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Decision trees

Decision tree: a tool to help you taking a decision via
asking a sequence of questions.
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Decision trees

A first example - Should you (re)watch the videos
on decision trees?

→ Such a tree comes from common sense or from
domain experts.
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Decision trees

Can we collect data to automatically create a
decision tree, without domain experts?

MedInc ≤ 5.035
squared_error = 1.332

samples = 20640
value = 2.069

MedInc ≤ 3.074
squared_error = 0.837

samples = 16255
value = 1.735

True

MedInc ≤ 6.82
squared_error = 1.221

samples = 4385
value = 3.306

False

squared_error = 0.561
samples = 7860
value = 1.357

AveOccup ≤ 2.373
squared_error = 0.837

samples = 8395
value = 2.089

squared_error = 1.291
samples = 1954

value = 2.79

squared_error = 0.505
samples = 6441
value = 1.876

AveOccup ≤ 2.743
squared_error = 0.891

samples = 3047
value = 2.906

squared_error = 0.778
samples = 1338
value = 4.216

squared_error = 1.006
samples = 1260
value = 3.391

squared_error = 0.526
samples = 1787
value = 2.563

Figure: Output of a decision tree trained on a real-estate
data set (1990 California housing data set).
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Construction of Decision trees - regression

Decision tree building
Requires a splitting rule
Requires a stopping rule
Requires a prediction rule
→ Average per leaf
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Construction of Decision trees - classification

Decision tree building
Requires a splitting rule
Requires a stopping rule
Requires a prediction rule
→ Majority vote per leaf
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Splitting criterion

Finding the best split in a cell A requires an impurity
criterion Imp. Based on this criterion, one can define
the impurity reduction associated to a split (j, s) as

∆Imp(j, s; A)
=Imp(A) − pLImp(AL) − pR Imp(AR), (1)

where pL (resp. pR) is the fraction of observations in
A that fall into AL (resp. AR).
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Finding the best split in a cell A requires an impurity
criterion Imp. Based on this criterion, one can define
the impurity reduction associated to a split (j, s) as

∆Imp(j, s; A)
=Imp(A) − pLImp(AL) − pR Imp(AR), (1)

where pL (resp. pR) is the fraction of observations in
A that fall into AL (resp. AR).

The best split (j⋆, s⋆) is then chosen as

(j⋆, s⋆) ∈ argmax
j,s

∆Imp(j, s; A). (2)

An instance of Imp(A) in regression: the empirical
variance of the Yi s in A.
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Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.
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Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.
Select the split maximizing the decrease in impu-
rity
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Impurity criteria

For regression, letting Nn(A) the number of
observations in the cell A and ȲA the mean
of the Yi s in A:

Variance
ImpV (A) = 1

Nn(A)
∑

i,Xi ∈A

(Yi − ȲA)2,

(3)
Mean absolute deviation around the
median

ImpL1 (A)

= 1
Nn(A)

∑
i,Xi ∈A

|Yi − Med(Yi : Xi ∈ A)|.

(4)
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Impurity criteria

For classification, letting pk,n(A) the propor-
tion of observations in A such that Y = k:

Misclassification error rate
Imperr (A) = 1 − max

1≤k≤K
pk,n(A) (3)

Gini

ImpG(A) =
K∑

k=1

pk,n(A)(1 − pk,n(A)).

(4)
Entropy

ImpH(A) = −
K∑

k=1

pk,n(A) log2(pk,n(A)).

(5)
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Splitting criterion and risk of the method

Consider the variance as impurity measure:

Imp(A) = 1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲA)2. (6)
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∑
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For any split (j, s) in any cell A resulting in cells AL
and AR , the impurity reduction takes the form

∆Imp(j, s; A)
=Imp(A) − pLImp(AL) − pR Imp(AR)
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and AR , the impurity reduction takes the form

∆Imp(j, s; A)
=Imp(A) − pLImp(AL) − pR Imp(AR)
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(6)

Thus finding the best split is equivalent to
minimizing

1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR )2 (7)

This corresponds to the square loss of a predictor,
which is piecewise constant on AL and AR , whose
values equal the mean of Yi ’s in each cell.
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Splitting criterion and risk of the method

Thus finding the best split is equivalent to
minimizing

1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR )2 (6)

This corresponds to the square loss of a predictor,
which is piecewise constant on AL and AR , whose
values equal the mean of Yi ’s in each cell.

Optimal partition. Finding the tree partition with
the minimal quadratic risk on the training set.

Statistically sound
Computationally infeasible
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Splitting criterion and risk of the method

Thus finding the best split is equivalent to
minimizing

1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR )2 (6)

This corresponds to the square loss of a predictor,
which is piecewise constant on AL and AR , whose
values equal the mean of Yi ’s in each cell.

Greedy partition. At each step, finding the split with
the minimal quadratic risk on the training set.

Not the best predictive performances
Computationally cheap
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Splitting criterion and risk of the method

Thus finding the best split is equivalent to
minimizing

1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR )2 (6)

This corresponds to the square loss of a predictor,
which is piecewise constant on AL and AR , whose
values equal the mean of Yi ’s in each cell.

Greedy partition. At each step, finding the split with
the minimal quadratic risk on the training set.

Not the best predictive performances
Computationally cheap

General rule. Choose the splitting criterion corre-
sponding to the risk you want to minimize.
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Splitting criterion and risk of the method

General rule. Choose the splitting criterion corre-
sponding to the risk you want to minimize.

Regression
The variance corresponds to the L2 risk.
The mean absolute deviation around the median
is close to the L1 risk

Classification
The entropy impurity is related to the cross-
entropy loss
The Gini impurity is not related to any loss, as it
does not correspond to a majority vote but rather
a random one
The misclassification error rate is related to 0 − 1
loss, which should not be used, as detailed here-
after.
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Classification - which impurity to use?

We can choose between
Misclassification rate

Imperr (A) = 1 − max
1≤k≤K

pk,n(A) (6)

Gini

ImpG(A) =
K∑

k=1

pk,n(A)(1 − pk,n(A)). (7)

Entropy

ImpH(A) = −
K∑

k=1

pk,n(A) log2(pk,n(A)). (8)
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Classification - which impurity to use?

In a binary classification setting, impurities can be
rewritten as

Misclassification rate
Imperr (A) = 1 − max

k∈{0,1}
pk,n(A) (6)

Gini
ImpG(A) = 2p0,n(A)(1 − p0,n(A)) (7)

Entropy
ImpH(A) = − p0,n(A) log2(p0,n(A))

− (1 − p0,n(A)) log2(1 − p0,n(A))
(8)
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Classification - which impurity to use?

Let us take an example:

For such a split of the parent cell A, we have
Imperr (A) = Imperr (AL) = Imperr (AR) = 0.1, (6)
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Classification - which impurity to use?

Let us take an example:

For such a split of the parent cell A, we have
Imperr (A) = Imperr (AL) = Imperr (AR) = 0.1, (6)

Since ∆Imperr = 0, the split appears to be
non-informative.
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Classification - which impurity to use?

Let us take an example:

Since ∆Imperr = 0, the split appears to be
non-informative.
But the right node is pure! The decrease in
impurity for the two other criterion is

∆ImpG(A) = 0.005
and ∆ImpH(A) = 0.01. (6)

E. Scornet Decision trees 13 / 26



Classification - which impurity to use?

Let us take an example:

Since ∆Imperr = 0, the split appears to be
non-informative.
But the right node is pure!

This phenomenon results from the fact that the
misclassification rate in the binary setting is not
strictly concave, contrary to the Entrope/Gini
criterion. More explanation herea

ahttps://tushaargvs.github.io/assets/teaching/
dt-notes-2020.pdf
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Classification - which impurity to use?

Let us take an example:

Since ∆Imperr = 0, the split appears to be
non-informative.
But the right node is pure!

Misclassification criterion is not precise enough to
be used for building trees.
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1 Motivation and general construction

2 Detailed construction
Splitting criterion
Stopping rule and predictions
Categorical features
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Decision tree

Now that we have defined a splitting rule, let us see
the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
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the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule

(by default, one observation per
leaf)

Stopping rule for splitting a cell:

All samples have the same label (classification)
No reduction of the impurity criterion
The next split will produce cells with less than
min-samples-leaf observations (1, by default)
The cell contains less than min-samples-split
observations (2, by default)
The cell has already been split max-depth times
(∞, by default)
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Decision tree

Now that we have defined a splitting and a stopping
rule, let us see the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule (by default, one observation per
leaf)
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Decision tree

Now that we have defined a splitting and a stopping
rule, let us see the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule (by default, one observation per
leaf)
Prediction rule

(average or majority vote per
leaf)

Prediction rule:

Regression - Average of labels per leaf

t̂n(x) =
n∑

i=1

Yi
1Xi ∈An(x)

Nn(An(x)) (6)

Classification - Majority vote per leaf

t̂n(x) = argmax
k∈{1,...,K}

n∑
i=1

1Yi =k1Xi ∈An(x)

Nn(An(x)) (7)
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Prediction rule:
Regression - Average of labels per leaf

t̂n(x) =
n∑

i=1

Yi
1Xi ∈An(x)

Nn(An(x)) (6)

Classification - Majority vote per leaf

t̂n(x) = argmax
k∈{1,...,K}

n∑
i=1

1Yi =k1Xi ∈An(x)

Nn(An(x)) (7)
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Handling different types of features

There exist three main types of features:
Continuous (blood pressure)
Ordinal (Glasgow score)
Nominal (Medical treatments)

Continuous features. The tree above was built on
continuous features: splits are of the form X (j) ≤ s.

Ordinal features. Construction can be directly ex-
tended to ordinal features: splits are exactly of the
same form X (j) ≤ s.

Nominal features. For nominal feature, it makes no
sense to consider such splits: there is no natural order
on treatments.
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Nominal features

A nominal features X (j) can take different discrete
values that are not ordered. For example, X (j) can be
the type of treatment, which is surgical, chemical, or
nothing (three different modalities).
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Nominal features

A nominal features X (j) can take different discrete
values that are not ordered. For example, X (j) can be
the type of treatment, which is surgical, chemical, or
nothing (three different modalities).

Exhaustive search Letting C the set of all modalities
of a variable, any split along this variable is of the form
C versus C c for any C ⊂ C.

All partitions of modalities in two groups is ad-
missible
Computationally costly / infeasible to evaluate
all these splits for variables with high cardinal-
ity (number of modalities)
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Nominal features

A nominal features X (j) can take different discrete
values that are not ordered. For example, X (j) can be
the type of treatment, which is surgical, chemical, or
nothing (three different modalities).

Common practice - One-hot encoding Creating as
many new (dummy) variables as modalities. In our
example, our treatment variable would become

(1, 0, 0) for surgical treatments, (0, 1, 0) for chemical
treatments,

(0, 0, 1) for no treatment

A split is the of the type "one modality" VS "all
other modalities".
More limited number of splits, computationally
appealing but decreases the model predictivity.
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the type of treatment, which is surgical, chemical, or
nothing (three different modalities).

Common practice - One-hot encoding Creating as
many new (dummy) variables as modalities. In our
example, our treatment variable would become

(1, 0, 0) for surgical treatments, (0, 1, 0) for chemical
treatments,

(0, 0, 1) for no treatment

A split is the of the type "one modality" VS "all
other modalities".
More limited number of splits, computationally
appealing but decreases the model predictivity.

One-hot encoding is the most common encoding
method.
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A clever encoding: Target encoding

Nominal variables. A classic way to handle them is
via one-hot encoding. Sadly, it limits the predictivity
of the model.

In binary classification, we can do better.
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via one-hot encoding. Sadly, it limits the predictivity
of the model.

In binary classification, we can do better.
Choose an impurity (misclassification rate,
entropy or Gini)
Consider a nominal variable Xj that can take L
modalities. Reorder it so that the empirical
probabilities in a given cell A satisfy

Pn[Y = 1|Xj = C1, X ∈ A]
≤Pn[Y = 1|Xj = C2, X ∈ A]
≤ . . .

≤Pn[Y = 1|Xj = CL, X ∈ A]. (6)
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Consider a nominal variable Xj that can take L
modalities. Reorder it so that the empirical
probabilities in a given cell A satisfy

Pn[Y = 1|Xj = C1, X ∈ A]
≤Pn[Y = 1|Xj = C2, X ∈ A]
≤ . . .

≤Pn[Y = 1|Xj = CL, X ∈ A]. (6)
Then the best split (that maximizes the decrease
in impurity) is of the form

Xj ∈ {C1, . . . , Cℓ} vs Xj ∈ {Cℓ+1, . . . , CL}.
(7)

This is a result from Fisher 1958
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A clever encoding: Target encoding

Choose an impurity (misclassification rate,
entropy or Gini)
Consider a nominal variable Xj that can take L
modalities. Reorder it so that the empirical
probabilities in a given cell A satisfy

Pn[Y = 1|Xj = C1, X ∈ A]
≤Pn[Y = 1|Xj = C2, X ∈ A]
≤ . . .

≤Pn[Y = 1|Xj = CL, X ∈ A]. (6)
Then the best split (that maximizes the decrease
in impurity) is of the form

Xj ∈ {C1, . . . , Cℓ} vs Xj ∈ {Cℓ+1, . . . , CL}.
(7)

Summary. Finding the optimal split by reordering and
then evaluating L − 1 splits instead of 2L−1 − 1 splits
for exhaustive search (and L splits with suboptimal
decision for one-hot encoding).
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A clever encoding: Target encoding

Choose an impurity (misclassification rate,
entropy or Gini)
Consider a nominal variable Xj that can take L
modalities. Reorder it so that the empirical
probabilities in a given cell A satisfy

Pn[Y = 1|Xj = C1, X ∈ A]
≤Pn[Y = 1|Xj = C2, X ∈ A]
≤ . . .

≤Pn[Y = 1|Xj = CL, X ∈ A]. (6)
Then the best split (that maximizes the decrease
in impurity) is of the form

Xj ∈ {C1, . . . , Cℓ} vs Xj ∈ {Cℓ+1, . . . , CL}.
(7)

Extension to regression. The same procedure holds
in regression by considering the average values of Y
for each modality (instead of the probabilities).
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Generalization / Overfitting
By default, a tree is fully grown, i.e., there

is only one observation per leaf.

What is the training error of such trees?

Fighting overfitting. To prevent this phe-
nomenon from happening, we can limit the
complexity of the method. In decision trees,
this means:

setting parameters to limit the depth
of the tree (min-samples-leaf,
min-samples-split, max-depth)
using pruning strategies, that is build-
ing a fully-grown tree and remove/prune
some branches of the tree to obtain a
simpler tree that generalizes better.

Pruning strategies are always/often
preferred!

→ Stopping the tree construction when the
splitting criterion is low is not a valid strat-
egy.
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Pruning strategies

Two types of pruning strategies exist:
Reducing Error, consists in removing branches of
the fully-grown tree, based on the error computed
on an extra data set (validation set). Simple but
implies that less data are used for the training of
the tree (first step).
Cost-complexity pruning (CART) is based on a
penalization of the decision tree error via the num-
ber of leaves.

Cost-complexity pruning. Let T0 be the trained fully-
grown tree. We denote by R(T ) the risk of any tree
T , defined as either the misclassification rate (1 - ac-
curacy) or the weighted impurity of each one of its
leaves:

R(T ) =
∑

A∈Leaf(T )

pAImp(A), (8)

where pA is the proportion of observations falling into
A (usually 1/n).
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Pruning strategies

Cost-complexity pruning. Let T0 be the trained fully-
grown tree. We denote by R(T ) the risk of any tree
T , defined as either the misclassification rate (1 - ac-
curacy) or the weighted impurity of each one of its
leaves:

R(T ) =
∑

A∈Leaf(T )

pAImp(A), (8)

where pA is the proportion of observations falling into
A (usually 1/n).

As mentioned before, for a fully-grown tree T0,
R(T0) = 0 and then does not give a good measure
of predictive performances of T0.
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Pruning strategies

Cost-complexity pruning. Let T0 be the trained fully-
grown tree. We denote by R(T ) the risk of any tree
T , defined as either the misclassification rate (1 - ac-
curacy) or the weighted impurity of each one of its
leaves:

R(T ) =
∑

A∈Leaf(T )

pAImp(A), (8)

where pA is the proportion of observations falling into
A (usually 1/n).

For all α > 0, we define the cost-complexity measure
Rα(T ) as

Rα(T ) = R(T ) + α|Leaf(T )|, (9)
where |Leaf(T )| is the number of leaves in T .

A cross-validation procedure can then be used to select
the best value for α, therefore producing an shallower
tree than T0.
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Final algorithm

Tree construction
Input: a dataset, an impurity measure.
At each node A, select the best split via

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j, s; A).

Repeat for each cell until the leaf contains one
observation
Output: a fully-grown decision tree.

Tree pruning
Input: A fully-grown decision tree, a data set, an
impurity measure.
Choose one of the two pruning strategies:

▶ Reduction Error pruning (RE, C4.5)
▶ Cost complexity pruning (CART)

Output: a pruned decision tree.

Tree prediction Tthe tree prediction at xnew is given
by the average / majority vote among the training ob-
servations falling into the same leaf as xnew .
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Pro/cons

Benefits

Work in classification and regression
Can handle categorical and continuous
features
Interpretable
Invariant by monotonic transformation
of the data
Missing values
Numerical complexity : nd log n
Feature selection / good in high-
dimensional settings
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Pro/cons

Benefits

Work in classification and regression
Can handle categorical and continuous
features
Interpretable
Invariant by monotonic transformation
of the data
Missing values
Numerical complexity : nd log n
Feature selection / good in high-
dimensional settings

Drawbacks

Non-robust to small changes in data
Limited approximation capacity
(thresholded nature)
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