingredients:
@ Activation function (ReLU)
Local Response Normalization (LRN)
Overlapping pooling (3 x 3 window with a stride S = 2 which reduces overfitting)
Dropout

Data augmentation

Input data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8

BX13x384 13x13x384 137 13% 256
27%27x 256
55X 55X 96

1000
227x 2273 4096 4096
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RelLU activation function

According to Krizhevsky et al. 2012, Convolutional neural networks with ReLU activation
functions can be trained several times faster than the same networks using tanh function.
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Figure: A four-layer convolutional neural network with ReLU (solid line) reaches a 25% training
error rate on CIFAR-10 six times faster than an equivalent network with tanh (dashed line). The
learning rates for each network were chosen independently to make training as fast as possible.
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Local Response Normalization/ Brightness normalization

Let ai’y the activity of a neuron resulting of kernel i applied to the position (x, y) followed
by a ReLU function and b, , the corresponding renormalized activity which is given by

min(Q—1,i+q/2) -8
b, =a,|C+ta Z (3>’<,y)2 )
Jj=max(0,i—q/2)

where the sum is taken over g adjacent feature maps at the same spatial position, and Q
is the total number of feature maps in this layer.

Constants (determined with validation set): C =2, =5,a = 10"* 3 = 0.75.

Note that the ordering of feature maps is arbitrary and determined before training. This
renormalization creates a competition between the different feature maps.

[“What is the best multi-stage architecture for object recognition?”, Jarrett et al. 2009]

They propose a similar normalization procedure where the mean activity is substracted
(local contrast normalization).
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Overall architecture

2043' 204 \dense

128

128 Max
Max Max pooling
pooling pooling

Key-point: architecture is split across two GPU, which, most of the time, do not
communicate with each other.

o Connectivity of each convolutional layer
@ Relu are applied right after all convolutional layers and fully connected layers

@ Local Response Normalization is applied after ReLU in the first and second
convolutional layer

@ Max-pooling is applied after the first, second and fifth convolutional layers.
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Optimization
Initialization:
@ Weights: N(0,0.0001)

@ Biases of second, fourth and fifth convolutional layers and biases of fully connected
layers set to 1 (seems to accelerate the early stages of learning, prevent dying ReLU
phenomenon). Other biases are set to 0.

Stochastic gradient descent with momentum

v = 0.9v® — 0.000570%) — % > ve(e®)
ieB
Pkt — gl o (k1)
with batch size |[B| = B = 128.

The second term in the first equation corresponds to the L, regularization of the losswith
a constant A = 0.0005 (weight decay of 0.0005).
Learning rate is the same for all layers with the following heuristic:

o Initialization: n = 0.01

@ Divide 1 by 10 when the validation error stop improving (done three times here).

@ 90 epochs on 1.2 million images: 6 days.
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Numerical results

Model Top-1 (val) Top-5 (val) Top-5 (test)
SIFT + FVs[7] - = 26.2%
1CNN 40.7% 18.2% -
5CNNs 38.1% 16.4% 16.4%
1CNN~™ 39.0% 16.6% -
7CNNs* 36.7% 15.4% 15.3%

@ First line is the second runner-up.

@ Second and third lines are results output by the averaging over 1 or 5 CNN

described before.

@ Last two lines correspond to networks with an extra convolutional layer after the last
pooling layer which has been trained on Image Net Fall 2011 then “fine-tuned” on

the ImageNet 2012 data base.

AlexNet has a very similar architecture to LeNet, but is deeper, bigger, and features
Convolutional Layers stacked on top of each other: previously, pooling layers followed

immediately each convolutional layer.
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Results

a s
container ship__ motor scooter
[ containership[ — moté

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image. and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

E. Scornet Deep Learning 42 /139



Outline

© Famous CNN

o ZFNet (2013)
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ZFNet: Improve upon AlexNet

[“Visualizing and understanding convolutional networks”, Zeiler and Fergus 2014]

Input data Convl Conv2 Conv3 Conv4 Convs  FC6 FC7 FC8

nx X304 ux 13x384  13x13x 256

27x 27 x 256

55% 55 x 96

1000

27x 2273 4096 4096

Aim at finding out what the different feature maps are searching for in order to obtain a
better tuning of network architecture.

In ZFNet, feature maps are not divided across two different GPU. Thus connections
between layers are less sparse than for AlexNet.
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Deconvnet

Find the pixels that maximize the
activation of a given feature map.

How? Invert the network.

Precisely:
@ Choose a layer
@ Choose a feature map

@ Run the network on a
validation set

@ Choose the image maximizing
the activation of this feature
map

o "Backpropagate" this
activation to obtain a stylized
image in the pixel space

Layer Above
Reconstruction

Max Unpooling @

‘ Unpooled Maps | ‘

Rectified Linear
Function

Feature Maps

Pooled Maps

Max Pooling

Switches

Rectified Feature Maps ‘

Rectified Linear
Function

Rectified Unpooled Maps |

Convolutional
Filtering {F7}

Layer Below Pooled Maps

Convolutional
Filtering {F}

‘ Reconstruction ‘ ‘

Layer Above I
Reconstruction l% 5

Unpooling a
Max Locations

I@“I “Switches” I
Unpooled Rectified W
Maps Feature Maps

Pooled Maps
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Results

g
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Top 9 activations in a random subset of feature maps across the validation data,
projected down to pixel space using the previous deconvolutional network approach.
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Results

Remarks

@ strong grouping within each
feature map,

@ greater invariance at higher
layers

@ exaggeration of discriminative
parts of the image, e.g. eyes
and noses of dogs (layer 4, row
1, cols 1).
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Visualization of previous modifications

(b): 1st layer features from
Krizhevsky et al. 2012.

(c): 1st layer features of ZFNet.

(@)
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Visualization of previous modifications

(b): 1st layer features from
Krizhevsky et al. 2012.

(c): 1st layer features of ZFNet.

Differences: smaller stride (2 vs 4)
and filter size (7x7 vs 11x11)

Results in more distinctive features
and fewer dead features.

(@)
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Visualization of previous modifications

(d)

(d): Visualizations of 2nd layer features from Krizhevsky et al. 2012; (e): Visualizations
of the 2nd layer features of ZFNet.
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Visualization of previous modifications

(d)

(d): Visualizations of 2nd layer features from Krizhevsky et al. 2012; (e): Visualizations
of the 2nd layer features of ZFNet.

Feature maps in (e) are cleaner, with no aliasing artefacts that are visible in (d).
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Conclusion regarding AlexNet

o First layer filters are a mix of high and low frequency information, with little
coverage of middle frequencies.

— Reduced the first layer filter size from 11 x 11 to 7 X 7.

@ Aliasing artifacts are present in second layer because of the large stride of 4 used in
the first convolutional layer.

— change the stride from 4 to 2.

With these modifications:

@ Winner of the ILSVRC 2013

@ Improvement on AlexNet by

> expanding the size of the middle convolutional layers
» making the stride and filter size on the first layer smaller.
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ZF Net final structure

image size 224 110 26 13 13 13
filter size 7
384 | W1 384 256
w256 \
stride 2 mo0  axamad N 33 max C
3x3 max poouonlr s pool | [contrast pool 4096| | 4096 class
stride 2 orm. stride 2| 3 stride 2 units| units| softmax
= \i 55 @5 13
2 6
Input Image 26 256 256
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 different 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within
3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 different 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3.4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 - 6 - 256 = 9216 dimensions). The final layer is a C-way softmax
function, C' being the number of classes. All filters and feature maps are square in shape.
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Results in classification

Error % Val Top-1 Val Top-5 Test Top-5
(Gunji et al., 2012) - - 26.2
(Krizhevsky et al., 2012), 1 convnet 40.7 18.2 ——
(Krizhevsky et al., 2012), 5 convnets 38.1 16.4 16.4
(Krizhevsky et al., 2012)*, 1 convnets 39.0 16.6 ——
(Krizhevsky et al., 2012)*, 7 convnets 36.7 15.4 15.3
Our replication of

(Krizhevsky et al., 2012), 1 convnet 40.5 18.1 ——
1 convnet as per Fig. 3 38.4 16.5 ——
5 convnets as per Fig. 3 - (a) 36.7 15.3 15.3
1 convnet as per Fig. 3 but with

layers 3, 4, 5: 512,1024,512 maps - (b) 37.5 16.0 16.1
6 convnets, (a) & (b) combined 36.0 147 14.8
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Occlusion

(0) Layer 5, strongest (d) Classifier, probability (e) Classifier, most
(a) Input Image (b) Layer 5, strongest feature map feature map projections of correct class probable class

True Label: Afghan Hound
>

Three test examples where we systematically cover up different portions of the scene with a gray square (1st column) and see how the top (layer 5) feature
maps ((b) & (c)) and classifier output ((d) & (e)) changes.

(b): for each position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response in the unoccluded
image).

(c): a visualization of this feature map projected down into the input image (black square), along with visualizations of this map from other images. The
first row example shows the strongest feature to be the dog's face. When this is covered-up the activity in the feature map decreases (blue area in (b)).

(d): a map of correct class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability for pomeranian
drops significantly.

(e): the most probable label as a function of occluder position.
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o VGGNet (2014)
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Tiny VGGnet

[“Very deep convolutional networks for large-scale image recognition”, Simonyan and Zisserman 2014b]

RELU RELU RELU RELU RELU RELU

CfVlCO‘NVl CONVleNVl covlcwl
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Network features

Convolutional layers:

o Small receptive field: 3 x 3 (smallest ones capable of capturing the notion of
top/down, left/right!)

@ Stride of 1

@ Spatial resolution is preserved after convolution
Max-pooling layers:
@ 2 x 2 kernel

@ Stride of 2

All hidden layers use ReLU activation functions.

Local Response Normalization layers do not improve performance.
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Insightful remark...

If you stack 3 convolutional layers with receptive fields 3 x 3, you obtain a convolutional
layer with receptive fields 7 x 7. What is the interest?

@ Stack of 3 convolutional layers of size 3 x 3: complexity of 3 x x3 x 3 = 27.

@ One standard convolutional layer of size 7 x 7: complexity of 49.

In the first case, we cannot obtain every possible layer: the resulting object is a decom-
position of three consecutive convolutional layers. There are less possibilities hence less
parameters.
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VGGNet

ConvNet Configuration

A [ ALRN B | D E
11 weight 11 weight | 13 weight 16 weight 16 weight 19 weight
layers ‘ layers layers ‘ layers layers layers
input (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
‘ LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | comv3-128 | comv3-128 | comv3-1 conv3-128 | conv3-128
‘ | conv3-128 | comv3 ‘ conv3-128 | conv3-128
maxpool
conv3-256 | comv3-2356 | comv3-2356 | comv3-236 conv3-256
conv3-256 | comv3-256 | comv3-256 | comv3-236
convl-256
maxpool

conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

convl-512 | conv3-512
conv3-512
maxpool
conv3-512 [ comv3-512 | comv3-512 | conv3-512 | conv3-512

conv3-512

conv3-512 | conv3-512
convl-512

conv3-512
conv3-512

conv3-512
conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E). as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv(receptive field size)-(number of channels)

The ReLU activation function is not shown for brevity.
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Parameters

Initialization:
o Network A: A/(0,0.01) for weights and 0 for biases.

@ For other networks: first four conv layers and last three fully connected layers were
initialized using network A and the remaining layers were initialized randomly.

Stochastic gradient descent with momentum

1
*+1) _ g.gy®) _ w_ 1 Q)
v = 0.9v1 — 0.000576%) —n > i)
ieB
PICEY
with batch size B = 128.

OBV CE

I

Learning rate is the same for all layers with the following heuristic:
o Initialization: n = 0.01
@ Divide 1 by 10 when the validation error stop improving (done three times here).

@ 74 epochs.

Ly penalty with constant 5.10™*

o Dropout regularization for the first two fully connected layers (probability p = 0.5)
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Results

Method top-1 top-5 top-5
val. error  val. error  test error
(%) (%) (%)
VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8
VGG (1 net, multi-crop & dense eval.) 24.4 7.1 7.0
VGG (ILSVRC submission, 7 nets, dense eval.) 24.7 7.5 7.3
GoogleNet (Szegedy et al., 2014) (1 net) —
GoogleNet (Szegedy et al., 2014)(7 nets) -
MSRA (He et al, 2014)(11 nets) - - 8.1
MSRA (He et al., 2014)(1 net) 27.9 9.1 9.1
Clarifai (Russakovsky et al., 2014) (multiple nets) — — 11.7
Clarifai (Russakovsky et al., 2014)(1 net) — - 12,5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8
Zeiler & Fergus (Zeiler & Fergus, 2013)(1 net) 375 16.0 16.1
OverFeat (Sermanet et al, 2014) (7 nets) 34.0 13.2 13.6
OverFeat (Sermanet et al, 2014) (1 net) 35.7 14.2 -
Krizhevsky et al. (Krizhevsky et al., 2012)( 5 nets)  38.1 16.4 16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 —

A downside of the VGGNet is that it is more expensive to evaluate and uses a lot more

memory and parameters (140M).

Most of these parameters are in the first fully connected layer, and it was since found
that these FC layers can be removed with no performance downgrade, significantly

reducing the number of necessary parameters.
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@ GoogleNet (2014)
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GoogleNet

[“Going deeper with convolutions”, Szegedy, W. Liu, et al. 2015]

Aim.

Increasing the depth and width of state-of-the-art convolutional neural networks while
keeping the number of parameters small:

o Can approximate more complex functions

@ while being robust to overfitting and computationally appealing.

How.

Specifically, use of 1 x 1 convolution layers to reduce the number of parameters + apply
filters of different sizes 3 x 3, 5 x 5 or 3 x 3 max pooling (on each feature maps).

Details.
o All convolution layers use ReLU activation functions.

@ Same spatial resolution for each feature map.
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GoogleNet - Inception module

Same spatial resolution for each feature map.

Use of 1 x 1 convolution layers to reduce the number of parameters then apply filters of
different sizes 3 x 3, 5 x 5 or 3 x 3 max pooling (on each feature maps).

Filter
Filter concatenation
concatenation =

) T T
1x1 convolutions 1x1 convolutions 3x3 max pooling
e
Previous layer Previous layer
(a) Inception module, naive version (b) Inception module with dimension reductions

Figure 2: Inception module
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GoogleNet - Inception module

‘ type ‘ pw/ ‘ n:ll;u( ‘ depth ‘ #1x1 ‘ fe;:c: ‘ #3x3 ﬁ::cz | #5%5 ‘ E::: ‘ params ‘ ops ‘
convolution TXT/2 112x112x64 1 27K 34M
max pool 3x3/2 56X56x64 0
convolution 3x3/1 56x56x192 2 64 192 112K 360M
max pool 3x3/2 28 % 28x 192 0
inception (3a) 28x28x256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28X 28x480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 1414480 0
inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x 832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TXTX 832 0
inception (5a) TXTX832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TXT7x1024 2 384 192 384 48 128 128 1388K 7IM
avg pool TXT/1 1x1x1024 0
dropout (40%) 1x1x1024 0
linear 1x1x1000 1 1000K IM
softmax 1x1x1000 0

Table 1: GoogLeNet incarnation of the Inception architecture

“3x3 reduce” and "5x5 reduce” stands for the number of 1x1 filters in the reduction layer used before the 3x3

and 5x5 convolutions. One can see the number of 1x1 filters in the projection layer after the built-in

max-pooling in the pool proj column.
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Structure of GooglLeNet
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Structure of GooglLeNet
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Deep network - A concern

In order to backpropagate gradient, the authors add some auxiliary classifiers connected
to intermediate layers.

During training the loss of auxiliary classifiers is weighted by 0.3 and added to the total
loss of the network. Auxiliary networks are removed at inference time.

Auxiliary network put after (4a) and (4d):
@ Average pooling layer 5 x 5, stride of 3
@ A 1 x 1 convolution with 128 filters, with ReLU.
@ A fully connected layer with 1024 neurons and RelLU

A dropout layer with a dropout ratio of 70%.

A linear layer with softmax loss, predicting the same 1000 classes as the main
classifier.
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Parameters

Initialization:
o Weights are drawn from A/(0,1) and biases are set to 0.

[“Deep learning via Hessian-free optimization.”, Martens 2010]

Stochastic gradient descent with momentum

v = ) 17% Z V(6% + pv)
iceB
gkt — g(k) 4 (k+1)
with batch size B = 200, where
u(k) = min(1 — 2—1—|og2(Lk/250J+1)7Mmax)7
where pimax € {0,0.9,0.99,0.995,0.999}.

)

Learning rate is the same for all layers with the following heuristic:
o Initialization: n = 0.01
@ Multiply n by 0.96 every 8 epochs.
@ Training lasts 125 epochs.
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Results
@ Polyak averaging is used to create the final model at inference time.

o 7 different versions of GoogleNet were trained and aggregated to make predictions.

Team Year | Place | Error (top-5) | Uses external data
SuperVision || 2012 | 1Ist 16.4% no

SuperVision || 2012 | st 15.3% Imagenet 22k
Clarifai 2013 | Ist 11.7% no

Clarifai 2013 | 1st 11.2% Imagenet 22k
MSRA 2014 | 3rd 7.35% no

VGG 2014 | 2nd 7.32% no

GoogLeNet || 2014 | Ist 6.67% no

Table 2: Classification performance

Number of models || Number of Crops | Cost | Top-5 error | compared to base
1 1 1 10.07% base

1 10 10 9.15% -0.92%

1 144 144 | 7.89% -2.18%

7 1 7 8.09% -1.98%

7 10 70 7.62% -2.45%

7 144 1008 | 6.67% -3.45%

Main contribution: development of an Inception Module that dramatically reduced the number of
parameters in the network (4M, compared to AlexNet with 60M).
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@ ResNet (2016)
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ResNet (2016)

[“Deep residual learning for image recognition”, He et al. 2016]
Statement: Optimization can be hard for some deep networks.

Solution: Ease optimization by adding simple paths in the network

weight layer

]—'(x) relu x
weight layer N N
identi
@ !
]:(X) X y relu

Figure 2. Residual learning: a building block.

— No extra parameters, no additional computational complexity
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Literature on shortcut connections

Early practice for training multi-layer perceptrons was to add a linear layer between the
inputs and the outputs

[Pattern recognition and neural networks, Ripley 2007]

Few intermediate classifiers can also be added in intermediary levels in order to ease the
optimization:

@ [“Going deeper with convolutions”, Szegedy, W. Liu, et al. 2015]

@ [“Deeply-supervised nets”, Lee et al. 2015]

Highway networks have shortcut connections with gating functions. Here, gates are data
dependent and have parameters.

@ [“Highway networks”, Rupesh Kumar Srivastava et al. 2015]

@ [“Training very deep networks”, Rupesh K Srivastava et al. 2015]
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General Idea

Inspired from VGG nets:

@ For the same output feature map size, the layers have the same numbers of filters

o If the feature map size is halved, then the number of filters is doubled to preserve
the time complexity per layer

y= f(x7 Wi)+xa

where x and y are respectively the input and the output of a (stack of) layer(s), W; are
the weights of this/these layer(s) and f(x, W;) the output of this/these layer(s).

If dimensions do not match between x and y, there are two solutions:
@ identity mapping is coupled with extra zero entries padded for increasing dimensions

@ Projection shortcut is used to match dimensions via 1 x 1 convolution filters
y= f(x7 WI) + Wex,
where W is a projection.

Besides, “when the shortcuts go across feature maps of two different sizes, they are
performed with a stride of 2".
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Structure of ResNet
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Structure of ResNet
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image image image
output
s 313 conv, 64
3G conv, 64
pool, /2
output
size: 112 33 conv, 128
[ 38ewim ] | [z ]
pool, /2 pool, /2 pool, /2
output v
size: 56 I_tzxs conv,256__| [ Gcome | [ecome |
L2
333 conv, 256 [ 33conves | [ 33cover |
¥
33 conv, 256 I [[ecome ]
A 2 A 2
33 conv, 256 333 conv, 64 3x3 conv, 64
[ 33conves | [ 3x3conv, 64
v
[38come | [ 3ecomes ]
1, /2 33 cony, 128, /2 33 conv, 128,/2
autput pool, / [ecow. 1282 [Goconv, 128,72
sze:28 TS Gcon, 512 | R | [[36wny128

i 2
33 cony, 512

i 2
333 conv, 128

3 conv, 128

33conv,512 |

33 conv, 128

33 conv, 128

v
313 conv, 128

[ eomsz | [ [ 38oms_|
¥
3x3 conv, 128 333 conv, 128
E. Scornet

output
27

output
sizer 1

Deep Learning

pool, /2

fc 4096

Tc4096

v
33conv, 256 |

L2
33conv, 256 |

¥
3x3 conv, 256

3x3 conv, 256
k2

3x3 conv, 256

L7
| 3x3conv, 256
A 2

333 conv, 256

330,256 |

3x3 conv, 512, /2

3x3 conv, 512, /2

¥
3x3 conv, 512

L2
3x3 cony, 512

| 33 cony, 512

33,52 |

v
3x3 conv, 512

333 conv, 512

[ 33,52 | 333 conv, 512
L2 L2
33 conv, 512
avg pool avg pool

fc 1000

fc 1000




Parameters

Initialization, as in He et al. 2015: weights are drawn from A(0,2/n.) (n. is the number
of neurons in the previous layer); biases are set to 0.

Stochastic gradient descent with momentum

1
*+1) _ g.9y®) _ w_ 1 Q)
v = 0.9v1 — 0.000176%) —n > v
ieB
PICEY
with batch size B = 256.

OBV CEY

I

Learning rate is the same for all layers with the following heuristic:
o Initialization: n = 0.1
o Divide 1 by 10 when the validation error stop improving (done three times here).
@ 120 epochs.
Miscellaneous:
@ Batch normalization after each convolution and before activation

@ No dropout
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Results

method

top-5 err. (test)

VGG [41] (ILSVRC 14)
GoogLeNet [44] (ILSVRC’ 14)

7.32
6.66

VGG [41] (vS)
PReLU-net [13]
BN-inception [16]

6.8
4.94
4.82

ResNet (ILSYRC’15)

3.57

@ Winner of ILSVRC 2015

@ Special skip connections and heavy use of batch normalization

@ No fully connected layers at the end of the network.
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Outline

© Famous CNN

@ DenseNet (2017)
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DenseNet

[“Densely Connected Convolutional Networks.”, G. Huang et al. 2017]

Input

Prediction

Dense Block 1 Dense Block 2 Dense Block 3

=gl il

Figure: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are
referred to as transition layers and change feature-map sizes via convolution and pooling

UOINIOAUGD
UOHNIOAUGD
UOIN|OAUGD
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DenseNet

Figure: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding
feature-maps as input.
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Ingredients

Let x¢ be the input of the /th layer. Usually,
x¢ = fy(xe-1).

Dense Block. Inside a dense block,
Xy = fg(Xo, ceey Xg_1).
The functions f; are composed of three consecutive operations:

@ First, a batch normalization
@ Then, activation function RelLU

@ Finally, 3 x 3 convolutional layer (feature map sizes are kept fixed)

Transition layers.
@ Batch normalization
@ 1 x 1 convolution

© 2 X 2 average pooling
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Ingredients

Growth rate k

If each function f; produces k feature maps, the inputs of the (th layer has ko + k(¢ — 1)
channels. Narrow layers (typically k = 12) give good results.

— Indeed, each layer has access to each previous layer and thus to the “collective
knowledge” of the network.

Bottleneck layer - DenseNet-B
A way to improve computational efficiency is to introduce 1 x 1 convolutional layers:
inside dense block, for each layer

BN - ReLU - Conv (1 x 1) - BN - ReLU - Conv (3 x 3)

Conv 1 x 1 are set to produce 4k feature maps.

Compression layer - DenseNet-C
Throw away a fraction 6 € [0, 1] (typically & = 0.5) of feature maps at transition layers.

E. Scornet Deep Learning 84 /139



Architecture

Layers Output Size DenseNet-121 ‘ DenseNet-169 ‘ DenseNet-201 ‘ DenseNet-264
Convolution 112 x 112 7 x 7 conv, stride 2
Pooling 56 x 56 3 X 3 max pool, stride 2
Dense Block 1 x I conv 1 x I conv 1 x 1 conv 1 x 1 conv
56 x 56 6 6 6 6
(1) . [3><3(:0nv]>< ‘ [3><3(:0nv]>< ‘[3><3conv]>< ‘[3><3conv]><
Transition Layer 56 x 56 1 x 1 conv
(@) 28 x 28 2 x 2 average pool, stride 2
Dense Block 1 x I conv 1 x I conv 1 x 1 conv 1 x 1 conv
28 x 28 2 12 12 12
(2) . [3><3c0nv] [3><3(:0nv]>< [3><3conv]>< ‘ [3><3conv]><
Transition Layer 28 x 28 1 x 1 conv
2) 14 x 14 2 x 2 average pool, stride 2
Dense Block 1 x I conv 1 x I conv 1 x 1 conv 1 x 1 conv
14 x 14 4 32 48 64
(3) . [3X3c0nv] ‘ |:3><3(:0nv:|>< |:3><3conv:|>< ‘ |:3><3conv:|><
Transition Layer 14 x 14 1 x 1 conv
3) 7x7 2 x 2 average pool, stride 2
Dense Block 7% 7 1 x I conv <16 1 x I conv « 3 1 x 1 conv 3 1 x 1 conv « 48
4) 3 x 3 conv 3 x 3 conv 3 x 3 conv 3 X 3 conv
Classification I x1 7 x 7 global average pool
Layer 1000D fully-connected, softmax
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Parameters

Initialization, as in He et al. 2015: weights are drawn from A(0,2/n.) (n. is the number
of neurons in the previous layer); biases are set to 0.

Stochastic gradient descent with momentum

1
*+1) _ g.9y®) _ w_ 1 Q)
v = 0.9v1 — 0.000176%) —n > v
ieB
PICE)
with batch size B = 256.

OBV CEY

I

Learning rate is the same for all layers with the following heuristic:
o Initialization: n = 0.1
e Divide n by 10 at epoch 30 and 60.
@ 90 epochs.
Miscellaneous:
@ Batch normalization after each convolution and before activation

@ No dropout
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DenseNet Results

Method Depth Params C10 C10+ C100 C100+ SVHN
Network in Network [22 - - 10.41 8.81 35.68 - 2.35
All-CNN [32] - - 9.08 7.25 - 33.71 -
Deeply Supervised Net [20] - - 9.69 7.97 - 34.57 1.92
Highway Network [34] - - - 7.72 - 32.39 -
FractalNet [17] 21 38.6M 10.18 522 35.34 23.30 2.01
with Dropout/Drop-path 21 38.6M 7.33 4.60 28.20 23.73 1.87
ResNet [11] 110 1.7M - 6.61 - - -
ResNet (reported by [13]) 110 1.7M 13.63 6.41 44.74 27.22 2.01
ResNet with Stochastic Depth [13] 110 1.7M 11.66 523 37.80 24.58 1.75
1202 10.2M - 491 - - -
Wide ResNet [42] 16 11.0M - 4.81 - 22.07 -
28 36.5M - 4.17 - 20.50 -
with Dropout 16 2.7TM - - - - 1.64
ResNet (pre-activation) [ 12] 164 1.7M 11.26* 5.46 35.58* 24.33 -
1001 10.2M 10.56* 4.62 33.47* 2271 -
DenseNet (k = 12) 40 1.0M 7.00 5.24 27.55 24.42 1.79
DenseNet( =12) 100 7.0M 577 4.10 23.79 20.20 1.67
DenseNet (k = 24) 100 27.2M 5.83 3.74 23.42 19.25 1.59
DenseNet- BC (k=12) 100 0.8M 5.92 451 24.15 2227 1.76
DenseNet-BC (k = 24) 250 15.3M 519 3.62 19.64 17.60 1.74
DenseNet-BC (k = 40) 190 25.6M - 3.46 - 17.18 -

Table 2: Error rates (%) on CIFAR and SVHN datasets. k& denotes network’s growth rate. Results that surpass all competing methods are
bold and the overall best results are blue. “+” indicates standard data augmentation (translation and/or mirroring). * indicates results run
by ourselves. All the results of DenseNets without data augmentation (C10, C100. SVHN) are obtained using Dropout. DenseNets achieve
lower error rates while using fewer parameters than ResNet. Without data augmentation, DenseNet performs better by a large margin.
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Outline

© Famous CNN

@ Many other CNN
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Inception V2-V3

Based on GoogleNet Inception module

[“Rethinking the inception architecture for computer vision”, Szegedy, Vanhoucke, et al. 2016]

Filter Concat

Filter Concat

Filter Concat

3x3

stride 2
3x3 3x3 | 3x3 | | 3x3 | | 1x1 |
stride 1 stride 2
| 1x1 | | 1x1 | |Pool| | 1x1 |

Pool
stride 2

Base

New ideas:
o Using asymmetric convolutions 1 x n and n x 1 (for n = 3,5,7) can be useful in the
middle layers of the networks for feature maps of size m x m (for 12 < m < 20).

o Label smoothing using a uniform distribution over labels
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Xception

[“Xception: Deep learning with depthwise separable convolutions”, Chollet 2017]
Stands for “Extreme Inception” and builds upon Inception module in GoogleNet.

Concat

] OQutput
channels

1x1 conv

[
Input
The main ideas:
@ Perform 1 x 1 convolutions

@ Apply 3 x 3 (or other filter size) convolutions to each previous feature map (the one
created by 1 x 1 convolutions) separately.

— Decoupled the depth (1 x 1 convolutions) and the spatial transformations
(convolutions on each feature map separately).
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Comparison of several CNN

i i Inception-v4 |
80 3 F d ]
N . H ResNet-152
R g VG
75 ResNet-10T
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> >
3 2 | 09 ooqLenet
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& Q © BN-NIN
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o Ree®

[“An analysis of deep neural network models for practical applications”, Canziani et al. 2016]
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CNN Taxon

omy

. .sr’?“al Depth based || Multi-Path based W.ldl‘h baseq Feature-Map (Channel, ..) . Ch:fmn.e lanun Attention
Exploitation based CNNs CONNs Multi-Connection Exploitation based CNNs Exploitation based based CNNs
CNNs * ’ CNNs P i CNNs * °
LeNet Ilighway Nets Ilighway Nets WidcResNet Squcf:zc»and Channel Boosted Residual Atiention
Excitation NN usi Neural Network
Competitive Squeeze CNN using TL Convolutional Block
AlexNet ResNet ResNet Pyramidal Net o )
and Excitation Attention
ZfNet Inception-V3, V4 DenseNet Xception Concun‘an Squcczc
and Excitation
VGG Inception-ResNet Incept.lon
Family
GoogleNet ResNext

See this very detailed review Paper [“A survey of the recent architectures of deep convolutional neural networks”,

Khan et al. 2020]
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