
Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 31 / 92

What to set in a neural network?

E. Scornet Deep Learning 32 / 92

What to set in a neural network?

E. Scornet Deep Learning 32 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 33 / 92

Number of hidden layers/neurons

No particular rules for choosing the num-
ber of layers or the number of neurons
per layer.

Read research papers related to the task
you want to solve and test the architec-
ture they propose.

You may want to change the architec-
ture a bit to see how it influences the
performance.

Beware: there exist many rules of
thumbs which are not supported by evi-
dence (either practical or theoretical).

E. Scornet Deep Learning 34 / 92

Number of hidden layers/neurons

Use data-driven strategies:
▶ Network pruning follow-

ing the procedure train-
ing/pruning/training/pruning/...
[“What is the state of neural network pruning?”,
Blalock et al. 2020]

▶ More complex evolutionary algorithms
[“AgEBO-Tabular: Joint Neural Architecture and
Hyperparameter Search with Autotuned Data-
Parallel Training for Tabular Data”, Egele et al.
2020]

E. Scornet Deep Learning 34 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 35 / 92

Sigmoid activation function

5 4 3 2 1 0 1 2 3 4 5
0.0

0.5

1.0

Figure: Sigmoid activation function σ

σ : x 7→ exp(x)
1 + exp(x)

Saturated function due to horizontal
asymptotes:

▶ Gradient is close to zero in these two
areas (±∞)

▶ Rescaling the inputs of each layer can
help to avoid these areas.

E. Scornet Deep Learning 36 / 92

Sigmoid activation function

5 4 3 2 1 0 1 2 3 4 5
0.0

0.5

1.0

Figure: Sigmoid activation function σ

σ : x 7→ exp(x)
1 + exp(x)

Sigmoid is not a zero-centered function
▶ Rescaling data

Computing exp(x) is a bit costly

E. Scornet Deep Learning 36 / 92

Hyperbolic tangent

5 4 3 2 1 0 1 2 3 4 5
1

0

1

Figure: Hyperbolic tangent (tanh)

tanh : x 7→ exp(x)− exp(−x)
exp(x) + exp(−x)

The function tanh is zero-centered
▶ No need for rescaling data

E. Scornet Deep Learning 37 / 92

Hyperbolic tangent

5 4 3 2 1 0 1 2 3 4 5
1

0

1

Figure: Hyperbolic tangent (tanh)

tanh : x 7→ exp(x)− exp(−x)
exp(x) + exp(−x)

Saturated function due to horizontal
asymptotes:

▶ Gradient is close to zero in these two
areas (±∞)

▶ Rescaling the inputs of each layer can
help to avoid these areas.

E. Scornet Deep Learning 37 / 92

Hyperbolic tangent

5 4 3 2 1 0 1 2 3 4 5
1

0

1

Figure: Hyperbolic tangent (tanh)

tanh : x 7→ exp(x)− exp(−x)
exp(x) + exp(−x)

Computing exp(x) is a bit costly
Note that tanh(x) = 2σ(2x)− 1

E. Scornet Deep Learning 37 / 92

Rectified Linear Unit (ReLU)

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

Figure: Rectified Linear Unit (ReLU)

ReLU : x 7→ max(0, x)

Not a saturated function in +∞
But saturated/null in the region x ≤ 0
Computationally efficient
Training NN with ReLU is faster than
with sigmoid/tanh.
Biologically plausible

E. Scornet Deep Learning 38 / 92

More on ReLU

The idea of ReLU in neural networks seems to
appear in [“Cognitron: A self-organizing multilayered neural

network”; “Neocognitron: A self-organizing neural network model

for a mechanism of visual pattern recognition”, Fukushima 1975;

Fukushima and Miyake 1982].

Figure: Good parameter initialization - ReLU is
active

E. Scornet Deep Learning 39 / 92

More on ReLU

The idea of ReLU in neural networks seems to
appear in [“Cognitron: A self-organizing multilayered neural

network”; “Neocognitron: A self-organizing neural network model

for a mechanism of visual pattern recognition”, Fukushima 1975;

Fukushima and Miyake 1982].

Figure: Bad parameter initialization - ReLU
outputs zero

E. Scornet Deep Learning 39 / 92

More on ReLU

Figure: Bad parameter initialization - ReLU
outputs zero

ReLU output can be zero but positive initial
bias can help.

Related to biology [“Deep sparse rectifier neural

networks”, Glorot, Bordes, et al. 2011]:
Most of the time, neurons are inactive.
when they activate, their activation is
proportional to their input.

E. Scornet Deep Learning 39 / 92

Parametric ReLU

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

Figure: Parametric ReLU

Parametric ReLU : x 7→ max(αx , x)

Leaky ReLU: α = 0.1
[“Rectifier nonlinearities improve neural network acoustic

models”, Maas et al. 2013]

E. Scornet Deep Learning 40 / 92

Parametric ReLU

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

Figure: Parametric ReLU

Parametric ReLU : x 7→ max(αx , x)

Absolute Value Rectification:
α = −1

[“What is the best multi-stage architecture for object

recognition?”, Jarrett et al. 2009]

E. Scornet Deep Learning 40 / 92

Parametric ReLU

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

Figure: Parametric ReLU

Parametric ReLU : x 7→ max(αx , x)

Parametric ReLU: α optimized during
backpropagation. Activation function is
learned.
[“Empirical evaluation of rectified activations in convolu-

tional network”, Xu et al. 2015]

E. Scornet Deep Learning 40 / 92

Exponential Linear Unit (ELU)

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

Figure: Exponential Linear Unit (ELU)

ELU : x 7→
{

x if x ≥ 0
α(exp(x)− 1) otherwise

Close to ReLU but differentiable
Closer to zero mean output.
α is set to 1.0.
Robustness to noise
[“Fast and accurate deep network learning by exponential

linear units (elus)”, Clevert et al. 2015]
E. Scornet Deep Learning 41 / 92

Maxout

5 4 3 2 1 0 1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure: Maxout activation function, with k = 3
pieces

x 7→ max(w1x + b1, w2x + b2, w3x + b3)

Learn piecewise linear functions with k
pieces: no saturation.

E. Scornet Deep Learning 42 / 92

Maxout

5 4 3 2 1 0 1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure: Maxout activation function, with k = 3
pieces

x 7→ max(w1x + b1, w2x + b2, w3x + b3)

Number of parameters multiplied by k
[“Maxout networks”, Goodfellow, Warde-Farley, et al.

2013] [“Deep maxout neural networks for speech recog-

nition”, Cai et al. 2013]

Resist to catastrophic forgetting
[“An empirical investigation of catastrophic forgetting in

gradient-based neural networks”, Goodfellow, Mirza, et al.

2013]

E. Scornet Deep Learning 42 / 92

Swish

5 4 3 2 1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

4

5

Figure: Swish function for β = 0.1, 1, 10

Swish : x 7→ x exp(βx)
1 + exp(βx)

Swish interpolates between the linear
function and ReLU.
[“Searching for activation functions”, Ramachandran

et al. 2017]

Non-monotonic function - seems to be
an important feature.

E. Scornet Deep Learning 43 / 92

Conclusion on activation functions

Use ReLU (or Swish).
Test Leaky ReLU, maxout, ELU.
Try out Tanh, but do not expect too
much.
Do not use sigmoid.

E. Scornet Deep Learning 44 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 45 / 92

Output units

Linear output unit:

ŷ = W T h + b

→ Linear regression based on the new
variables h.

E. Scornet Deep Learning 46 / 92

Output units

Sigmoid output unit, used to predict
{0, 1} outputs:

P(Y = 1|h) = σ(W T h + b),
where σ(t) = et/(1 + et).

→ Logistic regression based on the new
variables h.

Softmax output unit, used to predict
{1, . . . , K}:

softmax(z)i = ezi∑K
k=1 ezk

where, each zi is the activation of one
neuron of the previous layer, given by
zi = W T

i h + bi .

→ Multinomial logistic regression based
on the new variables h.

E. Scornet Deep Learning 46 / 92

Multinomial logistic regression

Generalization of logistic regression for
multiclass outputs: for all 1 ≤ k ≤ K ,

log
(
P[Yi = k]

Z

)
= βkXi , (5)

Hence, for all 1 ≤ k ≤ K ,

P[Yi = k] = Zeβk Xi , (6)
where

Z = 1∑K
k=1 eβk Xi

. (7)

Thus,

P[Yi = k] = eβk Xi∑K
ℓ=1 eβℓXi

. (8)

E. Scornet Deep Learning 47 / 92

Biology bonus

Softmax, used with cross-entropy:

− log(P(Y = y |z)) (9)
=− log softmax(z)y (10)

=− zy + log
(∑

j

ezj
)

(11)

≃max
j

zj − zy , (12)

E. Scornet Deep Learning 48 / 92

Biology bonus

Softmax, used with cross-entropy:

− log(P(Y = y |z)) (9)
=− log softmax(z)y (10)

=− zy + log
(∑

j

ezj
)

(11)

≃max
j

zj − zy , (12)

No contribution to the cost when
softmax(z)ŷ is maximal.

E. Scornet Deep Learning 48 / 92

Biology bonus

Softmax, used with cross-entropy:

− log(P(Y = y |z)) (9)
=− log softmax(z)y (10)

=− zy + log
(∑

j

ezj
)

(11)

≃max
j

zj − zy , (12)

No contribution to the cost when
softmax(z)ŷ is maximal.

Lateral inhibition: believed to exist between
nearby neurons in the cortex. When the dif-
ference between the max and the other is
large, winner takes all: one neuron is set to 1
and the others go to zero.

E. Scornet Deep Learning 48 / 92

Biology bonus

Softmax, used with cross-entropy:

− log(P(Y = y |z)) (9)
=− log softmax(z)y (10)

=− zy + log
(∑

j

ezj
)

(11)

≃max
j

zj − zy , (12)

No contribution to the cost when
softmax(z)ŷ is maximal.

More complex models: Conditional Gaussian
Mixture: Y is multimodal [“On supervised learning

from sequential data with applications for speech recognition”;

“Generating sequences with recurrent neural networks”, Schuster

1999; Graves 2013].

E. Scornet Deep Learning 48 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 49 / 92

Cost functions

Mean Square Error (MSE)

1
n

n∑
i=1

ℓ(Yi , fθ(Xi)) = 1
n

n∑
i=1

(Yi − fθ(Xi))2

Mean Absolute Error

1
n

n∑
i=1

ℓ(Yi , fθ(Xi)) = 1
n

n∑
i=1

|Yi − fθ(Xi)|

0− 1 Error

1
n

n∑
i=1

ℓ(Yi , fθ(Xi)) = 1
n

n∑
i=1

1Yi ̸=fθ(Xi)

E. Scornet Deep Learning 50 / 92

Cost functions

Cross entropy (or negative log-likelihood):

ℓ(yi , fθ(xi)) = − log
(
[fθ(xi)]yi

)
(13)

Very popular!

E. Scornet Deep Learning 51 / 92

Cost functions

Cross entropy (or negative log-likelihood):

ℓ(yi , fθ(xi)) = − log
(
[fθ(xi)]yi

)
(13)

Should help to prevent saturation:
− log(P(Y = yi |X = xi)) (14)

=− log(σ((2y − 1)(W T h + b))),
with

σ(t) = et

1 + et

Usually, saturation occurs when (2y −
1)(W T h + b) ≪ −1. In this case,
− log(P(Y = yi |X)) is linear in W
and b, therefore preventing saturation to
happen.

E. Scornet Deep Learning 51 / 92

Cost functions

Cross entropy (or negative log-likelihood):

ℓ(yi , fθ(xi)) = − log
(
[fθ(xi)]yi

)
(13)

Mean Square Error should not be used
with softmax output units
[“Probabilistic interpretation of feedforward classification

network outputs, with relationships to statistical pattern

recognition”, Bridle 1990]

E. Scornet Deep Learning 51 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 52 / 92

Weight initialization

First idea: Set all weights and bias to the
same value.

E. Scornet Deep Learning 53 / 92

Small or big weights?

Consider the initial weight distribution to be
N (0, σ2).

1 If the variance of the weights is too
small, that is σ2 ≪ 1:

▶ the output of each neuron is close to a
dirac in 0: there is no activation at all.

2 If the variance of the weights is too large,
that is σ2 ≫ 1:

▶ the linear combinations are very large,
which increases the saturation phe-
nomenon.

3 In any case, no need to tune the bias:
they can be initially set to zero.

E. Scornet Deep Learning 54 / 92

Other initialization

Idea: the variance of the input should be the
same as the variance of the output.

Let wj be any weight between layer j and layer
j + 1.

1 He et al. initialization
[“Delving deep into rectifiers: Surpassing human-level per-

formance on imagenet classification”, He et al. 2015]

Initialize bias to zero and weights ran-
domly using

wj ∼ N
(

0,

√
2

nj

)
,

where nj is the size of layer j.

E. Scornet Deep Learning 55 / 92

Other initialization

Idea: the variance of the input should be the
same as the variance of the output.

Let wj be any weight between layer j and layer
j + 1.

1 Xavier initialization
[“Understanding the difficulty of training deep feedforward

neural networks”, Glorot and Bengio 2010]

Initialize bias to zero and weights ran-
domly using

wj ∼ U
[
−

√
6√nj + nj+1

,

√
6√nj + nj+1

]
,

where nj is the size of layer j
→ Not theoretically valid for ReLU

E. Scornet Deep Learning 55 / 92

Other initialization

Idea: the variance of the input should be the
same as the variance of the output.

Let wj be any weight between layer j and layer
j + 1.

1 Xavier initialization
[“Understanding the difficulty of training deep feedforward

neural networks”, Glorot and Bengio 2010]

Initialize bias to zero and weights ran-
domly using

wj ∼ U
[
−

√
6√nj + nj+1

,

√
6√nj + nj+1

]
,

where nj is the size of layer j
→ Not theoretically valid for ReLU

Bonus: [“All you need is a good init”, Mishkin and Matas

2015]

E. Scornet Deep Learning 55 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 56 / 92

Regularizing to avoid overfitting

Avoid overfitting by imposing some constraints over the parameter space.

Reducing variance and increasing bias.

E. Scornet Deep Learning 57 / 92

Avoiding overfitting

Penalization (L1 or L2)
Replacing the cost function L by
L̃(θ, X , y) = L(θ, X , y) + pen(θ).

Soft weight sharing - see CNN lecture
Reduce the parameter space artificially
by imposing explicit constraints.

Dropout
Randomly kill some neurons during op-
timization and predict with the full net-
work.

Batch normalization
Renormalize a layer inside a batch, so
that the network does not overfit on this
particular batch.

Early stopping
Stop the gradient descent procedure
when the error on the validation set in-
creases.

E. Scornet Deep Learning 58 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 59 / 92

Constraint the optimization problem

min
θ
L(θ, X , y), s.t. pen(θ) ≤ cste. (14)

Using Lagrangian formulation, this problem is
equivalent to:

min
θ
L(θ, X , y) + λ pen(θ), (15)

where
L(θ, X , y) is the loss function (data-
driven term)
pen is a function that increases when θ
becomes more complex (penalty term)
λ ≥ 0 is a constant standing for the
strength of the penalty term.

For Neural Networks, pen only penalizes the
weights and not the bias: the latter being
easier to estimate than weights.

E. Scornet Deep Learning 60 / 92

Example of penalization

min
θ
L(θ, X , y) + pen(θ),

Ridge

pen(θ) = λ∥θ∥2
2

[“Ridge regression: Biased estimation for nonorthogonal

problems”, Hoerl and Kennard 1970].
[“Lecture notes on ridge regression”, Wieringen 2015]

E. Scornet Deep Learning 61 / 92

Example of penalization

min
θ
L(θ, X , y) + pen(θ),

Lasso

pen(θ) = λ∥θ∥1

[“Regression shrinkage and selection via the lasso”,

Tibshirani 1996]

E. Scornet Deep Learning 61 / 92

Example of penalization

min
θ
L(θ, X , y) + pen(θ),

Elastic Net

pen(θ) = λ∥θ∥2
2 + µ∥θ∥1

[“Regularization and variable selection via the elastic

net”, Zou and Hastie 2005]

E. Scornet Deep Learning 61 / 92

Simple case: linear regression

Linear regression
The estimate of linear regression β̂ is given
by

β̂ ∈ argmin
β∈Rd

n∑
i=1

(Yi −
d∑

j=1

βjx (j)
i)2, (16)

which can be written as

β̂ ∈ argmin
β∈Rd

∥Y − Xβ∥2
2, (17)

where X ∈ Mn,d(R).

Solution:
β̂ = (X′X)−1X′Y . (18)

E. Scornet Deep Learning 62 / 92

Penalized regression

Penalized linear regression
The estimate of linear regression β̂λ,q is
given by

β̂λ,q ∈ argmin
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥q

q.

q = 2: Ridge linear regression

q = 1: LASSO

E. Scornet Deep Learning 63 / 92

Ridge regression, q = 2

Ridge linear regression
The ridge estimate β̂λ,2 is given by

β̂λ,2 ∈ argmin
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥2

2.

Solution:

β̂λ,2 = (X′X + λI)−1X′Y . (19)
This estimate has a bias equal to
−λ(X′X + λI)−1β, and a variance
σ2(X′X + λI)−1X′X(X′X + λI)−1. Note
that

V[β̂λ,2] ≤ V[β̂].
In the case of orthonormal design (X′X = I),
we have

β̂λ,2 = β̂

1 + λ
= 1

1 + λ
X′Y . (20)

E. Scornet Deep Learning 64 / 92

Sparsity

There is another desirable property on β̂

If β̂j = 0, then feature j has no impact on the
prediction:

ŷ = sign(x⊤β̂ + b̂)

If we have many features (d is large), it would
be nice if β̂ contained zeros, and many of
them

Means that only few features are statis-
tically relevant.
Means that only few features are useful
to predict the label

Leads to a simpler model, with a “reduced”
dimension

How do we enforce sparsity in β?

E. Scornet Deep Learning 65 / 92

Sparsity

Tempting to solve

β̂λ,0 ∈ argmin
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥0. (21)

where
∥β∥0 = #{j ∈ {1, . . . , d} : βj ̸= 0}.

To solve this, explore all possible supports of
β. Too long! (NP-hard)
Find a convex proxy of ∥∥0: the ℓ1-norm
∥β∥1 =

∑d
j=1 |βj |

E. Scornet Deep Learning 66 / 92

LASSO

Least Absolute Selection and Shrinkage
Operator

Lasso linear regression
The LASSO estimate of linear regression
β̂λ,1 is given by

β̂λ,1 ∈ argmin
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥1. (22)

Solution: No close form in the general case

If the Xj are orthonormal then

β̂λ,1,j = X ′
j Y
(

1− λ

2|X ′
j Y |

)
+

, (23)

where (x)+ = max(0, x).

Thus, in the very specific case of orthogonal
design, we can easily show that L1 penaliza-
tion implies a sparse vector if the parameter
λ is properly tuned.

E. Scornet Deep Learning 67 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 68 / 92

Dropout

Dropout refers to dropping out units (hidden
and visible) in a neural network, i.e., tem-
porarily removing it from the network, along
with all its incoming and outgoing connec-
tions.

Each unit is independently dropped with
probability

p = 0.5 for hidden units
p ∈ [0, 0.5] for input units, usually
p = 0.2.

[“Improving neural networks by preventing co-adaptation of fea-

ture detectors”, Hinton et al. 2012]

E. Scornet Deep Learning 69 / 92

Dropout

At train time At test time

At train time At test time

E. Scornet Deep Learning 70 / 92

Dropout algorithm

Training step. While not convergence

1 Inside one epoch, for each mini-batch of size m,

1 Sample m different mask. A mask consists in one Bernoulli per node of the network
(inner and entry nodes but not output nodes). These Bernoulli variables are i.i.d..
Usually

⋆ the probability of selecting an hidden node is 0.5
⋆ the probability of selecting an input node is 0.8

2 For each one of the m observation in the mini-batch,
⋆ Do a forward pass on the masked network
⋆ Compute backpropagation in the masked network
⋆ Compute the average gradient

3 Update the parameter according to the usual formula.

Prediction step.
Use all neurons in the network with weights given by the previous optimization procedure,
times the probability p of being selected (0.5 for inner nodes, 0.8 for input nodes).

E. Scornet Deep Learning 71 / 92

Another way of seeing dropout - Ensemble methods

Averaging many different neural networks.
E. Scornet Deep Learning 72 / 92

Another way of seeing dropout - Ensemble methods

Averaging many different neural networks.
Different can mean either:

randomizing the data set on which we
train each network (via subsampling)
Problem: not enough data to obtain
good performance...

building different network architectures
and train each large network separately
on the whole training set
Problem: computationally prohibitive at
training time and test time!

[“Fast dropout training”, Wang and Manning 2013]

[“Dropout: A simple way to prevent neural networks from over-

fitting”, Srivastava et al. 2014]

Dropping weights instead of the whole neu-
rons: [“Regularization of neural networks using dropconnect”,

Wan et al. 2013]

E. Scornet Deep Learning 72 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 73 / 92

Batch normalization

The network converges faster if its input are
scaled (mean, variance) and decorrelated.
[“Efficient backprop”, LeCun et al. 1998]

Hard to decorrelate variables: requiring to
compute covariance matrix.
[“Batch normalization: Accelerating deep network training by re-

ducing internal covariate shift”, Ioffe and Szegedy 2015]

Ideas:
Improving gradient flows
Allowing higher learning rates
Reducing strond dependence on initial-
ization
Related to regularization (maybe slightly
reduces the need for Dropout)

E. Scornet Deep Learning 74 / 92

Algorithm

See [“Batch normalization: Accelerating deep network training by reducing internal covariate shift”, Ioffe and Szegedy 2015]

1 For every neuron k in the first layer, which outputs x (k)
i for the ith observation,

1 µ
(k)
B = 1

m
∑m

i=1 x (k)
i

2 σ2
B,k = 1

m
∑m

i=1(x (k)
i − µ

(k)
B)2

3 x̂ (k)
i =

x(k)
i −µ

(k)
B√

σ2
B,k +ε

4 y (k)
i = γ(k)x̂ (k)

i + β(k) ≡ BNγ(k),β(k) (x (k)
i)

2 y (k)
i is fed to the next layer and the procedure iterates.

3 Backpropagation is performed on the network parameters including (γ(k), β(k)) for all
k = 1, . . . , H1, where H1 ∈ N is the number of neurons in the first layer.

4 For inference, compute the average over many training batches B of size m:
EB[x (k)] = EB[µ(k)

B] and VB[x (k)] = m
m − 1EB[σ2

B,k].

5 For inference, replace every function x (k) 7→ BNγ(k),β(k) (x (k)) in the network by

x (k) 7→ γ

(
x (k) −EB[x (k)]√
VB[x (k)] + ε

)
+ β(k).

E. Scornet Deep Learning 75 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 76 / 92

Early stopping

Idea:
Store the parameter values that lead to the lowest error on the validation set
Return these values rather than the latest ones.

E. Scornet Deep Learning 77 / 92

Early stopping algorithm

Parameters:

patience p of the algorithm: number of
times to observe no improvement on the
validation set error before giving up;

the number of steps n between evalua-
tions.

E. Scornet Deep Learning 78 / 92

Early stopping algorithm

1 Start with initial random values θ0.

2 Let θ⋆ = θ0, Err⋆ =∞, j = 0, i = 0.

3 While j < p
1 Update θ by running the training algo-

rithm for n steps
2 i = i + n
3 Compute the error Err(θ) on the vali-

dation set
4 If Err(θ) < Err⋆

⋆ θ⋆ = θ
⋆ Err⋆ = Err(θ)
⋆ j = 0

else j = j + 1.

4 Return θ⋆ and the overall number of
steps i⋆ = i − np.

E. Scornet Deep Learning 78 / 92

How to leverage on early stopping?

First idea: use early stopping to determine
the best number of iterations i⋆ and train on
the whole data set for i⋆ iterations.

Let X (train), y (train) be the training set.

Split X (train), y (train) into
X (subtrain), y (subtrain) and X (valid), y (valid).

Run early stopping algorithm starting
from random θ using X (subtrain), y (subtrain)

for training data and X (valid), y (valid) for
validation data. This returns i⋆ the op-
timal number of steps.

Set θ to random values again.

Train on X (train), y (train) for i⋆ steps.

E. Scornet Deep Learning 79 / 92

How to leverage on early stopping?

Second idea: find the training error and the
best parameters via early stopping. Starting
from these parameters, train on the whole
data set until the error matches the previous
training error.

Let X (train), y (train) be the training set.

Split X (train), y (train) into
X (subtrain), y (subtrain) and X (valid), y (valid).

Run early stopping algorithm starting
from random θ using X (subtrain), y (subtrain)

for training data and X (valid), y (valid) for
validation data. This returns the opti-
mal parameters θ⋆.

Set ε = L(θ⋆, X (subtrain), y (subtrain)).

While L(θ⋆, X (valid), y (valid)) > ε, train
on X (train), y (train) for n steps.

E. Scornet Deep Learning 80 / 92

To go further

Early stopping is a very old idea
▶ [“Three topics in ill-posed problems”, Wahba

1987]

▶ [“A formal comparison of methods proposed for
the numerical solution of first kind integral
equations”, Anderssen and Prenter 1981]

▶ [“Overfitting in neural nets: Backpropagation,
conjugate gradient, and early stopping”, Caruana
et al. 2001]

But also an active area of research
▶ [“Adaboost is consistent”, Bartlett and Traskin

2007]

▶ [“Boosting algorithms as gradient descent”, Mason
et al. 2000]

▶ [“On early stopping in gradient descent learning”,
Yao et al. 2007]

▶ [“Boosting with early stopping: Convergence and
consistency”, Zhang, Yu, et al. 2005]

▶ [“Early stopping for kernel boosting algorithms: A
general analysis with localized complexities”, Wei
et al. 2017]

E. Scornet Deep Learning 81 / 92

More on reducing overfitting

Soft-weight sharing:
[“Simplifying neural networks by soft weight-sharing”,

Nowlan and Hinton 1992]

Model averaging:
Average over: random initialization, ran-
dom selection of minibatches, hyperpa-
rameters, or outcomes of nondeterminis-
tic neural networks.

Boosting neural networks by incremen-
tally adding neural networks to the en-
semble
[“Training methods for adaptive boosting of neural net-

works”, Schwenk and Bengio 1998]

Boosting has also been applied interpret-
ing an individual neural network as an
ensemble, incrementally adding hidden
units to the networks
[“Convex neural networks”, Bengio et al. 2006]

E. Scornet Deep Learning 82 / 92

Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 83 / 92

Pipeline for neural networks

Step 1: Preprocess/normalize the data.

Step 2: Choose the NN architecture
(number of layers, number of nodes per
layer...)

Step 3: train the network
Step 4: Find the best learning rate (LR)

1 The error does not change too much
(LR too small) or the error explodes,
NaN (LR too high).

2 Find a rough range [10−5, 10−3].

Sanity checks:
1 Compare the NN loss to that of a

dummy classifier.
2 Increasing regularization should in-

crease the training set error
3 A NN trained on a small fraction of the

data should overfit.

Playing with neural network:

http://playground.tensorflow.org/
E. Scornet Deep Learning 84 / 92

http://playground.tensorflow.org/

[Aiz64] Mark A Aizerman. “Theoretical foundations of the potential function
method in pattern recognition learning”. In: Automation and remote control
25 (1964), pp. 821–837.

[AP81] RS Anderssen and PM Prenter. “A formal comparison of methods proposed
for the numerical solution of first kind integral equations”. In: The ANZIAM
Journal 22.4 (1981), pp. 488–500.

[Ben+06] Yoshua Bengio et al. “Convex neural networks”. In: Advances in neural
information processing systems. 2006, pp. 123–130.

[Bla+20] Davis Blalock et al. “What is the state of neural network pruning?” In:
arXiv preprint arXiv:2003.03033 (2020).

[Blo62] Hans-Dieter Block. “The perceptron: A model for brain functioning. i”. In:
Reviews of Modern Physics 34.1 (1962), p. 123.

[Bri90] John S Bridle. “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition”. In:
Neurocomputing. Springer, 1990, pp. 227–236.

[BS85] Widrow Bernard and D Stearns Samuel. “Adaptive signal processing”. In:
Englewood Cliffs, NJ, Prentice-Hall, Inc 1 (1985), p. 491.

[BT07] Peter L Bartlett and Mikhail Traskin. “Adaboost is consistent”. In: Journal
of Machine Learning Research 8.Oct (2007), pp. 2347–2368.

E. Scornet Deep Learning 85 / 92

[CLG01] Rich Caruana, Steve Lawrence, and C Lee Giles. “Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping”. In: Advances in
neural information processing systems. 2001, pp. 402–408.

[CSL13] Meng Cai, Yongzhe Shi, and Jia Liu. “Deep maxout neural networks for
speech recognition”. In: Automatic Speech Recognition and Understanding
(ASRU), 2013 IEEE Workshop on. IEEE. 2013, pp. 291–296.

[CUH15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and
accurate deep network learning by exponential linear units (elus)”. In: arXiv
preprint arXiv:1511.07289 (2015).

[Ege+20] Romain Egele et al. “AgEBO-Tabular: Joint Neural Architecture and
Hyperparameter Search with Autotuned Data-Parallel Training for Tabular
Data”. In: arXiv preprint arXiv:2010.16358 (2020).

[FM82] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recognition”. In:
Competition and cooperation in neural nets. Springer, 1982, pp. 267–285.

[FS99] Yoav Freund and Robert E Schapire. “Large margin classification using the
perceptron algorithm”. In: Machine learning 37.3 (1999), pp. 277–296.

[Fuk75] Kunihiko Fukushima. “Cognitron: A self-organizing multilayered neural
network”. In: Biological cybernetics 20.3-4 (1975), pp. 121–136.

E. Scornet Deep Learning 86 / 92

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth
international conference on artificial intelligence and statistics. 2010,
pp. 249–256.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks”. In: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. 2011, pp. 315–323.

[Goo+13a] Ian J Goodfellow, Mehdi Mirza, et al. “An empirical investigation of
catastrophic forgetting in gradient-based neural networks”. In: arXiv
preprint arXiv:1312.6211 (2013).

[Goo+13b] Ian J Goodfellow, David Warde-Farley, et al. “Maxout networks”. In: arXiv
preprint arXiv:1302.4389 (2013).

[Gra13] Alex Graves. “Generating sequences with recurrent neural networks”. In:
arXiv preprint arXiv:1308.0850 (2013).

[He+15] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification”. In: Proceedings of the IEEE
international conference on computer vision. 2015, pp. 1026–1034.

[Heb49] DO Hebb. The organization of behavior: a neuropsychological theory.
Wiley, 1949.

E. Scornet Deep Learning 87 / 92

[Hin+12] Geoffrey E Hinton et al. “Improving neural networks by preventing
co-adaptation of feature detectors”. In: arXiv preprint arXiv:1207.0580
(2012).

[HK70] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased
estimation for nonorthogonal problems”. In: Technometrics 12.1 (1970),
pp. 55–67.

[Hu64] Michael Jen-Chao Hu. “Application of the adaline system to weather
forecasting”. PhD thesis. Department of Electrical Engineering, Stanford
University, 1964.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: arXiv preprint
arXiv:1502.03167 (2015).

[JKL+09] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. “What is the best
multi-stage architecture for object recognition?” In: Computer Vision, 2009
IEEE 12th International Conference on. IEEE. 2009, pp. 2146–2153.

[LeC+98] Yann LeCun et al. “Efficient backprop”. In: Neural networks: Tricks of the
trade. Springer, 1998, pp. 9–50.

[Mas+00] Llew Mason et al. “Boosting algorithms as gradient descent”. In: Advances
in neural information processing systems. 2000, pp. 512–518.

E. Scornet Deep Learning 88 / 92

[MHN13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier
nonlinearities improve neural network acoustic models”. In: Proc. icml.
Vol. 30. 1. 2013, p. 3.

[MM15] Dmytro Mishkin and Jiri Matas. “All you need is a good init”. In: arXiv
preprint arXiv:1511.06422 (2015).

[MP43] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics
5.4 (1943), pp. 115–133.

[MP69] Marvin Minsky and Seymour Papert. “Perceptrons.”. In: (1969).
[MR13] Mehryar Mohri and Afshin Rostamizadeh. “Perceptron mistake bounds”. In:

arXiv preprint arXiv:1305.0208 (2013).
[NH92] Steven J Nowlan and Geoffrey E Hinton. “Simplifying neural networks by

soft weight-sharing”. In: Neural computation 4.4 (1992), pp. 473–493.
[Nov63] Albert B Novikoff. On convergence proofs for perceptrons. Tech. rep.

STANFORD RESEARCH INST MENLO PARK CA, 1963.
[Ola96] Mikel Olazaran. “A sociological study of the official history of the

perceptrons controversy”. In: Social Studies of Science 26.3 (1996),
pp. 611–659.

E. Scornet Deep Learning 89 / 92

[Ros60] Frank Rosenblatt. “Perceptron simulation experiments”. In: Proceedings of
the IRE 48.3 (1960), pp. 301–309.

[Ros61] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory
of brain mechanisms. Tech. rep. CORNELL AERONAUTICAL LAB INC
BUFFALO NY, 1961.

[RZL17] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for
activation functions”. In: arXiv preprint arXiv:1710.05941 (2017).

[SB98] Holger Schwenk and Yoshua Bengio. “Training methods for adaptive
boosting of neural networks”. In: Advances in neural information processing
systems. 1998, pp. 647–653.

[Sch99] Michael Schuster. “On supervised learning from sequential data with
applications for speech recognition”. In: Daktaro disertacija, Nara Institute
of Science and Technology 45 (1999).

[Sri+14] Nitish Srivastava et al. “Dropout: A simple way to prevent neural networks
from overfitting”. In: The Journal of Machine Learning Research 15.1
(2014), pp. 1929–1958.

[TGK63] LR Talbert, GF Groner, and JS Koford. “Real-Time Adaptive
Speech-Recognition System”. In: The Journal of the Acoustical Society of
America 35.5 (1963), pp. 807–807.

E. Scornet Deep Learning 90 / 92

[Tib96] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In:
Journal of the Royal Statistical Society. Series B (Methodological) (1996),
pp. 267–288.

[Wah87] Grace Wahba. “Three topics in ill-posed problems”. In: Inverse and ill-posed
problems. Elsevier, 1987, pp. 37–51.

[Wan+13] Li Wan et al. “Regularization of neural networks using dropconnect”. In:
International conference on machine learning. 2013, pp. 1058–1066.

[WH60] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits.
Tech. rep. Stanford Univ Ca Stanford Electronics Labs, 1960.

[Wie15] Wessel N van Wieringen. “Lecture notes on ridge regression”. In: arXiv
preprint arXiv:1509.09169 (2015).

[WM13] Sida Wang and Christopher Manning. “Fast dropout training”. In:
international conference on machine learning. 2013, pp. 118–126.

[WW88] Capt Rodney Winter and B Widrow. “Madaline Rule II: a training algorithm
for neural networks”. In: Second Annual International Conference on Neural
Networks. 1988, pp. 1–401.

[WYW17] Yuting Wei, Fanny Yang, and Martin J Wainwright. “Early stopping for
kernel boosting algorithms: A general analysis with localized complexities”.
In: Advances in Neural Information Processing Systems. 2017,
pp. 6067–6077.

E. Scornet Deep Learning 91 / 92

[Xu+15] Bing Xu et al. “Empirical evaluation of rectified activations in convolutional
network”. In: arXiv preprint arXiv:1505.00853 (2015).

[YRC07] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. “On early stopping in
gradient descent learning”. In: Constructive Approximation 26.2 (2007),
pp. 289–315.

[ZH05] Hui Zou and Trevor Hastie. “Regularization and variable selection via the
elastic net”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 67.2 (2005), pp. 301–320.

[ZY+05] Tong Zhang, Bin Yu, et al. “Boosting with early stopping: Convergence and
consistency”. In: The Annals of Statistics 33.4 (2005), pp. 1538–1579.

E. Scornet Deep Learning 92 / 92

	Hyperparameters
	How to choose the number of hidden layers/neurons?
	Activation functions
	Output units
	Loss functions
	Weight initialization

	Regularization
	Penalization
	Dropout
	Batch normalization
	Early stopping

	All in all
	References

