
Convolutional Neural Networks
Third lecture

E. Scornet

E. Scornet Deep Learning 1 / 139

Neural Network reborn

Renewed interest in 2006: [“A fast learning algorithm for deep belief nets”, Hinton et al. 2006]

Propose a way to train deep neural nets:
Train the first layer.
Add a layer on top of it and train only this layer.
Repeat the process until the network is deep enough.
Use this network as a warm start to train the whole network.

Technical reasons for this new growing interest:
Larger datasets
More powerful computers
Small number of algorithmic changes

1 MSE replaced by cross-entropy
2 ReLU (Fukushima, 1975, 1980)

E. Scornet Deep Learning 2 / 139

Using classical networks for images?

No, for two reasons:
Do not take into account the spatial organization of pixels (if the pixels are
permuted, the output of the network would be the same, whereas the image would
change drastically)
Non robust to image shifting

Idea:
Apply local transformation to a set of nearby pixels (spatial nature of image is used)
Repeat this transformation over the whole image (resulting in a shift-invariant
output)

Not a new idea: trace back to perceptron and studies about the visual cortex of a cat.
The cat is able to

detect oriented edges, end-points, corners (low-level features)
combine them to detect more complex geometrical forms (high-level features)

E. Scornet Deep Learning 3 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 4 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 5 / 139

Convolutional neural networks (CNNs)

Neural networks that use convolution instead of matrix product in one of the layers

A CNN layer typically includes 3 operations: convolution, activation and pooling

Using the more general idea of parameters sharing, instead of full connection
(convolution instead of matrix product)

Convolution operator in neural networks is as follows

O(i , j) = (I ⋆ K)(i , j) =
∑

k

∑
l

I(i + k, j + l)K(k, l)

I is the input and K is called the kernels
The kernel K will be learned (replaces the weights W in a fully connected layer)

E. Scornet Deep Learning 6 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

Size of the kernel is 3 × 3 × 1

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

Size of the kernel is 3 × 3 × 1

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

Size of the kernel is 3 × 3 × 1

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

Size of the kernel is 3 × 3 × 1

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

Size of the kernel is 3 × 3 × 1

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

Size of the kernel is 3 × 3 × 1

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

Size of the kernel is 3 × 3 × 1

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

Size of the kernel is 3 × 3 × 1

E. Scornet Deep Learning 7 / 139

Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)

Size of the kernel is 3 × 3 × 1

E. Scornet Deep Learning 7 / 139

Convolution - RGB

Size of the input image is 8 × 8 × 3 (height, width, depth)
Size of the kernel is 3 × 3 × 3

Warning: every filter is small spatially (along width and height), but extends through the
full depth of the input volume.

E. Scornet Deep Learning 8 / 139

Convolution - RGB

Size of the input image is 8 × 8 × 3 (height, width, depth)
Size of the kernel is 3 × 3 × 3

Warning: every filter is small spatially (along width and height), but extends through the
full depth of the input volume.

E. Scornet Deep Learning 8 / 139

Parameters of convolutional layer 1/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel (typically 3 × 3, 5 × 5).

E. Scornet Deep Learning 9 / 139

Parameters of convolutional layer 2/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume, i.e., the number of filters/activation maps/feature
maps.

E. Scornet Deep Learning 10 / 139

Parameters of convolutional layer 3/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume,
The stride, i.e., of how many pixels do we move the filter horizontally and vertically.
Usually, stride is equal to one (rarely to two, and even more rarely larger).

E. Scornet Deep Learning 11 / 139

Parameters of convolutional layer 4/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume,
The stride,
The size of the zero-padding, i.e. the number of zeros we add to the borders of the
image. This can be used to obtain a constant image size between the input and the
output.

E. Scornet Deep Learning 12 / 139

How to choose zero-padding?

Let

I the height/width of the input

O the height/width of the output

P the size of the zero-padding

K the height/width of the filter

S the stride

What is the relation between these quantities? How do we choose the zero-padding to
obtain an output of the same size as the input?

O =
⌊2P + I − K

S

⌋
+ 1

E. Scornet Deep Learning 13 / 139

How to choose zero-padding?

Let

I the height/width of the input

O the height/width of the output

P the size of the zero-padding

K the height/width of the filter

S the stride

What is the relation between these quantities? How do we choose the zero-padding to
obtain an output of the same size as the input?

O =
⌊2P + I − K

S

⌋
+ 1

E. Scornet Deep Learning 13 / 139

Why convolution?

Same transformation applied to all parts of the image (takes into account the spatial
dependence between pixels and object-shift invariance)

Input image contains millions of pixel values, but we want to detect small
meaningful features such as edges with kernels that use only few hundred of pixels

When using a matrix product, all input and output units are connected, whereas
convolution connects only output neurons with several pixels of the input image.

Convolution involves weight sharing (a form of regularization) and requires less
parameters which improves memory, is more statistically efficient and
computationally faster.

E. Scornet Deep Learning 14 / 139

Sparse connections

Left: when using matrix multiplication, all outputs are connected to all inputs. We
say that connectivity is dense

Right: in a convolution with a kernel of width 3, only three outputs are affected by
the input x . We say that the connectivity is sparse

E. Scornet Deep Learning 15 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 16 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
E. Scornet Deep Learning 17 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).

E. Scornet Deep Learning 17 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).

E. Scornet Deep Learning 17 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
E. Scornet Deep Learning 17 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
E. Scornet Deep Learning 17 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
E. Scornet Deep Learning 17 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).

E. Scornet Deep Learning 17 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).

E. Scornet Deep Learning 17 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).

E. Scornet Deep Learning 17 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
E. Scornet Deep Learning 17 / 139

Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
E. Scornet Deep Learning 17 / 139

Pooling

Pooling layers compute each pixel of the output as a summary statistic of
neighboring input pixels at the corresponding location.

The most widely used is the max aggregation, called max-pooling

Pooling helps the representation to become approximately invariant to small
translations of the input

If a small translation is applied, output of the layer is almost unchanged

Very useful if we care more about the presence of some feature than its position in
the image: for face detection (presence of eyes is more important than where they
are)

Pooling also allows to handle inputs with different sizes: pictures can have different
sizes, but the output classification layer must be of fixed size

E. Scornet Deep Learning 18 / 139

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

The pooling layer operates on each feature map separately.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

A convolutional layer operates on the feature maps output by the pooling layer. Each
kernel is a volume whose depth equals the depth of the input volume.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

A convolutional layer operates on the feature maps output by the pooling layer. Each
kernel is a volume whose depth equals the depth of the input volume.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

A convolutional layer operates on the feature maps output by the pooling layer. Each
kernel is a volume whose depth equals the depth of the input volume.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

At the end of the network, the feature maps are flattened in order to apply a classic
neural networks.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

At the end of the network, the feature maps are flattened in order to apply a classic
neural networks.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

At the end of the network, the feature maps are flattened in order to apply a classic
neural networks.

E. Scornet Deep Learning 19 / 139

A possible architecture of a CNN

The full architecture is summarized below.

E. Scornet Deep Learning 19 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 20 / 139

Data processing

Normalizing data
For each channel R, G, B, compute the pixels mean over all images in the whole data set.
Subtract this value to each channel of each image. → you do not lose relative
information between images.

Data augmentation
1 Sampling [“Imagenet large scale visual recognition challenge”, Russakovsky et al. 2015]

2 Translation/shifting [“Deep convolutional neural networks and data augmentation for environmental sound

classification”, Salamon and Bello 2017]

3 Horizontal reflection/mirroring [“Mirror, mirror on the wall, tell me, is the error small?”, H. Yang and Patras

2015]

4 Rotating [“Holistically-nested edge detection”, Xie and Tu 2015]

5 Various photometric transformations [“Predicting depth, surface normals and semantic labels with a

common multi-scale convolutional architecture”, Eigen and Fergus 2015]

Prediction
At test time, patches are extracted from the new images together with some of its
reflection/translation/... A prediction is made for each of these artificial images and they
are aggregated to make the final prediction.

E. Scornet Deep Learning 21 / 139

Adding noise - Data augmentation and regularization

Add noise to input
[“Training with noise is equivalent to Tikhonov regularization”, Bishop 1995]

[“Adding noise to the input of a model trained with a regularized objective”, Rifai et al. 2011]

[“Explaining and harnessing adversarial examples”, Goodfellow et al. 2014]

Add noise to weights
[“An analysis of noise in recurrent neural networks: convergence and generalization”, Jim et al. 1996]

[“Practical variational inference for neural networks”, Graves 2011]

Add noise to output
[“Randomizing outputs to increase prediction accuracy”, Breiman 2000]

Select the best data transformations (computationally expensive, many re-training
steps).
[“Transformation pursuit for image classification”, Paulin et al. 2014]

E. Scornet Deep Learning 22 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 23 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 24 / 139

LeNet

[“Generalization and network design strategies”, LeCun et al. 1989]

[“Gradient-based learning applied to document recognition”, LeCun et al. 1998]

E. Scornet Deep Learning 25 / 139

LeNet

First layer: convolutional layer C1
Kernel size = 5 × 5 + a bias
Stride = 1 (overlapping contiguous receptive fields)
Zero-padding = 0
Output: 6 different feature maps, each one resulting from the convolution with a
kernel 5 × 5 to which the activation function σ is applied.

E. Scornet Deep Learning 26 / 139

Second layer: subsampling/pooling layer S2
Type of pooling: averaging.
Kernel size = 2 × 2
Stride = 2 (non-overlapping receptive fields)
Zero-padding = 0
Output: one feature map per input feature map resulting from the operation
σ((2 × 2 averaging)w + b).

Third-layer: convolutional layer C3
Warning: this layer operates on several feature maps whereas layer C1 operates on
the input image (depth = 1).
Here each feature map is connected to some specific input feature maps in order to

▶ Reduce the number of connections
▶ Break the symmetry between the different layers of the network.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 X X X X X X X X X X
1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X X X X X X X X X

E. Scornet Deep Learning 27 / 139

What about the remaining layers

S4: Pooling layer as before
C5: Convolutional layer connected to all previous feature maps.
F6: fully-connected layer with 84 units
Output: a specific layer

Bi-pyramidal structure: the number of feature maps increases while the spatial resolution
decreases.

E. Scornet Deep Learning 28 / 139

What about the remaining layers

S4: Pooling layer as before
C5: Convolutional layer connected to all previous feature maps.
F6: fully-connected layer with 84 units
Output: a specific layer

Bi-pyramidal structure: the number of feature maps increases while the spatial resolution
decreases.

E. Scornet Deep Learning 28 / 139

Output layer

Radial Basis function units
The jth neuron of the output layer computes

∥z − wj∥2
2 =

84∑
i=1

(xi − wj,i)2,

where z is the vector of size 84 produced by layer F6 and wj = (wj,1, . . . , wj,84) is the
weight vector of the jth neuron.

Gaussian connections
Assuming that the vector in layer F6 are Gaussian, neuron j outputs the negative log
likelihood of a Gaussian distribution with mean wj and covariance matrix I.

In other words, each neuron outputs the square euclidean distance between its parameter
vector and the input.

Question.
How to choose wj ∈ {−1, 1}84?

E. Scornet Deep Learning 29 / 139

Output layer and activation function

To choose w0 ∈ {−1, 1}84, use a stylized version of the image of 0 of size 7 × 12 = 84.
The pixel of this image are the parameters wj of the output neuron j = 0.

Why do not use a one-hot encodage?
LeCun et al. 1998 states that it does not work with more than few dozens of classes since
it requires output units to be off most of the time which is difficult to achieve with
sigmoid functions.

Activation function

σ(x) = A tanh(αx),
where A = 1.7159, α = 2/3.

→ Prevent saturation since neurons outputs belong to {−1, 1}
σ(1) = 1
σ(−1) = −1.

E. Scornet Deep Learning 30 / 139

Criterion to optimize

Let [fθ(x)]j = ∥z − wj∥2
2 be the output of the jth neuron of the output layer, where z is

the vector produced by layer F6.
Then the error for one observation (x , y) is defined as

E(θ) =
9∑

j=0

[fθ(x)]j1y=j + log
(

e−C +
9∑

j=0

e−[fθ(x)]j
)

,

where C > 0 is a constant.

The second term acts as a regularization since it forces the parameters of the neurons
j ̸= y to be far from the input vector of layer F6.

This is equivalent to

E(θ) = − log
(e−[fθ(x)]y

e−C +
∑9

k=0 e−[fθ(x)]k

)
,

which is very close to the negative log likelihood of a softmax output layer.

E. Scornet Deep Learning 31 / 139

Criterion to optimize

Let [fθ(x)]j = ∥z − wj∥2
2 be the output of the jth neuron of the output layer, where z is

the vector produced by layer F6.
Then the error for one observation (x , y) is defined as

E(θ) =
9∑

j=0

[fθ(x)]j1y=j + log
(

e−C +
9∑

j=0

e−[fθ(x)]j
)

,

where C > 0 is a constant.

The second term acts as a regularization since it forces the parameters of the neurons
j ̸= y to be far from the input vector of layer F6.

This is equivalent to

E(θ) = − log
(e−[fθ(x)]y

e−C +
∑9

k=0 e−[fθ(x)]k

)
,

which is very close to the negative log likelihood of a softmax output layer.

E. Scornet Deep Learning 31 / 139

Optimization procedure

Related to stochastic gradient descent:

θ
(k+1)
j = θ

(k)
j − η

µ + hjj

∂Ei

∂θj
,

where Ei is the loss of a single observation, η is the initial learning rate, µ a hand-picked
constant and hjj is the jth diagonal element of the Hessian matrix associated to Ei .

The expression of hjj is quite complicated since θj appears in different connections:

hjj =
∑

(i,m)∈Vj

∑
(k,l)∈Vj

∂2Ei

∂uim∂ukl
,

where uim is the connection between units i and m, and Vj is the set of pairs (i , m) such
that the connection between i and m involves the weight θj .

An approximation of each diagonal terms hjj is performed at the beginning of each epoch,
using the first 500 observations (whole data set being composed of 60000 observations).

E. Scornet Deep Learning 32 / 139

Parameters

Weight initialization: uniform distribution U([−2.4/Fi , 2.4/Fi]), where Fi is the number
of inputs (fan-in) of the unit which the connection belongs to.
→ Keep the weighted sum in the same range for each unit.

Gradient descent

θ
(k+1)
j = θ

(k)
j − η

µ + hjj

∂Ei

∂θj
,

with µ = 0.02.

Optimization lasts 20 epochs:
η = 0.0005 for the first two epochs,
η = 0.0002 for the next three epochs,
η = 0.0001 for the next three epochs,
η = 0.00005 for the next four epochs,
η = 0.00001 for the remaining epochs,

E. Scornet Deep Learning 33 / 139

Results

The 82 patterns misclassified by LeNet5. Below each image is displayed the correct answer (left)
and the prediction (right). These errors are mostly caused by genuinely ambiguous patterns, or
by digits written in a style that are under represented in the training set.

E. Scornet Deep Learning 34 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 35 / 139

AlexNet

[“Imagenet classification with deep convolutional neural networks”, Krizhevsky et al. 2012]

Ingredients:
Activation function (ReLU)
Local Response Normalization (LRN)
Overlapping pooling (3 × 3 window with a stride S = 2 which reduces overfitting)
Dropout
Data augmentation

E. Scornet Deep Learning 36 / 139

ReLU activation function

According to Krizhevsky et al. 2012, Convolutional neural networks with ReLU activation
functions can be trained several times faster than the same networks using tanh function.

Figure: A four-layer convolutional neural network with ReLU (solid line) reaches a 25% training
error rate on CIFAR-10 six times faster than an equivalent network with tanh (dashed line). The
learning rates for each network were chosen independently to make training as fast as possible.

E. Scornet Deep Learning 37 / 139

Local Response Normalization/ Brightness normalization

Let ai
x,y the activity of a neuron resulting of kernel i applied to the position (x , y) followed

by a ReLU function and bi
x,y the corresponding renormalized activity which is given by

bi
x,y = ai

x,y

(
C + α

min(Q−1,i+q/2)∑
j=max(0,i−q/2)

(aj
x,y)2

)−β

,

where the sum is taken over q adjacent feature maps at the same spatial position, and Q
is the total number of feature maps in this layer.
Constants (determined with validation set): C = 2, q = 5, α = 10−4, β = 0.75.

Note that the ordering of feature maps is arbitrary and determined before training. This
renormalization creates a competition between the different feature maps.

[“What is the best multi-stage architecture for object recognition?”, Jarrett et al. 2009]

They propose a similar normalization procedure where the mean activity is substracted
(local contrast normalization).

E. Scornet Deep Learning 38 / 139

Overall architecture

Key-point: architecture is split across two GPU, which, most of the time, do not
communicate with each other.

Connectivity of each convolutional layer
ReLu are applied right after all convolutional layers and fully connected layers
Local Response Normalization is applied after ReLU in the first and second
convolutional layer
Max-pooling is applied after the first, second and fifth convolutional layers.

E. Scornet Deep Learning 39 / 139

Optimization
Initialization:

Weights: N (0, 0.0001)
Biases of second, fourth and fifth convolutional layers and biases of fully connected
layers set to 1 (seems to accelerate the early stages of learning, prevent dying ReLU
phenomenon). Other biases are set to 0.

Stochastic gradient descent with momentum

v (k+1) = 0.9v (k) − 0.0005ηθ(k) − η

B
∑
i∈B

∇ℓi (θ(k))

θ(k+1) = θ(k) + v (k+1),

with batch size |B| = B = 128.

The second term in the first equation corresponds to the L2 regularization of the losswith
a constant λ = 0.0005 (weight decay of 0.0005).

Learning rate is the same for all layers with the following heuristic:
Initialization: η = 0.01
Divide η by 10 when the validation error stop improving (done three times here).
90 epochs on 1.2 million images: 6 days.

E. Scornet Deep Learning 40 / 139

Numerical results

Model Top-1 (val) Top-5 (val) Top-5 (test)
SIFT + FVs[7] − − 26.2%
1CNN 40.7% 18.2% −
5CNNs 38.1% 16.4% 16.4%
1CNN∗ 39.0% 16.6% −
7CNNs∗ 36.7% 15.4% 15.3%

First line is the second runner-up.
Second and third lines are results output by the averaging over 1 or 5 CNN
described before.
Last two lines correspond to networks with an extra convolutional layer after the last
pooling layer which has been trained on Image Net Fall 2011 then “fine-tuned” on
the ImageNet 2012 data base.

AlexNet has a very similar architecture to LeNet, but is deeper, bigger, and features
Convolutional Layers stacked on top of each other: previously, pooling layers followed
immediately each convolutional layer.

E. Scornet Deep Learning 41 / 139

Results

E. Scornet Deep Learning 42 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 43 / 139

ZFNet: Improve upon AlexNet

[“Visualizing and understanding convolutional networks”, Zeiler and Fergus 2014]

Aim at finding out what the different feature maps are searching for in order to obtain a
better tuning of network architecture.

In ZFNet, feature maps are not divided across two different GPU. Thus connections
between layers are less sparse than for AlexNet.

E. Scornet Deep Learning 44 / 139

Deconvnet

Find the pixels that maximize the
activation of a given feature map.

How? Invert the network.

Precisely:
Choose a layer
Choose a feature map
Run the network on a
validation set
Choose the image maximizing
the activation of this feature
map
"Backpropagate" this
activation to obtain a stylized
image in the pixel space

E. Scornet Deep Learning 45 / 139

Results

Top 9 activations in a random subset of feature maps across the validation data,
projected down to pixel space using the previous deconvolutional network approach.

E. Scornet Deep Learning 46 / 139

Results

E. Scornet Deep Learning 47 / 139

Results

E. Scornet Deep Learning 48 / 139

Results

Remarks

strong grouping within each
feature map,

greater invariance at higher
layers

exaggeration of discriminative
parts of the image, e.g. eyes
and noses of dogs (layer 4, row
1, cols 1).

E. Scornet Deep Learning 49 / 139

Visualization of previous modifications

(b): 1st layer features from
Krizhevsky et al. 2012.

(c): 1st layer features of ZFNet.

Differences: smaller stride (2 vs 4)
and filter size (7x7 vs 11x11)

Results in more distinctive features
and fewer dead features.

E. Scornet Deep Learning 50 / 139

Visualization of previous modifications

(b): 1st layer features from
Krizhevsky et al. 2012.

(c): 1st layer features of ZFNet.

Differences: smaller stride (2 vs 4)
and filter size (7x7 vs 11x11)

Results in more distinctive features
and fewer dead features.

E. Scornet Deep Learning 50 / 139

Visualization of previous modifications

(d): Visualizations of 2nd layer features from Krizhevsky et al. 2012; (e): Visualizations
of the 2nd layer features of ZFNet.

Feature maps in (e) are cleaner, with no aliasing artefacts that are visible in (d).

E. Scornet Deep Learning 51 / 139

Visualization of previous modifications

(d): Visualizations of 2nd layer features from Krizhevsky et al. 2012; (e): Visualizations
of the 2nd layer features of ZFNet.

Feature maps in (e) are cleaner, with no aliasing artefacts that are visible in (d).

E. Scornet Deep Learning 51 / 139

Conclusion regarding AlexNet

First layer filters are a mix of high and low frequency information, with little
coverage of middle frequencies.
→ Reduced the first layer filter size from 11 × 11 to 7 × 7.

Aliasing artifacts are present in second layer because of the large stride of 4 used in
the first convolutional layer.
→ change the stride from 4 to 2.

With these modifications:
Winner of the ILSVRC 2013
Improvement on AlexNet by

▶ expanding the size of the middle convolutional layers
▶ making the stride and filter size on the first layer smaller.

E. Scornet Deep Learning 52 / 139

ZF Net final structure

E. Scornet Deep Learning 53 / 139

Results in classification

Error % Val Top-1 Val Top-5 Test Top-5
(Gunji et al., 2012) − − 26.2
(Krizhevsky et al., 2012), 1 convnet 40.7 18.2 −−
(Krizhevsky et al., 2012), 5 convnets 38.1 16.4 16.4
(Krizhevsky et al., 2012)*, 1 convnets 39.0 16.6 −−
(Krizhevsky et al., 2012)*, 7 convnets 36.7 15.4 15.3
Our replication of
(Krizhevsky et al., 2012), 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 - (a) 36.7 15.3 15.3
1 convnet as per Fig. 3 but with
layers 3, 4, 5: 512,1024,512 maps - (b) 37.5 16.0 16.1
6 convnets, (a) & (b) combined 36.0 14.7 14.8

E. Scornet Deep Learning 54 / 139

Occlusion

Three test examples where we systematically cover up different portions of the scene with a gray square (1st column) and see how the top (layer 5) feature
maps ((b) & (c)) and classifier output ((d) & (e)) changes.

(b): for each position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response in the unoccluded
image).
(c): a visualization of this feature map projected down into the input image (black square), along with visualizations of this map from other images. The
first row example shows the strongest feature to be the dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)).
(d): a map of correct class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability for pomeranian
drops significantly.

(e): the most probable label as a function of occluder position.

E. Scornet Deep Learning 55 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 56 / 139

Tiny VGGnet

[“Very deep convolutional networks for large-scale image recognition”, Simonyan and Zisserman 2014b]

E. Scornet Deep Learning 57 / 139

Network features

Convolutional layers:
Small receptive field: 3 × 3 (smallest ones capable of capturing the notion of
top/down, left/right!)
Stride of 1
Spatial resolution is preserved after convolution

Max-pooling layers:
2 × 2 kernel
Stride of 2

All hidden layers use ReLU activation functions.

Local Response Normalization layers do not improve performance.

E. Scornet Deep Learning 58 / 139

Insightful remark...

If you stack 3 convolutional layers with receptive fields 3 × 3, you obtain a convolutional
layer with receptive fields 7 × 7. What is the interest?

1 Stack of 3 convolutional layers of size 3 × 3: complexity of 3 × ×3 × 3 = 27.

2 One standard convolutional layer of size 7 × 7: complexity of 49.

In the first case, we cannot obtain every possible layer: the resulting object is a decom-
position of three consecutive convolutional layers. There are less possibilities hence less
parameters.

E. Scornet Deep Learning 59 / 139

VGGNet

E. Scornet Deep Learning 60 / 139

Parameters

Initialization:
Network A: N (0, 0.01) for weights and 0 for biases.
For other networks: first four conv layers and last three fully connected layers were
initialized using network A and the remaining layers were initialized randomly.

Stochastic gradient descent with momentum

v (k+1) = 0.9v (k) − 0.0005ηθ(k) − η
1
B
∑
i∈B

∇Li (θ(k))

θ(k+1) = θ(k) + v (k+1),

with batch size B = 128.

Learning rate is the same for all layers with the following heuristic:
Initialization: η = 0.01
Divide η by 10 when the validation error stop improving (done three times here).
74 epochs.

L2 penalty with constant 5.10−4

Dropout regularization for the first two fully connected layers (probability p = 0.5)

E. Scornet Deep Learning 61 / 139

Results

Method top-1
val. error
(%)

top-5
val. error
(%)

top-5
test error
(%)

VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8
VGG (1 net, multi-crop & dense eval.) 24.4 7.1 7.0
VGG (ILSVRC submission, 7 nets, dense eval.) 24.7 7.5 7.3
GoogLeNet (Szegedy et al., 2014) (1 net) − 7.9
GoogLeNet (Szegedy et al., 2014)(7 nets) − 6.7
MSRA (He et al, 2014)(11 nets) − − 8.1
MSRA (He et al., 2014)(1 net) 27.9 9.1 9.1
Clarifai (Russakovsky et al., 2014) (multiple nets) − − 11.7
Clarifai (Russakovsky et al., 2014)(1 net) − − 12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8
Zeiler & Fergus (Zeiler & Fergus, 2013)(1 net) 37.5 16.0 16.1
OverFeat (Sermanet et al, 2014) (7 nets) 34.0 13.2 13.6
OverFeat (Sermanet et al, 2014) (1 net) 35.7 14.2 −
Krizhevsky et al. (Krizhevsky et al., 2012)(5 nets) 38.1 16.4 16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 −

A downside of the VGGNet is that it is more expensive to evaluate and uses a lot more
memory and parameters (140M).
Most of these parameters are in the first fully connected layer, and it was since found
that these FC layers can be removed with no performance downgrade, significantly
reducing the number of necessary parameters.

E. Scornet Deep Learning 62 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 63 / 139

GoogLeNet

[“Going deeper with convolutions”, Szegedy, W. Liu, et al. 2015]

Aim.
Increasing the depth and width of state-of-the-art convolutional neural networks while
keeping the number of parameters small:

Can approximate more complex functions

while being robust to overfitting and computationally appealing.

How.
Specifically, use of 1 × 1 convolution layers to reduce the number of parameters + apply
filters of different sizes 3 × 3, 5 × 5 or 3 × 3 max pooling (on each feature maps).

Details.
All convolution layers use ReLU activation functions.
Same spatial resolution for each feature map.

E. Scornet Deep Learning 64 / 139

GoogLeNet - Inception module

Same spatial resolution for each feature map.
Use of 1 × 1 convolution layers to reduce the number of parameters then apply filters of
different sizes 3 × 3, 5 × 5 or 3 × 3 max pooling (on each feature maps).

E. Scornet Deep Learning 65 / 139

GoogLeNet - Inception module

“3x3 reduce” and “5x5 reduce” stands for the number of 1x1 filters in the reduction layer used before the 3x3
and 5x5 convolutions. One can see the number of 1x1 filters in the projection layer after the built-in
max-pooling in the pool proj column.

E. Scornet Deep Learning 66 / 139

Structure of GoogLeNet

E. Scornet Deep Learning 67 / 139

Structure of GoogLeNet

E. Scornet Deep Learning 68 / 139

Deep network - A concern

In order to backpropagate gradient, the authors add some auxiliary classifiers connected
to intermediate layers.
During training the loss of auxiliary classifiers is weighted by 0.3 and added to the total
loss of the network. Auxiliary networks are removed at inference time.

Auxiliary network put after (4a) and (4d):
Average pooling layer 5 × 5, stride of 3
A 1 × 1 convolution with 128 filters, with ReLU.
A fully connected layer with 1024 neurons and ReLU
A dropout layer with a dropout ratio of 70%.
A linear layer with softmax loss, predicting the same 1000 classes as the main
classifier.

E. Scornet Deep Learning 69 / 139

Parameters

Initialization:
Weights are drawn from N (0, 1) and biases are set to 0.

[“Deep learning via Hessian-free optimization.”, Martens 2010]

Stochastic gradient descent with momentum

v (k+1) = µv (k) − η
1
B
∑
i∈B

∇ℓi (θ(k) + µv (k))

θ(k+1) = θ(k) + v (k+1),

with batch size B = 200, where
µ(k) = min(1 − 2−1−log2(⌊k/250⌋+1), µmax),

where µmax ∈ {0, 0.9, 0.99, 0.995, 0.999}.

Learning rate is the same for all layers with the following heuristic:
Initialization: η = 0.01
Multiply η by 0.96 every 8 epochs.
Training lasts 125 epochs.

E. Scornet Deep Learning 70 / 139

Results
Polyak averaging is used to create the final model at inference time.
7 different versions of GoogleNet were trained and aggregated to make predictions.

Main contribution: development of an Inception Module that dramatically reduced the number of
parameters in the network (4M, compared to AlexNet with 60M).

E. Scornet Deep Learning 71 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 72 / 139

ResNet (2016)

[“Deep residual learning for image recognition”, He et al. 2016]

Statement: Optimization can be hard for some deep networks.

Solution: Ease optimization by adding simple paths in the network

→ No extra parameters, no additional computational complexity

E. Scornet Deep Learning 73 / 139

Literature on shortcut connections

Early practice for training multi-layer perceptrons was to add a linear layer between the
inputs and the outputs
[Pattern recognition and neural networks, Ripley 2007]

Few intermediate classifiers can also be added in intermediary levels in order to ease the
optimization:

[“Going deeper with convolutions”, Szegedy, W. Liu, et al. 2015]

[“Deeply-supervised nets”, Lee et al. 2015]

Highway networks have shortcut connections with gating functions. Here, gates are data
dependent and have parameters.

[“Highway networks”, Rupesh Kumar Srivastava et al. 2015]

[“Training very deep networks”, Rupesh K Srivastava et al. 2015]

E. Scornet Deep Learning 74 / 139

General Idea

Inspired from VGG nets:

For the same output feature map size, the layers have the same numbers of filters
If the feature map size is halved, then the number of filters is doubled to preserve
the time complexity per layer

y = f (x, Wi)+x,

where x and y are respectively the input and the output of a (stack of) layer(s), Wi are
the weights of this/these layer(s) and f (x, Wi) the output of this/these layer(s).

If dimensions do not match between x and y, there are two solutions:
identity mapping is coupled with extra zero entries padded for increasing dimensions
Projection shortcut is used to match dimensions via 1 × 1 convolution filters

y = f (x, Wi) + Wsx,

where Ws is a projection.

Besides, “when the shortcuts go across feature maps of two different sizes, they are
performed with a stride of 2”.

E. Scornet Deep Learning 75 / 139

Structure of ResNet

E. Scornet Deep Learning 76 / 139

Structure of ResNet

E. Scornet Deep Learning 77 / 139

Parameters

Initialization, as in He et al. 2015: weights are drawn from N (0, 2/nL) (nL is the number
of neurons in the previous layer); biases are set to 0.

Stochastic gradient descent with momentum

v (k+1) = 0.9v (k) − 0.0001ηθ(k) − η
1
B
∑
i∈B

∇Li (θ(k))

θ(k+1) = θ(k) + v (k+1),

with batch size B = 256.

Learning rate is the same for all layers with the following heuristic:
Initialization: η = 0.1
Divide η by 10 when the validation error stop improving (done three times here).
120 epochs.

Miscellaneous:
Batch normalization after each convolution and before activation
No dropout

E. Scornet Deep Learning 78 / 139

Results

Winner of ILSVRC 2015
Special skip connections and heavy use of batch normalization
No fully connected layers at the end of the network.

E. Scornet Deep Learning 79 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 80 / 139

DenseNet

[“Densely Connected Convolutional Networks.”, G. Huang et al. 2017]

Figure: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are
referred to as transition layers and change feature-map sizes via convolution and pooling

E. Scornet Deep Learning 81 / 139

DenseNet

Figure: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding
feature-maps as input.

E. Scornet Deep Learning 82 / 139

Ingredients

Let xℓ be the input of the ℓth layer. Usually,
xℓ = fℓ(xℓ−1).

Dense Block. Inside a dense block,
xℓ = fℓ(x0, . . . , xℓ−1).

The functions fℓ are composed of three consecutive operations:
1 First, a batch normalization
2 Then, activation function ReLU
3 Finally, 3 × 3 convolutional layer (feature map sizes are kept fixed)

Transition layers.
1 Batch normalization
2 1 × 1 convolution
3 2 × 2 average pooling

E. Scornet Deep Learning 83 / 139

Ingredients

Growth rate k
If each function fℓ produces k feature maps, the inputs of the ℓth layer has k0 + k(ℓ − 1)
channels. Narrow layers (typically k = 12) give good results.
→ Indeed, each layer has access to each previous layer and thus to the “collective
knowledge” of the network.

Bottleneck layer - DenseNet-B
A way to improve computational efficiency is to introduce 1 × 1 convolutional layers:
inside dense block, for each layer

BN - ReLU - Conv (1 × 1) - BN - ReLU - Conv (3 × 3)

Conv 1 × 1 are set to produce 4k feature maps.

Compression layer - DenseNet-C
Throw away a fraction θ ∈ [0, 1] (typically θ = 0.5) of feature maps at transition layers.

E. Scornet Deep Learning 84 / 139

Architecture

E. Scornet Deep Learning 85 / 139

Parameters

Initialization, as in He et al. 2015: weights are drawn from N (0, 2/nL) (nL is the number
of neurons in the previous layer); biases are set to 0.

Stochastic gradient descent with momentum

v (k+1) = 0.9v (k) − 0.0001ηθ(k) − η
1
B
∑
i∈B

∇Li (θ(k))

θ(k+1) = θ(k) + v (k+1),

with batch size B = 256.

Learning rate is the same for all layers with the following heuristic:
Initialization: η = 0.1
Divide η by 10 at epoch 30 and 60.
90 epochs.

Miscellaneous:
Batch normalization after each convolution and before activation
No dropout

E. Scornet Deep Learning 86 / 139

DenseNet Results

E. Scornet Deep Learning 87 / 139

Outline

1 Foundations of CNN
Convolution layer
Pooling layer
Data preprocessing

2 Famous CNN
LeNet (1998)
AlexNet (2012)
ZFNet (2013)
VGGNet (2014)
GoogLeNet (2014)
ResNet (2016)
DenseNet (2017)
Many other CNN

3 Applications
Image classification
Pose, action detection
Object detection
Scene labeling - Semantic segmentation
Object tracking - videos
Text detection and recognition

E. Scornet Deep Learning 88 / 139

Inception V2-V3

Based on GoogLeNet Inception module
[“Rethinking the inception architecture for computer vision”, Szegedy, Vanhoucke, et al. 2016]

New ideas:
Using asymmetric convolutions 1 × n and n × 1 (for n = 3, 5, 7) can be useful in the
middle layers of the networks for feature maps of size m × m (for 12 ≤ m ≤ 20).
Label smoothing using a uniform distribution over labels

E. Scornet Deep Learning 89 / 139

Xception

[“Xception: Deep learning with depthwise separable convolutions”, Chollet 2017]

Stands for “Extreme Inception” and builds upon Inception module in GoogLeNet.

The main ideas:
Perform 1 × 1 convolutions
Apply 3 × 3 (or other filter size) convolutions to each previous feature map (the one
created by 1 × 1 convolutions) separately.

→ Decoupled the depth (1 × 1 convolutions) and the spatial transformations
(convolutions on each feature map separately).

E. Scornet Deep Learning 90 / 139

Comparison of several CNN

[“An analysis of deep neural network models for practical applications”, Canziani et al. 2016]

E. Scornet Deep Learning 91 / 139

CNN Taxonomy

See this very detailed review paper [“A survey of the recent architectures of deep convolutional neural networks”,

Khan et al. 2020]

E. Scornet Deep Learning 92 / 139

	Foundations of CNN
	Convolution layer
	Pooling layer
	Data preprocessing

	Famous CNN
	LeNet (1998)
	AlexNet (2012)
	ZFNet (2013)
	VGGNet (2014)
	GoogLeNet (2014)
	ResNet (2016)
	DenseNet (2017)
	Many other CNN

