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Example: Gaussian mixture

Consider two Gaussian distributions

X1 ∼ N (µ1, σ
2
1), and X2 ∼ N (µ2, σ

2
2), (61)

and the mixture

X = (1−∆)X1 + ∆X2, (62)
where ∆ ∈ {0, 1} with Pr[∆ = 1] = π and ∆ and (X1,X2) are independent.
Let φθ denote the density of a Gaussian random variable parametrized by θ = (µ, σ2).

Exercise: How do we estimate θ1, θ2?
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Solution

Then, the density of X satisfies

fX (x) = (1− π)φθ1(x) + πφθ2(x). (63)
One can estimate the parameters µ1, µ2, σ

2
1 , σ

2
2 by maximizing the log likelihood

`(θ1, θ2,Dn) =
n∑

i=1

log[(1− π)φθ1(xi ) + πφθ2(xi )]. (64)

Explicit maximization of this expression is numerically difficult, because of the sum of
terms inside the logarithm.
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Simpler approach: latent variables

Suppose that we know the value ∆i for all i = 1, . . . , n, that is for each observation we
know if it comes from X1 (∆ = 0) or X2 (∆ = 1). In that case, the complete log
likelihood writes

`0(θ1, θ2,Dn,∆) =
n∑

i=1

log[(1−∆i )φθ1(xi ) + ∆iφθ2(xi )] (65)

+
n∑

i=1

[∆i log π + (1−∆i ) log(1− π)]. (66)

Since we do not know the values of ∆i , we are going to replace them by their expected
values

γi (θ) = E[∆i |θ,Dn] = Pr[∆i = 1|θ,Dn]. (67)
called the responsibility of model 2 for the ith observation.

We will use an iterative procedure called Expectation-Maximization (EM) algorithm to
find estimations of θ1, θ2, π.
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EM algorithm for Gaussian mixture

1 Initialize µ̂1, µ̂2, σ̂
2
1 , σ̂

2
2 , π̂.

2 Expectation step: compute the responsibilities

γ̂i =
π̂φθ̂2(xi )

(1− π̂)φθ̂1(xi ) + π̂φθ̂2(xi )
(68)

3 Maximization step: compute the weighted means and variances

µ̂1 =
∑n

i=1(1− γ̂i )xi∑n
i=1(1− γ̂i )

µ̂2 =
∑n

i=1 γ̂i xi∑n
i=1 γ̂i

(69)

and

σ̂2
1 =

∑n
i=1(1− γ̂i )(xi − µ̂1)2∑n

i=1(1− γ̂i )
σ̂2
2 =

∑n
i=1 γ̂i (xi − µ̂2)2∑n

i=1 γ̂i
(70)

and the mixing probabilities

π̂ = 1
n

n∑
i=1

γ̂i . (71)

4 Iterate until convergence.
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General framework for EM

A data set Dn = {X1, . . . ,Xn}
The observed log likelihood is given by `(θ,Dn)
We do not observe latent variables Zi that drive the behaviour of the observed
variables Xi

If we were to observed Zi , the log likelihood (called complete log likelihood) would
be `0(θ,Dn,Z).

EM algorithm
1 Start by initializing θ̂(0).
2 Expectation step: at the jth iteration, compute

Q(θ, θ̂(j)) = Ep
θ̂(j) (z|x)(log pθ(x, z)|x). (72)

3 Maximization step: at the jth iteration, compute

θ̂(j+1) ∈ argmax
θ

Q(θ, θ̂(j)). (73)

4 Repeat step 2− 3 until convergence.

Exercise: Prove that this algorithm converges.
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Prove that EM algorithm increases the log-likelihood

We have
Q(θ, θ′) = Epθ′ (z|x)(log pθ(x, z)|x) (74)

= Epθ′ (z|x)(log pθ(z|x)|x) + Epθ′ (z|x)(log pθ(x)|x) (75)
= Epθ′ (z|x)(log pθ(z|x)|x)︸ ︷︷ ︸

R(θ,θ′)

+ log pθ(x)︸ ︷︷ ︸
`(θ,Dn)

. (76)

Consequently, by definition of the maximization step, if θ ∈ argmaxu Q(u, θ′),

`(θ,Dn)− `(θ′,Dn) = (Q(θ, θ′)− Q(θ′, θ′))− (R(θ, θ′)− R(θ′, θ′)) (77)
≥ −(R(θ, θ′)− R(θ′, θ′)), (78)

Besides,
R(θ, θ′)− R(θ′, θ′) = Epθ′ (z|x)[log(pθ(z|x))|x]− Epθ′ (z|x)[log(pθ′ (z|x))|x] (79)

= Epθ′ (z|x)

[
log
( pθ(z|x)

pθ′ (z|x)

)∣∣∣x] ≤ log
(
Epθ′ (z|x)

[
pθ(z|x)
pθ′ (z|x)

∣∣∣x]) (80)

≤ 0, (81)
which proves that,

`(θ,Dn)− `(θ′,Dn) ≥ 0. (82)
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Mathematical Framework - Bayesian point of view

Observed variables: x = (x1, . . . , xn)

(Unobserved) Latent variables z = (z1, . . . , zm)

What we specify:
Prior on latent variables: p(z)
Likelihood p(x|z)

What we want to know:
The posterior distribution p(z|x) (inference)
The distribution p(x) (density estimation)
Or, at least, being able to sample from a distribution close to p(x) (generating data)
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Solutions

How to determine
The posterior distribution p(z|x) (inference)
The distribution p(x) (density estimation)
Or, at least, being able to sample from a distribution close to p(x) (generating data)

Easy via Bayes formula
p(z|x) = p(x,z)

p(x)

p(x) =
∫
z p(x|z)p(z)dz

However, computing the last integral is often intractable (one precise example later).

Two solutions:
Use Monte Carlo Markov Chain to estimate

∫
z p(x|z)p(z)dz.

Use variational inference (or GAN) to compute an approximation of p(z|x).

Differences between MCMC and Variational inference?

E. Scornet Deep Learning 47 / 94



Outline

1 General Motivation

2 No latent variables
Parametric density estimation
Histograms
Kernels
Nearest neighbors
Fully Visible Belief Nets (FVBN)

3 Latent variables
Hidden Markov Model - EM
Variational autoencoders
Generative Adversarial Networks

4 Applications

E. Scornet Deep Learning 48 / 94



Mathematical Framework - Bayesian point of view

Observed variables: x = (x1, . . . , xn)

(Unobserved) Latent variables z = (z1, . . . , zm)

What we specify:
Prior on latent variables: p(z)
Complete Likelihood pθ(x, z)
Observed likelihood pθ(x)

What we want to know:
The posterior distribution pθ(z|x) (inference)
The distribution pθ(x) (density estimation)
Or, at least, being able to sample from a distribution close to pθ(x) (generating
data)
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Distribution on latent variables

Latent informations are really hard to grasp from an image for example: angle,
width, color, shape, texture...

We do not want to create manually our own latent variable
[“Deep convolutional inverse graphics network”, Kulkarni et al. 2015]

They encourage neurons to represent specific transformation

Difficult to model dependencies between each component of Z.
→ Latent variables do not have clear interpretation and can be drawn from a classic
distribution, typically N (0, I).

Key argument: Any distribution in d dimensions can be generated by applying a
function to a normally distributed vector u of dimension d .
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Generate random variables from univariate Gaussian

Any distribution in d dimensions can be generated by applying a function to a
normally distributed vector u of dimension d.

Assume that we want to model the distribution of X , which admits a density

f (x1, . . . , xd ) = f1(x1)f2(x2|x1)f3(x3|x1, x2) . . . fd (xd |x1, . . . , xd−1). (83)

Let Z = (Z1, . . . ,Zd ) ∼ N (0, I), F1 be the cumulative distribution function of X1 and φ
be the cumulative distribution function of a standard normal random variable. Then,

φ−1(F1(X1)) ∼ Z1 (84)
that is,

X1 ∼ F−11 (φ(Z1)) (85)

Now, denote by F2,x1 the cdf of X2 conditional on X1 = x1. Then,
X2 ∼ F−12,x1(φ(Z2)) (86)

And so on...

More on generating random variables: [“Sample-based non-uniform random variate generation”, Devroye 1986]
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Rewritting the likelihood

First, we need a distance between distribution, for example the Kullback-Leibler
divergence between two densities p and q, defined as

KL(p||q) =
∫

p(z) log
(p(z)

q(z)

)
dz. (87)

Prove that, the observed log likelihood can be written as
log pθ(x) = ELBO(qλ) + KL(qλ(z|x)||pθ(z|x)), (88)

where
ELBO(qλ) = log pθ(x)− KL(qλ(z|x)||pθ(z|x)) (89)

= Eqλ [log pθ(x, z)]−Eqλ [log qλ(z|x)] (90)
= −KL(qλ(z|x)||pθ(x, z)) (91)
= Eqλ [log pθ(x|z)]− KL(qλ(z|x)||pθ(z)). (92)

Prove that log pθ(x) ≥ ELBO(qλ).

Our aim is to maximize log pθ(x). However, computing

pθ(x) =
∫

pθ(x, z)dz (93)

is often intractable, we instead want to maximize the lower bound
ELBO(λ, θ) = Eqλ [log pθ(x|z)]− KL(qλ(z|x)||pθ(z)). (94)
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First optimization idea

New algorithm
Start with θ(0), λ(0). While θ(t), λ(t) do not converge, do

1 Find λ(t+1) maximizing
Eqλ [log pθ(t) (x|z)]− KL(qλ(z|x)||pθ(t) (z))

2 Find θ(t+1) maximizing
Eq
λ(t+1) [log pθ(x|z)]− KL(qλ(t+1) (z|x)||pθ(z))

Exercise: Prove that this algorithm converges.
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Proof of convergence

Assume that we are given θ(t), λ(t). According to the first step, using the first expression
of ELBO,

λ(t+1) ∈ argmax
λ

(
log pθ(t) (x)− KL(qλ(z|x)||pθ(t) (z|x))

)
(95)

⇔λ(t+1) ∈ argmin
λ

KL(qλ(z|x)||pθ(t) (z|x)) (96)

⇔λ(t+1) s.t. qλ(t+1) (z|x) = pθ(t) (z|x). (97)
Thus, after the first step,

ELBO(λ(t+1), θ(t)) = log pθ(t) (x). (98)
By definition of the second optimization step, we have

ELBO(λ(t+1), θ(t+1)) ≥ ELBO(λ(t+1), θ(t)) = log pθ(t) (x). (99)
However

ELBO(λ(t+1), θ(t+1)) = log pθ(t+1) (x)− KL(qλ(t+1) (z|x)||pθ(t+1) (z|x)) (100)
≤ log pθ(t+1) (x). (101)

Consequently, after the M step,
log pθ(t+1) (x) ≥ log pθ(t) (x). (102)
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But where are neural networks?

We model the probability pθ(x |z) by a Gaus-
sian distribution whose parameters are esti-
mated with a neural network parametrized by
the bias/weights θ.
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But where are neural networks?

We model the probability pθ(x |z) by a Gaus-
sian distribution whose parameters are esti-
mated with a neural network parametrized by
the bias/weights θ.

Precisely,
pθ(x |z) = fµ(z,θ),Σ(z,θ)(x),

where fµ(z,θ),Σ(z,θ) is the density of a Gaus-
sian of mean µ(z, θ) and covariance matrix
Σ(z, θ).

Here, µ(z, θ) and Σ(z, θ) are the output of a
neural network parametrized by θ whose input
is z.
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But where are neural networks?

Similarly, we model the probability qλ(z|x) by
a Gaussian distribution whose parameters are
estimated with a neural network parametrized
by the bias/weights λ.
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But where are neural networks?

Similarly, we model the probability qλ(z|x) by
a Gaussian distribution whose parameters are
estimated with a neural network parametrized
by the bias/weights λ.

Precisely,

qλ(z|x) = fµ(x,λ),Σ(x,λ)(z),
where fµ(x,λ),Σ(z,λ) is the density of a Gaus-
sian of mean µ(x , λ) and covariance matrix
Σ(z, λ).

Here, Σ(z, λ) and Σ(z, λ) are the output of
a neural network parametrized by λ whose
input is x .
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Variational autoencoder

Optimization procedure should be:

Start with θ(0), λ(0). Then iterate:

1 Find λ(t+1) maximizing
Eqλ [log pθ(t) (x|z)]
− KL(qλ(z|x)||pθ(t) (z))

2 Find θ(t+1) maximizing
Eq
λ(t+1) [log pθ(x|z)]

− KL(qλ(t+1) (z|x)||pθ(z))

Too time consuming: amounts to fully optimizing
two neural networks at each iteration.

Hint: do stochastic gradient descent instead!
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Variational autoencoder - stochastic gradient descent

Metric: Eqλ [log pθ(t) (x|z)]− KL(qλ(z|x)||pθ(t) (z))
Procedure:
Start with θ(0), λ(0). Then iterate:

1 Sample i ∈ {1, . . . , n}
2 Draw m i .i .d . samples zi,j ∼ qλ(t) (z|xi ) for

j = 1, . . . ,m.
3 Compute the empirical ELBO version at xi

ẼLBO(λ(t), θ(t), xi ) = 1
m

m∑
j=1

log pθ(t) (xi |zi,j )

− KL(qλ(t) (zi |xi )||p(zi )).
(103)

4 Backpropagate the error through the network.
5 Update at once θ and λ.

Any problem?
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Reparametrization trick

Metric: Eqλ [log pθ(t) (x|z)]− KL(qλ(z|x)||pθ(t) (z))
The gradient flow is blocked in the middle of the
autoencoder: zi depends randomly of the output of
the encoder.
We need to reparametrized the network. Instead of
drawing zi ∼ qλ(z|xi ) we let

zi = g(εi , xi , λ),
and draw εi ∼ p(ε). In that way, zi is still random
but depends deterministically of the parameters λ.
Example: Z ∼ N (µ, σ2) is equivalent to Z = g(ε)
where

ε ∼ N (0, 1),
g(u) = µ+ uσ.

Need to replace expectations with respect to qλ by
expectations with respect to p that is replacing

Eqλ(z|x)[f (z)] by Ep(ε)[f (g(ε, xi , λ))].
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Final Variational autoencoder

Metric: Eqλ [log pθ(t) (x|z)]− KL(qλ(z|x)||pθ(t) (z))

Procedure:
Start with θ(0), λ(0). Then iterate:

1 Sample i ∈ {1, . . . , n}
2 Draw m i .i .d . samples εi,j ∼ p(ε) for

j = 1, . . . ,m and set zi,j = g(εi,j , xi , λ).
3 Compute the empirical ELBO version at xi

ẼLBO(λ(t), θ(t), xi ) = 1
m

m∑
j=1

log pθ(t) (xi |zi,j )

− KL(qλ(t) (zi |xi )||p(zi )).

4 Backpropagate the error through the network.
5 Update at once θ and λ.

No more problem with gradient flow.
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How to compute KL divergence for Gaussian

Solving
λ? ∈ argmax

λ

(
Eqλ [log p(x|z)]− KL(qλ(z|x)||p(z))

)
. (104)

Regarding the second term, recall that we assume
p(z) ∼ N (0, I)
qλ(z|x) ∼ N (µ(x, λ),Σ(x, λ)).

We have
KL(N (µ0,Σ0)||N (µ1,Σ1)) = 1

2

(
Tr(Σ−11 Σ0) + (µ1 − µ0)T Σ−11 (µ1 − µ0)− d

+ log
(detΣ1

detΣ0

))
. (105)

In our case,
KL(qλ(z|x)||p(z)) = 1

2

(
Tr(Σ(x, λ)) + (µ(x, λ))T (µ(x, λ))− d − log detΣ(x, λ)

)
(106)
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Optimization problem as a penalization

Solving
(λ?, θ?) ∈ argmax

λ,θ

ELBO(λ, θ)

where
ELBO(λ, θ) = Eqλ [log pθ(x|z)]− KL(qλ(z|x)||pθ(z)).

The first term is an expected likelihood: it forces the distribution q?λ to be such that
the probability of observing x is large.
The second term can be seen as a penalty: it forces the distribution q?λ to be close
to the prior pθ(z).

Note that there is no global latent variable: X1, . . . ,Xn are independent and Xi depends
only on Zi and not on the other Zj , for j 6= i .
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Variational Auto Encoders: remarks

Requirements for VAE
Prior distribution p(z) must be easy to sample from.
Conditional likelihood pθ(x |z) must be computable.

In practice, these two distributions are often uniform or Gaussian.

Benefits of VAE
The prior on the latent space allow to inject information in the distribution of z
Possibility to estimate variance/uncertainty in predictions.
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Generative Adversarial Networks (GAN)

[“Generative adversarial nets”, Goodfellow et al. 2014]

Data: X1, . . . ,Xn i.i.d. drawn from p?.

Aim: generating new data whose distribution is (approximately) p?.

GAN: Two devices working together/against each other.

A generator G that takes low-dimensional noise/latent random variable as input
(usually Gaussian or uniformly distributed) and turn them into fake data that closely
resemble the original data set.

A discriminator D that takes as input the original data and the fake data and try to
distinguish between them.

The goal of the generator is to fool the discriminator whereas the goal of the
discriminator is to discriminate the true samples from the fake one. Hence, the name
adversarial learning. (cops and robbers analogy)

The game stops when an equilibrium is reached. The ideal situation would be the one
in which the generator has learned to replicate the original sample and the discriminator
cannot differentiate true and fake data.
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Picture of adversarial learning
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Definitions

In GAN, the generator (resp. the discriminator) is a neural network parametrized by θg
(resp. θd).

The latent/input variable for the generator is denoted by Z. For a given realization z, the
generator outputs G(z, θg ).

For a true or a fake sample x, the discriminator outputs a value D(x, θd ), ranging from 0
to 1, which is the estimated probability that the sample x belongs to the original data set
(rather than being a fake copy).
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Parameter estimation

How to estimate θg and θd?

We use the log likelihood to evaluate the performance of the discriminator. The
expectation of the log likelihood of the discriminator is thus

Ex∼p? [logD(x, θd )] +Ez∼pz [log(1− D(G(z, θg ), θd ))]. (107)

Besides, we want the generator to fool the discriminator, that is minimizing
Ez∼pz [log(1− D(G(z, θg ), θd ))]. (108)

All in all, the problem is equivalent to
(θ?g , θ?d ) ∈ argmin

θg

argmax
θd

V (θg , θd ), (109)

where V (θg , θd ) is the objective/value function defined as
V (θg , θd ) = Ex∼p? [logD(x, θd )] +Ez∼pz [log(1− D(G(z, θg ), θd ))]. (110)
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First theoretical results

The optimization problem we want to solve is
(θ?g , θ?d ) ∈ argmin

θg

argmax
θd

V (θg , θd ), (111)

where V (θg , θd ) is the objective/value function defined as
V (θg , θd ) = Ex∼p? [logD(x, θd )] +Ez∼pz [log(1− D(G(z, θg ), θd ))]. (112)

Exercise.

1 For a fixed generator, the optimal discriminator D? is given by

D?(x) = p?(x)
p?(x) + pG (x) . (113)

2 Let C(G) = maxD V (G ,D). Then the global minimum of C is achieved if and only
if

pG = p?.
At that point, C(G) = − log 4.
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Proof

First question.

Consider a fixed generator G . Then the optimal discriminator is a maximizer of

V (G ,D) =
∫
x

p?(x) log(D(x))dx +
∫
z
pz(z) log(1− D(G(z)))dz (114)

=
∫
x
(p?(x) log(D(x)) + pG (x) log(1− D(x)))dz. (115)

But, for any (a, b) 6= (0, 0), the function u 7→ a log(u) + b log(1− u) achieves its
maximum in [0, 1] at a/(a + b).

This gives the result for all x such that (p?(x), pG (x)) 6= (0, 0).

Since the discriminator needs not to be defined outside Supp(p? + pG ) this concludes the
proof.
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Proof

Second question.

According to the previous result, for pG = p?, D?
G (x) = 1/2. Note that

C(G) = max
D

V (G ,D) (116)

= Ex∼p? [log(D?
G )] +Ez∼pz [log(1− D?

G (G(z)))] (117)
= Ex∼p? [log(D?

G )] +Ex∼pG [log(1− D?
G (x))] (118)

= Ex∼p?

[
log
( p?(x)

p?(x) + pG (x)

)]
+Ex∼pG

[
log
( pG (x)

p?(x) + pG (x)

)]
. (119)

According to the second equality, C(G) = − log 4 if D?
G (x) = 1/2. To prove that this is

the optimal value, note that

C(G) = − log 4 + KL
(

p?
∥∥∥p? + pG

2

)
+ KL

(
pG

∥∥∥p? + pG

2

)
. (120)

Consequently C(G) ≥ − log 4 with equality if and only if pG = p? (according to the
properties of KL divergence).
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GAN Algorithm

Inputs: prior distribution pz on noise/latent variables Z, initialization of the parameters
θ

(0)
d of the discriminator and θ

(0)
g of the generator, learning rate η, minibatch size m.

1 Discriminator optimization
1 Sample m noise samples {z1, . . . , zm} from noise prior pz.
2 Sample m examples {x1, . . . , xm} from the original data distribution.
3 Update the discriminator by stochastic gradient ascent

2 Generator optimization
1 Sample m noise samples {z1, . . . , zm} from noise prior pz.
2 Update the generator by stochastic gradient descent

θ
(t+1)
G = θ

(t)
G − η

( 1
m

m∑
i=1

∇θG [log(1− D(G(zi , θG ), θ(t+1)
d ))]

)
.

Note that any version of stochastic gradient descent can be used. Momentum was used
in the seminal paper
[“Generative adversarial nets”, Goodfellow et al. 2014]
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Kullback-Leibler divergence and Jensen Shannon divergence

Recall that the Kullback-Leibler divergence between two densities p and q is defined as

KL(p||q) =
∫

log
(p(x)

q(x)

)
p(x)dx . (121)

Properties
KL(p||q) ≥ 0 with equality if and only if p = q almost everywhere.

The Jensen-Shannon divergence between two densities p and q is defined as

JSD(p||q) = 1
2KL

(
p||p + q

2

)
+ 1

2KL
(

q||p + q
2

)
. (122)

Properties
The Jensen-Shannon divergence is symmetric and satisfies

0 ≤ JSD(p||q) ≤ log 2. (123)

The optimization problem can be rewritten using Jensen-Shannon divergence:
C(G) = max

D
V (G ,D) = − log 4 + 2JSD(p?||pG ). (124)
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Proof: basic divergence inequalities

KL properties.

KL(p||q) =
∫

log
(p(x)

q(x)

)
p(x)dx = −

∫
log
(q(x)

p(x)

)
p(x)dx (125)

≥ − log
(∫ q(x)

p(x) p(x)dx
)
≥ 0. (126)

where the inequality results from the Jensen’s inequality, with equality if and only if the
function is linear or the random variable is degenerated almost everywhere.

Here the function is − log, thus equality occurs if there exists some constant α such that
p = αq. Since p and q are densities, it is equivalent to p = q.

JSD properties. The positivity of Jensen-Shannon divergence results from that of KL.
Besides, since p, q ≥ 0,

JSD(p||q) = 1
2KL

(
p||p + q

2

)
+ 1

2KL
(

q||p + q
2

)
(127)

= log 2 + 1
2

∫
log
( p

p + q

)
p + +1

2

∫
log
( q

p + q

)
q (128)

≤ log 2. (129)
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Comparison of KL and JS divergences

KL(p||q) =
∫

log
(p(x)

q(x)

)
p(x)dx , (130)

JSD(p||q) = 1
2KL

(
p||p + q

2

)
+ 1

2KL
(

q||p + q
2

)
. (131)

KL is asymmetric. If p(x) is very small but q(x) is far from zero, the corresponding term
of KL divergence is close to zero. This is not the case for Jensen-Shannon divergence
which is symmetric.

MLE estimates can be seen as minimizers of KL divergence between the proposed
distribution and the true distribution. This may be a reason explaining why GAN have
good performance: they are based on JS divergence rather than on KL divergence.
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Training GAN and related issues

The training process for GAN is known to be slow and unstable.

Vanishing gradient.

Consider a perfect discriminator, that is D(x) = 1 if x ∼ p? and D(x) = 0 if
x ∼ pG . Thus, the loss of the discriminator is zero. Hence the gradient descent step
for the generator is useless.
On the other hand, if the discriminator is not good enough, the generator cannot
learn to approximate the true data distribution.

Conclusion: the discriminator must be good but not too good... Really easy to
implement!

Mode collapse
The generator outputs are very similar to each other and thus are not representative of
the true distribution of data.

[“Improved techniques for training gans”, Salimans et al. 2016]
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Improving training

How to address mode collapse?

Feature matching. Instead of directly maximizing the output of the discriminator,
the new objective requires the generator to generate data that matches the statistics
of the real data, here the expected value of the features on an intermediate layer of
the discriminator.

Minibatch discrimination. Compute statistics over the whole minibatch and allow
the discriminator to use that information to make an estimation.

Historical averaging. Modify the cost of each player to include ‖θ − 1
t
∑t

i=1 θ
(i)‖22.

One-sided label smoothing. Replace the labels 1 by α ∈ (0, 1) (typically, α = 0.9).

Virtual batch normalization.
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Difference between VAE and GAN

Both are based on backpropagation/gradient descent.

Gradient flow in GAN requires that the data output by the generator are continuous.
Therefore GAN cannot model discrete data.

Gradient flow in VAE requires that the data output by the encoder are continuous.
Therefore latent variables in VAE cannot be discrete.

More references:
[“Towards principled methods for training generative adversarial networks”, Arjovsky and Bottou 2017]

[“Approximation and convergence properties of generative adversarial learning”, Liu et al. 2017]

[“On the discrimination-generalization tradeoff in GANs”, Zhang et al. 2017]

[“Improved training of wasserstein gans”, Gulrajani et al. 2017]

https://poloclub.github.io/ganlab/
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Outline

1 General Motivation

2 No latent variables
Parametric density estimation
Histograms
Kernels
Nearest neighbors
Fully Visible Belief Nets (FVBN)

3 Latent variables
Hidden Markov Model - EM
Variational autoencoders
Generative Adversarial Networks

4 Applications
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Create animate characters

[“Towards the Automatic Anime Characters Creation with Generative Adversarial Networks”, Jin et al. 2017]

Figure: Original images Figure: Generated images

Particularity: a vector of 34 attributes (describing hair, eyes... learned with a CNN) is
given as random input for the generator, together with random noise → allow for
generating specific type of characters.
The loss of the discriminator is also modified to take into account the 34 classes.

https://make.girls.moe/
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Generating poses

[“Pose guided person image generation”, Ma et al. 2017]
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Generating poses
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Domain transfer

[“Unpaired image-to-image translation using cycle-consistent adversarial networks”, Zhu et al. 2017]

Easy if you have a training set composed of pairs (Xi ,Yi )
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Domain transfer

We have two domains X and Y . We want to learn a mapping G : X → Y that produces
ŷ = G(x) that an adversarial network cannot distinguish from true samples {Y1, . . . ,Yn}.

Problem: no guarantee to recover the corresponding image of x . Besides, there are
optimization issues.

Solution: impose that the mapping should be invertible and train simultaneously
G : X → Y and F : Y → X such that

F (G(x)) ' x

G(F (y)) ' y

the distribution of F (x) is close to that of Y .
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Domain transfer

Loss:
L = LGAN(G ,DY ,X ,Y ) + LGAN(F ,DX ,Y ,X) + λLcycle(G ,F ),

where LGAN is the standard adversarial loss and
Lcycle(G ,F ) = Ex∼p?X

‖F (G(x))− x‖1 + Ey∼p?Y
‖G(F (y))− y‖1.
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Domain transfer

Figure: Paired data set - close to performance of supervised learner pix2pix
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Create high-resolution pictures

[“Photo-realistic single image super-resolution using a generative adversarial network”, Ledig et al. 2017]
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Generating celebrities

[“Progressive growing of gans for improved quality, stability, and variation”, Karras et al. 2017]

Figure: Last five rows: five closest pictures of the generated one (first row) in the data set

https://www.youtube.com/watch?v=XOxxPcy5Gr4
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Natural Language Processing (NLP)

For statistical language modeling, the input typically consists of incomplete sequences of
words rather than complete sentences.

Translation
[“Sequence to sequence learning with neural networks”, Sutskever et al. 2014]

[“Neural machine translation in linear time”, Kalchbrenner et al. 2016]

Recently, Kalchbrenner et al. 2016 propose a CNN-based architecture for sequence
processing called ByteNet, which is a stack of two dilated CNNs. Like WaveNet, ByteNet
also benefits from convolutions with dilations to increase the receptive field size, thus can
model sequential data with long-term dependencies. It also has the advantage that the
computational time only linearly depends on the length of the sequences. Compared with
recurrent neural networks, CNNs not only can get long-range information but also get a
hierarchical representation of the input words

Inspired by the gating mechanism in LSTM net- works, the gated CNN in Dauphin et al.
2016 uses a gating mechanism to control the path through which information flows in the
network, and achieves the state-of-the-art on WiKiText-103.

However, this framework is still under the recurrent framework, and the input window size
of their network are of limited size. How to capture the specific long-term dependencies
as well as hierarchical representation of history words is still an open problem.
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