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Number of hidden layers/neurons

No particular rules for choosing the num-
ber of layers or the number of neurons
per layer.

Read research papers related to the task
you want to solve and test the architec-
ture they propose.

You may want to change the architec-
ture a bit to see how it influences the
performance.

Beware: there exist many rules of
thumbs which are not supported by evi-
dence (either practical or theoretical).
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Number of hidden layers/neurons

Use data-driven strategies:
▶ Network pruning follow-

ing the procedure train-
ing/pruning/training/pruning/...
[“What is the state of neural network pruning?”,
Blalock et al. 2020]

▶ More complex evolutionary algorithms
[“AgEBO-Tabular: Joint Neural Architecture and
Hyperparameter Search with Autotuned Data-
Parallel Training for Tabular Data”, Egele et al.
2020]
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Sigmoid activation function
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Figure: Sigmoid activation function σ

σ : x 7→ exp(x)
1 + exp(x)

Saturated function due to horizontal
asymptotes:

▶ Gradient is close to zero in these two
areas (±∞)

▶ Rescaling the inputs of each layer can
help to avoid these areas.
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Figure: Sigmoid activation function σ

σ : x 7→ exp(x)
1 + exp(x)

Sigmoid is not a zero-centered function
▶ Rescaling data

Computing exp(x) is a bit costly
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Hyperbolic tangent
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Figure: Hyperbolic tangent (tanh)

tanh : x 7→ exp(x)− exp(−x)
exp(x) + exp(−x)

The function tanh is zero-centered
▶ No need for rescaling data
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Hyperbolic tangent
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Figure: Hyperbolic tangent (tanh)

tanh : x 7→ exp(x)− exp(−x)
exp(x) + exp(−x)

Computing exp(x) is a bit costly
Note that tanh(x) = 2σ(2x)− 1
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Rectified Linear Unit (ReLU)
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Figure: Rectified Linear Unit (ReLU)

ReLU : x 7→ max(0, x)

Not a saturated function in +∞
But saturated/null in the region x ≤ 0
Computationally efficient
Training NN with ReLU is faster than
with sigmoid/tanh.
Biologically plausible
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More on ReLU

The idea of ReLU in neural networks seems to
appear in [“Cognitron: A self-organizing multilayered neural

network”; “Neocognitron: A self-organizing neural network model

for a mechanism of visual pattern recognition”, Fukushima 1975;

Fukushima and Miyake 1982].

Figure: Good parameter initialization - ReLU is
active
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More on ReLU

Figure: Bad parameter initialization - ReLU
outputs zero

ReLU output can be zero but positive initial
bias can help.

Related to biology [“Deep sparse rectifier neural

networks”, Glorot, Bordes, et al. 2011]:
Most of the time, neurons are inactive.
when they activate, their activation is
proportional to their input.
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Parametric ReLU
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Figure: Parametric ReLU

Parametric ReLU : x 7→ max(αx , x)

Leaky ReLU: α = 0.1
[“Rectifier nonlinearities improve neural network acoustic

models”, Maas et al. 2013]
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Parametric ReLU
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Figure: Parametric ReLU

Parametric ReLU : x 7→ max(αx , x)

Absolute Value Rectification:
α = −1

[“What is the best multi-stage architecture for object

recognition?”, Jarrett et al. 2009]
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Parametric ReLU
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Figure: Parametric ReLU

Parametric ReLU : x 7→ max(αx , x)

Parametric ReLU: α optimized during
backpropagation. Activation function is
learned.
[“Empirical evaluation of rectified activations in convolu-

tional network”, Xu et al. 2015]
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Exponential Linear Unit (ELU)
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Figure: Exponential Linear Unit (ELU)

ELU : x 7→
{

x if x ≥ 0
α(exp(x)− 1) otherwise

Close to ReLU but differentiable
Closer to zero mean output.
α is set to 1.0.
Robustness to noise
[“Fast and accurate deep network learning by exponential

linear units (elus)”, Clevert et al. 2015]
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Maxout
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Figure: Maxout activation function, with k = 3
pieces

x 7→ max(w1x + b1, w2x + b2, w3x + b3)

Learn piecewise linear functions with k
pieces: no saturation.
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Figure: Maxout activation function, with k = 3
pieces

x 7→ max(w1x + b1, w2x + b2, w3x + b3)

Number of parameters multiplied by k
[“Maxout networks”, Goodfellow, Warde-Farley, et al.

2013] [“Deep maxout neural networks for speech recog-

nition”, Cai et al. 2013]

Resist to catastrophic forgetting
[“An empirical investigation of catastrophic forgetting in

gradient-based neural networks”, Goodfellow, Mirza, et al.

2013]
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Swish
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Figure: Swish function for β = 0.1, 1, 10

Swish : x 7→ x exp(βx)
1 + exp(βx)

Swish interpolates between the linear
function and ReLU.
[“Searching for activation functions”, Ramachandran

et al. 2017]

Non-monotonic function - seems to be
an important feature.
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Conclusion on activation functions

Use ReLU (or Swish).
Test Leaky ReLU, maxout, ELU.
Try out Tanh, but do not expect too
much.
Do not use sigmoid.
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Output units

Linear output unit:

ŷ = W T h + b

→ Linear regression based on the new
variables h.
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Output units

Sigmoid output unit, used to predict
{0, 1} outputs:

P(Y = 1|h) = σ(W T h + b),
where σ(t) = et/(1 + et).

→ Logistic regression based on the new
variables h.

Softmax output unit, used to predict
{1, . . . , K}:

softmax(z)i = ezi∑K
k=1 ezk

where, each zi is the activation of one
neuron of the previous layer, given by
zi = W T

i h + bi .

→ Multinomial logistic regression based
on the new variables h.
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Multinomial logistic regression

Generalization of logistic regression for
multiclass outputs: for all 1 ≤ k ≤ K ,

log
(
P[Yi = k]

Z

)
= βkXi , (5)

Hence, for all 1 ≤ k ≤ K ,

P[Yi = k] = Zeβk Xi , (6)
where

Z = 1∑K
k=1 eβk Xi

. (7)

Thus,

P[Yi = k] = eβk Xi∑K
ℓ=1 eβℓXi

. (8)
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Biology bonus

Softmax, used with cross-entropy:

− log(P(Y = y |z)) (9)
=− log softmax(z)y (10)

=− zy + log
(∑

j

ezj
)

(11)

≃max
j

zj − zy , (12)
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No contribution to the cost when
softmax(z)ŷ is maximal.
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Biology bonus

Softmax, used with cross-entropy:

− log(P(Y = y |z)) (9)
=− log softmax(z)y (10)

=− zy + log
(∑

j

ezj
)

(11)

≃max
j

zj − zy , (12)

No contribution to the cost when
softmax(z)ŷ is maximal.

Lateral inhibition: believed to exist between
nearby neurons in the cortex. When the dif-
ference between the max and the other is
large, winner takes all: one neuron is set to 1
and the others go to zero.
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Biology bonus

Softmax, used with cross-entropy:

− log(P(Y = y |z)) (9)
=− log softmax(z)y (10)

=− zy + log
(∑

j

ezj
)

(11)

≃max
j

zj − zy , (12)

No contribution to the cost when
softmax(z)ŷ is maximal.

More complex models: Conditional Gaussian
Mixture: Y is multimodal [“On supervised learning

from sequential data with applications for speech recognition”;

“Generating sequences with recurrent neural networks”, Schuster

1999; Graves 2013].
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Cost functions

Mean Square Error (MSE)

1
n

n∑
i=1

ℓ(Yi , fθ(Xi )) = 1
n

n∑
i=1

(Yi − fθ(Xi ))2

Mean Absolute Error

1
n

n∑
i=1

ℓ(Yi , fθ(Xi )) = 1
n

n∑
i=1

|Yi − fθ(Xi )|

0− 1 Error

1
n

n∑
i=1

ℓ(Yi , fθ(Xi )) = 1
n

n∑
i=1

1Yi ̸=fθ(Xi )
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Cost functions

Cross entropy (or negative log-likelihood):

ℓ(yi , fθ(xi )) = − log
(
[fθ(xi )]yi

)
(13)

Very popular!
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Cost functions

Cross entropy (or negative log-likelihood):

ℓ(yi , fθ(xi )) = − log
(
[fθ(xi )]yi

)
(13)

Should help to prevent saturation:
− log(P(Y = yi |X = xi )) (14)

=− log(σ((2y − 1)(W T h + b))),
with

σ(t) = et

1 + et

Usually, saturation occurs when (2y −
1)(W T h + b) ≪ −1. In this case,
− log(P(Y = yi |X)) is linear in W
and b, therefore preventing saturation to
happen.
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Cost functions

Cross entropy (or negative log-likelihood):

ℓ(yi , fθ(xi )) = − log
(
[fθ(xi )]yi

)
(13)

Mean Square Error should not be used
with softmax output units
[“Probabilistic interpretation of feedforward classification

network outputs, with relationships to statistical pattern

recognition”, Bridle 1990]

E. Scornet Deep Learning 51 / 92



Outline

1 Neural Network architecture
Neurons
A historical model/algorithm - the perceptron
Going beyond perceptron - multilayer neural networks
Neural network training

2 Hyperparameters
How to choose the number of hidden layers/neurons?
Activation functions
Output units
Loss functions
Weight initialization

3 Regularization
Penalization
Dropout
Batch normalization
Early stopping

4 All in all

E. Scornet Deep Learning 52 / 92



Weight initialization

First idea: Set all weights and bias to the
same value.
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Small or big weights?

Consider the initial weight distribution to be
N (0, σ2).

1 If the variance of the weights is too
small, that is σ2 ≪ 1:

▶ the output of each neuron is close to a
dirac in 0: there is no activation at all.

2 If the variance of the weights is too large,
that is σ2 ≫ 1:

▶ the linear combinations are very large,
which increases the saturation phe-
nomenon.

3 In any case, no need to tune the bias:
they can be initially set to zero.
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Other initialization

Idea: the variance of the input should be the
same as the variance of the output.

Let wj be any weight between layer j and layer
j + 1.

1 He et al. initialization
[“Delving deep into rectifiers: Surpassing human-level per-

formance on imagenet classification”, He et al. 2015]

Initialize bias to zero and weights ran-
domly using

wj ∼ N
(

0,

√
2

nj

)
,

where nj is the size of layer j.
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Other initialization

Idea: the variance of the input should be the
same as the variance of the output.

Let wj be any weight between layer j and layer
j + 1.

1 Xavier initialization
[“Understanding the difficulty of training deep feedforward

neural networks”, Glorot and Bengio 2010]

Initialize bias to zero and weights ran-
domly using

wj ∼ U
[
−

√
6√nj + nj+1

,

√
6√nj + nj+1

]
,

where nj is the size of layer j
→ Not theoretically valid for ReLU
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Other initialization

Idea: the variance of the input should be the
same as the variance of the output.

Let wj be any weight between layer j and layer
j + 1.

1 Xavier initialization
[“Understanding the difficulty of training deep feedforward

neural networks”, Glorot and Bengio 2010]

Initialize bias to zero and weights ran-
domly using

wj ∼ U
[
−

√
6√nj + nj+1

,

√
6√nj + nj+1

]
,

where nj is the size of layer j
→ Not theoretically valid for ReLU

Bonus: [“All you need is a good init”, Mishkin and Matas

2015]
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Regularizing to avoid overfitting

Avoid overfitting by imposing some constraints over the parameter space.

Reducing variance and increasing bias.
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Avoiding overfitting

Penalization (L1 or L2)
Replacing the cost function L by
L̃(θ, X , y) = L(θ, X , y) + pen(θ).

Soft weight sharing - see CNN lecture
Reduce the parameter space artificially
by imposing explicit constraints.

Dropout
Randomly kill some neurons during op-
timization and predict with the full net-
work.

Batch normalization
Renormalize a layer inside a batch, so
that the network does not overfit on this
particular batch.

Early stopping
Stop the gradient descent procedure
when the error on the validation set in-
creases.
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Constraint the optimization problem

min
θ
L(θ, X , y), s.t. pen(θ) ≤ cste. (14)

Using Lagrangian formulation, this problem is
equivalent to:

min
θ
L(θ, X , y) + λ pen(θ), (15)

where
L(θ, X , y) is the loss function (data-
driven term)
pen is a function that increases when θ
becomes more complex (penalty term)
λ ≥ 0 is a constant standing for the
strength of the penalty term.

For Neural Networks, pen only penalizes the
weights and not the bias: the latter being
easier to estimate than weights.
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Example of penalization

min
θ
L(θ, X , y) + pen(θ),

Ridge

pen(θ) = λ∥θ∥2
2

[“Ridge regression: Biased estimation for nonorthogonal

problems”, Hoerl and Kennard 1970].
[“Lecture notes on ridge regression”, Wieringen 2015]
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Example of penalization

min
θ
L(θ, X , y) + pen(θ),

Lasso

pen(θ) = λ∥θ∥1

[“Regression shrinkage and selection via the lasso”,

Tibshirani 1996]
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Example of penalization

min
θ
L(θ, X , y) + pen(θ),

Elastic Net

pen(θ) = λ∥θ∥2
2 + µ∥θ∥1

[“Regularization and variable selection via the elastic

net”, Zou and Hastie 2005]
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Simple case: linear regression

Linear regression
The estimate of linear regression β̂ is given
by

β̂ ∈ argmin
β∈Rd

n∑
i=1

(Yi −
d∑

j=1

βjx (j)
i )2, (16)

which can be written as

β̂ ∈ argmin
β∈Rd

∥Y − Xβ∥2
2, (17)

where X ∈ Mn,d(R).

Solution:
β̂ = (X′X)−1X′Y . (18)
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Penalized regression

Penalized linear regression
The estimate of linear regression β̂λ,q is
given by

β̂λ,q ∈ argmin
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥q

q.

q = 2: Ridge linear regression

q = 1: LASSO
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Ridge regression, q = 2

Ridge linear regression
The ridge estimate β̂λ,2 is given by

β̂λ,2 ∈ argmin
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥2

2.

Solution:

β̂λ,2 = (X′X + λI)−1X′Y . (19)
This estimate has a bias equal to
−λ(X′X + λI)−1β, and a variance
σ2(X′X + λI)−1X′X(X′X + λI)−1. Note
that

V[β̂λ,2] ≤ V[β̂].
In the case of orthonormal design (X′X = I),
we have

β̂λ,2 = β̂

1 + λ
= 1

1 + λ
X′Y . (20)
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Sparsity

There is another desirable property on β̂

If β̂j = 0, then feature j has no impact on the
prediction:

ŷ = sign(x⊤β̂ + b̂)

If we have many features (d is large), it would
be nice if β̂ contained zeros, and many of
them

Means that only few features are statis-
tically relevant.
Means that only few features are useful
to predict the label

Leads to a simpler model, with a “reduced”
dimension

How do we enforce sparsity in β?
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Sparsity

Tempting to solve

β̂λ,0 ∈ argmin
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥0. (21)

where
∥β∥0 = #{j ∈ {1, . . . , d} : βj ̸= 0}.

To solve this, explore all possible supports of
β. Too long! (NP-hard)
Find a convex proxy of ∥∥0: the ℓ1-norm
∥β∥1 =

∑d
j=1 |βj |

E. Scornet Deep Learning 66 / 92



LASSO

Least Absolute Selection and Shrinkage
Operator

Lasso linear regression
The LASSO estimate of linear regression
β̂λ,1 is given by

β̂λ,1 ∈ argmin
β∈Rd

∥Y − Xβ∥2
2 + λ∥β∥1. (22)

Solution: No close form in the general case

If the Xj are orthonormal then

β̂λ,1,j = X ′
j Y
(

1− λ

2|X ′
j Y |

)
+

, (23)

where (x)+ = max(0, x).

Thus, in the very specific case of orthogonal
design, we can easily show that L1 penaliza-
tion implies a sparse vector if the parameter
λ is properly tuned.
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Dropout

Dropout refers to dropping out units (hidden
and visible) in a neural network, i.e., tem-
porarily removing it from the network, along
with all its incoming and outgoing connec-
tions.

Each unit is independently dropped with
probability

p = 0.5 for hidden units
p ∈ [0, 0.5] for input units, usually
p = 0.2.

[“Improving neural networks by preventing co-adaptation of fea-

ture detectors”, Hinton et al. 2012]
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Dropout algorithm

Training step. While not convergence

1 Inside one epoch, for each mini-batch of size m,

1 Sample m different mask. A mask consists in one Bernoulli per node of the network
(inner and entry nodes but not output nodes). These Bernoulli variables are i.i.d..
Usually

⋆ the probability of selecting an hidden node is 0.5
⋆ the probability of selecting an input node is 0.8

2 For each one of the m observation in the mini-batch,
⋆ Do a forward pass on the masked network
⋆ Compute backpropagation in the masked network
⋆ Compute the average gradient

3 Update the parameter according to the usual formula.

Prediction step.
Use all neurons in the network with weights given by the previous optimization procedure,
times the probability p of being selected (0.5 for inner nodes, 0.8 for input nodes).
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Another way of seeing dropout - Ensemble methods

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Averaging many different neural networks.
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Another way of seeing dropout - Ensemble methods

Averaging many different neural networks.
Different can mean either:

randomizing the data set on which we
train each network (via subsampling)
Problem: not enough data to obtain
good performance...

building different network architectures
and train each large network separately
on the whole training set
Problem: computationally prohibitive at
training time and test time!

[“Fast dropout training”, Wang and Manning 2013]

[“Dropout: A simple way to prevent neural networks from over-

fitting”, Srivastava et al. 2014]

Dropping weights instead of the whole neu-
rons: [“Regularization of neural networks using dropconnect”,

Wan et al. 2013]
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Batch normalization

The network converges faster if its input are
scaled (mean, variance) and decorrelated.
[“Efficient backprop”, LeCun et al. 1998]

Hard to decorrelate variables: requiring to
compute covariance matrix.
[“Batch normalization: Accelerating deep network training by re-

ducing internal covariate shift”, Ioffe and Szegedy 2015]

Ideas:
Improving gradient flows
Allowing higher learning rates
Reducing strond dependence on initial-
ization
Related to regularization (maybe slightly
reduces the need for Dropout)
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Algorithm

See [“Batch normalization: Accelerating deep network training by reducing internal covariate shift”, Ioffe and Szegedy 2015]

1 For every neuron k in the first layer, which outputs x (k)
i for the ith observation,

1 µ
(k)
B = 1

m
∑m

i=1 x (k)
i

2 σ2
B,k = 1

m
∑m

i=1(x (k)
i − µ

(k)
B )2

3 x̂ (k)
i =

x(k)
i −µ

(k)
B√

σ2
B,k +ε

4 y (k)
i = γ(k)x̂ (k)

i + β(k) ≡ BNγ(k),β(k) (x (k)
i )

2 y (k)
i is fed to the next layer and the procedure iterates.

3 Backpropagation is performed on the network parameters including (γ(k), β(k)) for all
k = 1, . . . , H1, where H1 ∈ N is the number of neurons in the first layer.

4 For inference, compute the average over many training batches B of size m:
EB[x (k)] = EB[µ(k)

B ] and VB[x (k)] = m
m − 1EB[σ2

B,k ].

5 For inference, replace every function x (k) 7→ BNγ(k),β(k) (x (k)) in the network by

x (k) 7→ γ

(
x (k) −EB[x (k)]√
VB[x (k)] + ε

)
+ β(k).
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Early stopping

Idea:
Store the parameter values that lead to the lowest error on the validation set
Return these values rather than the latest ones.
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Early stopping algorithm

Parameters:

patience p of the algorithm: number of
times to observe no improvement on the
validation set error before giving up;

the number of steps n between evalua-
tions.
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Early stopping algorithm

1 Start with initial random values θ0.

2 Let θ⋆ = θ0, Err⋆ =∞, j = 0, i = 0.

3 While j < p
1 Update θ by running the training algo-

rithm for n steps
2 i = i + n
3 Compute the error Err(θ) on the vali-

dation set
4 If Err(θ) < Err⋆

⋆ θ⋆ = θ
⋆ Err⋆ = Err(θ)
⋆ j = 0

else j = j + 1.

4 Return θ⋆ and the overall number of
steps i⋆ = i − np.
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How to leverage on early stopping?

First idea: use early stopping to determine
the best number of iterations i⋆ and train on
the whole data set for i⋆ iterations.

Let X (train), y (train) be the training set.

Split X (train), y (train) into
X (subtrain), y (subtrain) and X (valid), y (valid).

Run early stopping algorithm starting
from random θ using X (subtrain), y (subtrain)

for training data and X (valid), y (valid) for
validation data. This returns i⋆ the op-
timal number of steps.

Set θ to random values again.

Train on X (train), y (train) for i⋆ steps.
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How to leverage on early stopping?

Second idea: find the training error and the
best parameters via early stopping. Starting
from these parameters, train on the whole
data set until the error matches the previous
training error.

Let X (train), y (train) be the training set.

Split X (train), y (train) into
X (subtrain), y (subtrain) and X (valid), y (valid).

Run early stopping algorithm starting
from random θ using X (subtrain), y (subtrain)

for training data and X (valid), y (valid) for
validation data. This returns the opti-
mal parameters θ⋆.

Set ε = L(θ⋆, X (subtrain), y (subtrain)).

While L(θ⋆, X (valid), y (valid)) > ε, train
on X (train), y (train) for n steps.
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To go further

Early stopping is a very old idea
▶ [“Three topics in ill-posed problems”, Wahba

1987]

▶ [“A formal comparison of methods proposed for
the numerical solution of first kind integral
equations”, Anderssen and Prenter 1981]

▶ [“Overfitting in neural nets: Backpropagation,
conjugate gradient, and early stopping”, Caruana
et al. 2001]

But also an active area of research
▶ [“Adaboost is consistent”, Bartlett and Traskin

2007]

▶ [“Boosting algorithms as gradient descent”, Mason
et al. 2000]

▶ [“On early stopping in gradient descent learning”,
Yao et al. 2007]

▶ [“Boosting with early stopping: Convergence and
consistency”, Zhang, Yu, et al. 2005]

▶ [“Early stopping for kernel boosting algorithms: A
general analysis with localized complexities”, Wei
et al. 2017]
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More on reducing overfitting

Soft-weight sharing:
[“Simplifying neural networks by soft weight-sharing”,

Nowlan and Hinton 1992]

Model averaging:
Average over: random initialization, ran-
dom selection of minibatches, hyperpa-
rameters, or outcomes of nondeterminis-
tic neural networks.

Boosting neural networks by incremen-
tally adding neural networks to the en-
semble
[“Training methods for adaptive boosting of neural net-

works”, Schwenk and Bengio 1998]

Boosting has also been applied interpret-
ing an individual neural network as an
ensemble, incrementally adding hidden
units to the networks
[“Convex neural networks”, Bengio et al. 2006]
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Pipeline for neural networks

Step 1: Preprocess/normalize the data.

Step 2: Choose the NN architecture
(number of layers, number of nodes per
layer...)

Step 3: train the network
Step 4: Find the best learning rate (LR)

1 The error does not change too much
(LR too small) or the error explodes,
NaN (LR too high).

2 Find a rough range [10−5, 10−3].

Sanity checks:
1 Compare the NN loss to that of a

dummy classifier.
2 Increasing regularization should in-

crease the training set error
3 A NN trained on a small fraction of the

data should overfit.

Playing with neural network:

http://playground.tensorflow.org/
E. Scornet Deep Learning 84 / 92

http://playground.tensorflow.org/


[Aiz64] Mark A Aizerman. “Theoretical foundations of the potential function
method in pattern recognition learning”. In: Automation and remote control
25 (1964), pp. 821–837.

[AP81] RS Anderssen and PM Prenter. “A formal comparison of methods proposed
for the numerical solution of first kind integral equations”. In: The ANZIAM
Journal 22.4 (1981), pp. 488–500.

[Ben+06] Yoshua Bengio et al. “Convex neural networks”. In: Advances in neural
information processing systems. 2006, pp. 123–130.

[Bla+20] Davis Blalock et al. “What is the state of neural network pruning?” In:
arXiv preprint arXiv:2003.03033 (2020).

[Blo62] Hans-Dieter Block. “The perceptron: A model for brain functioning. i”. In:
Reviews of Modern Physics 34.1 (1962), p. 123.

[Bri90] John S Bridle. “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition”. In:
Neurocomputing. Springer, 1990, pp. 227–236.

[BS85] Widrow Bernard and D Stearns Samuel. “Adaptive signal processing”. In:
Englewood Cliffs, NJ, Prentice-Hall, Inc 1 (1985), p. 491.

[BT07] Peter L Bartlett and Mikhail Traskin. “Adaboost is consistent”. In: Journal
of Machine Learning Research 8.Oct (2007), pp. 2347–2368.

E. Scornet Deep Learning 85 / 92



[CLG01] Rich Caruana, Steve Lawrence, and C Lee Giles. “Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping”. In: Advances in
neural information processing systems. 2001, pp. 402–408.

[CSL13] Meng Cai, Yongzhe Shi, and Jia Liu. “Deep maxout neural networks for
speech recognition”. In: Automatic Speech Recognition and Understanding
(ASRU), 2013 IEEE Workshop on. IEEE. 2013, pp. 291–296.

[CUH15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and
accurate deep network learning by exponential linear units (elus)”. In: arXiv
preprint arXiv:1511.07289 (2015).

[Ege+20] Romain Egele et al. “AgEBO-Tabular: Joint Neural Architecture and
Hyperparameter Search with Autotuned Data-Parallel Training for Tabular
Data”. In: arXiv preprint arXiv:2010.16358 (2020).

[FM82] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recognition”. In:
Competition and cooperation in neural nets. Springer, 1982, pp. 267–285.

[FS99] Yoav Freund and Robert E Schapire. “Large margin classification using the
perceptron algorithm”. In: Machine learning 37.3 (1999), pp. 277–296.

[Fuk75] Kunihiko Fukushima. “Cognitron: A self-organizing multilayered neural
network”. In: Biological cybernetics 20.3-4 (1975), pp. 121–136.

E. Scornet Deep Learning 86 / 92



[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth
international conference on artificial intelligence and statistics. 2010,
pp. 249–256.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks”. In: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. 2011, pp. 315–323.

[Goo+13a] Ian J Goodfellow, Mehdi Mirza, et al. “An empirical investigation of
catastrophic forgetting in gradient-based neural networks”. In: arXiv
preprint arXiv:1312.6211 (2013).

[Goo+13b] Ian J Goodfellow, David Warde-Farley, et al. “Maxout networks”. In: arXiv
preprint arXiv:1302.4389 (2013).

[Gra13] Alex Graves. “Generating sequences with recurrent neural networks”. In:
arXiv preprint arXiv:1308.0850 (2013).

[He+15] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification”. In: Proceedings of the IEEE
international conference on computer vision. 2015, pp. 1026–1034.

[Heb49] DO Hebb. The organization of behavior: a neuropsychological theory.
Wiley, 1949.

E. Scornet Deep Learning 87 / 92



[Hin+12] Geoffrey E Hinton et al. “Improving neural networks by preventing
co-adaptation of feature detectors”. In: arXiv preprint arXiv:1207.0580
(2012).

[HK70] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased
estimation for nonorthogonal problems”. In: Technometrics 12.1 (1970),
pp. 55–67.

[Hu64] Michael Jen-Chao Hu. “Application of the adaline system to weather
forecasting”. PhD thesis. Department of Electrical Engineering, Stanford
University, 1964.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: arXiv preprint
arXiv:1502.03167 (2015).

[JKL+09] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. “What is the best
multi-stage architecture for object recognition?” In: Computer Vision, 2009
IEEE 12th International Conference on. IEEE. 2009, pp. 2146–2153.

[LeC+98] Yann LeCun et al. “Efficient backprop”. In: Neural networks: Tricks of the
trade. Springer, 1998, pp. 9–50.

[Mas+00] Llew Mason et al. “Boosting algorithms as gradient descent”. In: Advances
in neural information processing systems. 2000, pp. 512–518.

E. Scornet Deep Learning 88 / 92



[MHN13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier
nonlinearities improve neural network acoustic models”. In: Proc. icml.
Vol. 30. 1. 2013, p. 3.

[MM15] Dmytro Mishkin and Jiri Matas. “All you need is a good init”. In: arXiv
preprint arXiv:1511.06422 (2015).

[MP43] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics
5.4 (1943), pp. 115–133.

[MP69] Marvin Minsky and Seymour Papert. “Perceptrons.”. In: (1969).
[MR13] Mehryar Mohri and Afshin Rostamizadeh. “Perceptron mistake bounds”. In:

arXiv preprint arXiv:1305.0208 (2013).
[NH92] Steven J Nowlan and Geoffrey E Hinton. “Simplifying neural networks by

soft weight-sharing”. In: Neural computation 4.4 (1992), pp. 473–493.
[Nov63] Albert B Novikoff. On convergence proofs for perceptrons. Tech. rep.

STANFORD RESEARCH INST MENLO PARK CA, 1963.
[Ola96] Mikel Olazaran. “A sociological study of the official history of the

perceptrons controversy”. In: Social Studies of Science 26.3 (1996),
pp. 611–659.

E. Scornet Deep Learning 89 / 92



[Ros60] Frank Rosenblatt. “Perceptron simulation experiments”. In: Proceedings of
the IRE 48.3 (1960), pp. 301–309.

[Ros61] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory
of brain mechanisms. Tech. rep. CORNELL AERONAUTICAL LAB INC
BUFFALO NY, 1961.

[RZL17] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for
activation functions”. In: arXiv preprint arXiv:1710.05941 (2017).

[SB98] Holger Schwenk and Yoshua Bengio. “Training methods for adaptive
boosting of neural networks”. In: Advances in neural information processing
systems. 1998, pp. 647–653.

[Sch99] Michael Schuster. “On supervised learning from sequential data with
applications for speech recognition”. In: Daktaro disertacija, Nara Institute
of Science and Technology 45 (1999).

[Sri+14] Nitish Srivastava et al. “Dropout: A simple way to prevent neural networks
from overfitting”. In: The Journal of Machine Learning Research 15.1
(2014), pp. 1929–1958.

[TGK63] LR Talbert, GF Groner, and JS Koford. “Real-Time Adaptive
Speech-Recognition System”. In: The Journal of the Acoustical Society of
America 35.5 (1963), pp. 807–807.

E. Scornet Deep Learning 90 / 92



[Tib96] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In:
Journal of the Royal Statistical Society. Series B (Methodological) (1996),
pp. 267–288.

[Wah87] Grace Wahba. “Three topics in ill-posed problems”. In: Inverse and ill-posed
problems. Elsevier, 1987, pp. 37–51.

[Wan+13] Li Wan et al. “Regularization of neural networks using dropconnect”. In:
International conference on machine learning. 2013, pp. 1058–1066.

[WH60] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits.
Tech. rep. Stanford Univ Ca Stanford Electronics Labs, 1960.

[Wie15] Wessel N van Wieringen. “Lecture notes on ridge regression”. In: arXiv
preprint arXiv:1509.09169 (2015).

[WM13] Sida Wang and Christopher Manning. “Fast dropout training”. In:
international conference on machine learning. 2013, pp. 118–126.

[WW88] Capt Rodney Winter and B Widrow. “Madaline Rule II: a training algorithm
for neural networks”. In: Second Annual International Conference on Neural
Networks. 1988, pp. 1–401.

[WYW17] Yuting Wei, Fanny Yang, and Martin J Wainwright. “Early stopping for
kernel boosting algorithms: A general analysis with localized complexities”.
In: Advances in Neural Information Processing Systems. 2017,
pp. 6067–6077.

E. Scornet Deep Learning 91 / 92



[Xu+15] Bing Xu et al. “Empirical evaluation of rectified activations in convolutional
network”. In: arXiv preprint arXiv:1505.00853 (2015).

[YRC07] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. “On early stopping in
gradient descent learning”. In: Constructive Approximation 26.2 (2007),
pp. 289–315.

[ZH05] Hui Zou and Trevor Hastie. “Regularization and variable selection via the
elastic net”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 67.2 (2005), pp. 301–320.

[ZY+05] Tong Zhang, Bin Yu, et al. “Boosting with early stopping: Convergence and
consistency”. In: The Annals of Statistics 33.4 (2005), pp. 1538–1579.

E. Scornet Deep Learning 92 / 92


	Hyperparameters
	How to choose the number of hidden layers/neurons?
	Activation functions
	Output units
	Loss functions
	Weight initialization

	Regularization
	Penalization
	Dropout
	Batch normalization
	Early stopping

	All in all
	References

