Deep Learning - Optimization

E. Scornet

E. Scornet Deep Learning 1/ 102

Outline

© Motivation in Machine Learning
o Logistic regression
@ Support Vector Machine
@ General formulation

=] F = DA
E. Scornet Deep Learning

Outline

© Motivation in Machine Learning
o Logistic regression

=] F = = DA
E. Scornet Deep Learning

Logistic regression

@ By far the most widely used classification algorithm
@ We want to explain the label y based on x, we want to “regress” y on x
@ Models the distribution of Y|X

For y € {—1,1}, we consider the model

P(Y =1|X = x) = c({w, x) + b)
where w € R? is a vector of model weights and b € R is the intercept, and where o is
the sigmoid function

E. Scornet Deep Learning

Logistic regression

@ The sigmoid choice really is a choice. It is a modelling choice.
@ We could also consider

@ It's a way to map R — [0, 1] (we want to model a probability)

P(Y =1|X = x) =

F({w,x) + b),
which leads to another loss called probit

F(z) = P(N(0,1) < 2),
o <3 = T 9ae

for any distribution function F. Another popular choice is the Gaussian distribution

Logistic regression

@ However, the sigmoid choice has the following nice interpretation: an easy
computation leads to

P(Y = 1/X = x)
log (]P(Y — g x)) = w0 +b

This quantity is called the log-odd ratio
o Note that
P(Y =1X =x) =2 P(Y = —-1|X = x)
iff
{w,xy+ b =0.
@ This is a linear classification rule
@ Linear with respect to the considered features x

o But, you choose the features: features engineering.

] = = -
E. Scornet Deep Learning

Logistic regression

Estimation of w and b

@ We have a model for Y|X
@ Data (x;, y;) is assumed i.i.d with the same distribution as (X, Y)

o Compute estimators W and b by maximum likelihood estimation

Or equivalently, minimize the minus log-likelihood

More generally, when a model is used

Goodness-of-fit = —log likelihood

@ log is used mainly since averages are easier to study (and compute) than products

E. Scornet Deep Learning 7 /102

Logistic regression

Likelihood is given by

[TP(Y = yilX = x)

i=1
1+y; -

~ Loy +) F (1= a(wx) +)

14y
2

- HU(<W,X,-> +b)77 o(—{w,xi) — b)%

and the minus log-likelihood is given by

n
Z |Og(1 + e_}/f(<W:Xi>+b))

i=1

[} 5 =

DA
E. Scornet Deep Learning

Logistic regression
Compute w and b as follows:
5 1 i wx;
(W, b) € argmin — 2 log(l+e y’(<w’x’>“’))
weRd, beR 117

e It is an average of losses, one for each sample point
@ It is a convex and smooth problem

@ Many ways to find an approximate minimizer

o Convex optimization algorithms

If we introduce the logistic loss function

Uy,y') = log(1 + &™)
then

(W, b) € argmin 1 Zf(yi,<W7Xi> +b)

weRd, ber 1M 7

[} 5 =

E. Scornet Deep Learning

Outline

© Motivation in Machine Learning

@ Support Vector Machine

=] F = = DA
E. Scornet Deep Learning

Support Vector Machine

@ Points x; € R? such that y;

A dataset is linearly separable if we can find an hyperplane H that puts
@ Points x; € R? such that y;

1 on one side of the hyperplane
= —1 on the other
@ H do not pass through a point x;

An hyperplane

H={xeR?: (w,x)+b=0}

to w.

is a translation of a set of vectors orthogonal

o F = £ DA
E. Scornet Deep Learning

Support Vector Machine

min

The definition of H is invariant by multiplication of w and b by a non-zero scalar
(xi»yi)€Dn

If H do not pass through any sample point x;, we can scale w and b so that

[{w, xiy+ b| =1

N
. .
N
.
. .
For such w and b, we call H the canonical hyperplane
[} 5 =

Support Vector Machine

The distance of any point x’ € R? to H is given by

Kw, x") + b|
lwl

So, if H is a canonical hyperplane, its
margin is given by

w4 b
(xi»yi)€Dhp

X2

=] F = = DA
E. Scornet Deep Learning

Support Vector Machine

In summary.

If D, is strictly linearly separable, we can find a canonical separating hyperplane
that satisfies

H={xeR?: (w,x)+ b =0}

Kw,x;y+ b| =1 forany i =1,

which entails that a point x; is correctly classified if

yildw,xi) + b) = 1.
The margin of H is equal to 1/|w/|.

- = T 9ac
E. Scornet Deep Learning

Support Vector Machine

Linear SVM: separable case

From that, we deduce that a way of classifying D, with maximum margin is to solve the
following problem:

min S [w3
weR,beR 2 2

subject to yi((w,x;) +b) =1 forall i=1,...,n

Note that:
@ This problem admits a unique solution
o It is a “quadratic programming” problem, which is easy to solve numerically

o Dedicated optimization algorithms can solve this on a large scale very efficiently

E. Scornet Deep Learning 15 / 102

SVM for the non linearly separable case
Introducing slack variables & > 0.

Modeling potential errors

() no error: yi({w,xi)+b)=>1=& =0
Xiy Yi
Y7 error: yikw,xip+b) <1=¢& =1—y{w,xiy)+ b) >0

E. Scornet Deep Learning

New optimization problem

I " :

min Slwlz + C’;&
subject to, for all i =1,...,n,

SVM with hinge loss

yildw,xi) +b) =1 —¢;
& =0

Introducing the hinge loss £(y,y’) = max(0,1 — yy’), the optimization can be rewritten as

1 ST
min = w3 + CZE(y,-,y,-).
w,b 2 =
i=1
O «F»r «=» <= Dace

Outline

© Motivation in Machine Learning

@ General formulation

=] F = = DA
E. Scornet Deep Learning

General optimization problem

We have seen a lot of problems of the form

argmin f(w) + g(w)
weRd
with f a goodness-of-fit function

F(w) =+
where / is some loss and

; 2 ﬂ(_y,-, <W7 Xi>)

i=1

g(w) = Apen(w)
where pen(-) is some penalization function, examples being
o pen(w) = |wl3 (ridge)

@ pen(w) = ||wl; (Lasso)

- = T 9ac
E. Scornet Deep Learning

Different losses for classification

Logistic loss, £(y,y’) = log(1 + e™")
Hinge loss, £(y,y") = (1 —yy')+
Quadratic hinge loss, £(y,y") = (1 —yy')3

Huber loss £(y,y’) = —4yy' 1, 1+ (L —yy)il

— logistic
— hinge
6l — Huber |
—— quadratic hinge

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0
/

Yy

@ These losses can be understood as a convex approximation of the 0/1 loss
/
Ly,y") = 1,,<o
(=] = = DQC

Outline

© Gradient descent procedures
@ Gradient Descent
@ Second-order algorithms
@ Stochastic Gradient Descent
@ Momentum

@ Coordinate Gradient Descent

- Do
E. Scornet Deep Learning

Outline

© Gradient descent procedures
@ Gradient Descent

=] F = = DA
E. Scornet Deep Learning

Minimization problems

Aim: minimizing a function h: RY — R

d: dimension of the search space.

local maximum

'

/

global minimum

local minimum
E. Scornet

Deep Learning

Level sets

One-dimensional (1-D) representations are often misleading, we therefore often represent
level-sets of functions

Cc={xeR% f(x) = c}.

Example of level sets in dimension two

50
40
30

20

E. Scornet Deep Learning

Topographic sets

The function is the altitude!

2L t® S 4
iker il 4\ ¢
' ¥ S
LI o
See https://mathinsight.org/applet/directional_derivative_mountain
or <& = E DA

https://mathinsight.org/applet/directional_derivative_mountain

Exhaustive search

Consider the problem

w* € argmin f(w).
we[0,1]9

One can optimize this problem on a grid of [0,1]¢. For example, if the function f is
regular enough, in dimension 1, to achieve a precision of ¢ we need |1/| evaluation of f.
In dimension d, we need |1/¢] evaluations.

For example, evaluating the expression
P 2
(x) = Ixl2,
to obtain a precision of ¢ = 1072 requires:
@ 1,75.1072 seconds in dimension 1

@ 1,75.10" seconds in dimension 10, i.e., nearly 32 millions years.

— Prohibitive in high dimensions (curse of dimensionality, term introduced by Bellman
1961)

E. Scornet Deep Learning 26 / 102

Necessary condition

First order necessary condition

@ In dimension one.
Let f : R — IR be a differentiable function. If x* is a local extremum
(minimum/maximum) then f'(x*) = 0.

fl(x)=0

o Generalization for d > 1.
Let f : RY — R be a differentiable function. If x* is a local extremum then
Vf(x*) =0.
Remark.
o Points such that Vf(x*) = 0 are called critical points.

o Critical points are not always extrema (consider x — x%)

E. Scornet Deep Learning 27 / 102

Gradient - Definition

partial derivatives

The gradient of a function f : R? — R in x denoted as Vf(x) is the vector of

of
5)(1
Vix)=| :
of
OX4
Exercise
o If f: R — R, Vf(x) = f'(x)
o f(x) =(a,x): Vf(x)=a

o f(x) =xTAx: VFf(x) = (A+ AT)x

o Particular case: f(x) = |x|?, Vf(x) = 2x

- = T 9ac
E. Scornet Deep Learning

Gradient - Level sets

The gradient is orthogonal to level sets.

o—

a=(6.7,1.1) D.f(a) = 2.00 /
u=(-091,-042) Vi(a)=(-1.81,-0.85) 1Vf(a)i = 2.00
=] = - = a

Gradient descent algorithm

Gradient descent

Input: Function f to minimize.
Initialization: initial weight vector w(®
Parameters: step size n > 0.

While not converge do
o wikth) () _ nvf(w(k))
o k— k+1.

Output: w®.

O D = = z wace
E. Scornet Deep Learning

Heuristic: why gradient descent works?

For a function f : RY — R, define the level sets:

Ce = {xe R’ f(x)

Exercise:

E. Scornet

Figure: Gradient descent for function f : (x,y) > x? 4 2y?
@ The gradient is orthogonal to level sets.

Deep Learning

@ The gradient is a good direction to follow, if step size is small enough.

Gradient orthogonal to level sets

© Locally near w<°),
Thus, for all w € Cf(w(o)),

lim
w—»w(o),wecf(w(o)>
@ Locally near w'®,

(VF(w @),

F(w) = Fw®) + TFW) w = w) + 0w = w|?)
w — W(O)
w

0

Thus, locally, minimizing f(w) is equivalent to
weB(w(© ¢)

Tw=wo]’ =
F(w) = FW®) +(VFW?), w — w@) + O(lw — w@).
for € small enough, that is

argmin F(w?) + (VF(W®), w— w®),

w—w® = 7'{]Vf(W(O)),
for some 1 > 0. This gives the final gradient descent equation
w=w® —pvf(w®),
o S = T 9ac

Bad objective functions

o

E. Scornet

.
Al

~

&

A

Deep Learning

Figure: Gradient descent for f : (x,y) — sin(1/(2x?) — 1/(4y?) + 3) cos(2x + 1 — exp(y))
http://yulijia.net/vistat/2013/03/gradient-descent-algorithm-with-r

[} 5 =

http://yulijia.net/vistat/2013/03/gradient-descent-algorithm-with-r

Convexity

Convexity - Definition

We say that f : RY — R is convex if (R is convex and if)
FOx + (1= Ny) S AM(x) + (1= Nf(y), forall x,yeR? xel0,1].

-
-

-
-

-
-
-
-
-
-
-
————
-
-
-
-
-
-
-

(SIS

Kemmmmmmmmmana

[} 5 =

E. Scornet Deep Learning

Convexity
Convexity - First derivative

f(x) = fy) +<{VE(y), x = y),

A twice differentiable function f : R — R is convex if and only if

for all x,y € R,

F) +(Viy),z—y)
o S = T 9ac

Convexity 3
Convexity - Hessian
that is h"V?f(x)h = 0, for all he RY.

V3f(x) = 0,

for all x,

/
=] F = £ DA
E. Scornet Deep Learning

A twice differentiable function f : R — R is convex if and only if

Hessian

If f: RY — R is twice differentiable, the Hessian matrix in x denoted by V?f(x) is
given by

O%f

°f °f
(9_)(12(X) Ox10x2 (X) o 0x10xyg (X)
f F >f
sz(x) _ 5X2(3X1 (X) a_XZE(X) 5X2(3Xd (X)
621‘. a2f' a2f'
5XdaX1 (X) 5Xd(9X2 (X) a_XZ(X)

- = T 9ac
E. Scornet Deep Learning

Optimality conditions: second order

Assume that f is twice continuously differentiable (C?).
Necessary condition

If x* is a local minimum, then Vf(x*) = 0 and V2f(x*) is positive semi-definite.

Sufficient condition

If Vf(x*) =0 and V2f(x*) is positive definite then x* is a strict local optimum.

Remark. For d = 1, this condition boils down to f'(x*) = 0 and f”(x*) > 0.

E. Scornet Deep Learning 38 / 102

Classes of algorithms

In this lecture, we are going to study iterative algorithms. There are two classes of
such algorithms, depending on the information that is used to compute the next
iteration.

First-order algorithms that use f and Vf. Standard algorithms when f is
differentiable and convex.

Second-order algorithms that use f, Vf and V2f. They are useful when
computing the Hessian matrix is not too costly.

E. Scornet Deep Learning 39 / 102

Gradient descent algorithm

Gradient descent
Input: Function f to minimize, initial vector w®, k = 0.
Parameters: step size n > 0.

While not converge do
o wktD)) _ an(W(k>)
o k<« k+1.

Output: w®

=] =
E. Scornet Deep Learning

When does gradient descent converge?
Convex function
L-smooth function

FAx+ (1 =MN)y) < M(x)+ (1= XNf(y)

A function f : RY — R is convex on R? if, for all x,y € R?, for all X\ e [0,1],

IVf(x) = VE(y)l < Lix = yl.

Exercise: If f is twice differentiable, this is equivalent to writing that for all x € R,

Amax (V2 F(x)) < L.
=] = = E E DA™

A function f is said to be L-smooth if f is differentiable and if, for all x,y € R,

Proof
Proposition

Proof

If f is twice differentiable, f is L-smooth if and only if for all x € R?
max (V2F(x)) < L.
Fix x,y € R? and ¢ > 0. Let g(t) =
By the mean value theorem, there exists some constant t.
Vf(x+cy) — Vf(x) =
First implication

Vf(x + tcy). Thus, g'(t) = [V?

e[0,1] s
(1) — g(0) = g'(tc)

uch that
By taking ¢ — 0 and using the fact that t. €

f(x + tey)](cy).
[V2F(x + tecy)](cy). (1)
I[V2F(x + tecy)ly| < Lyl
[0,1] and f € C?, we have
[[V2FC)lyl < Lyl
Then, Amax (V2 (x)) < L.
o =2 = = DA

Taking the norm of both sides of (1) and applying the smoothness condition, we obtain

Proof

Second implication

Taking the norm of both sides of (1), we have
IVF(x+ cy) = VE() 2 = [[V*F(x + tecy)](ey)]2
Thus,

Note that, for any real-valued symmetric matrix A and any vector u,

|Aulz = u" AT Au = (AT Au, 1) < Amax(A)? | ul?

[VF(x + cy) = V)2 < Amax ([VF(x + tecy)D(ey) |2 < Llcy]o-
=] = - = A

Convergence of GD

Theorem

Let f: RY — R be a L-smooth convex function. Let w* be the minimum of f on R?.
Then, Gradient Descent with step size n < 1/L satisfies

0 * (|2
f(W(k)) _ f(W*) < HW() —w H2
In particular, for n = 1/L,

2nk

LIw' —w*[3/(22)

iterations are sufficient to get an e-approximation of the minimal value of f

- = T 9ac
E. Scornet Deep Learning

Descent Lemma

A key point: the descent lemma
If f is L-smooth, then for any w, w’ € RY
f(w') < f(w) +(Vf(w)
Assuming the descent Lemma holds, remark that
argmin

weRd

L
wy+ 5lw— w3

{f()+ <Vf(wk), w—w")+ *HW —w HQ}
= argmin ’W - (W — fo
weRd
Hence, it is natural to choose

This is the basic gradient descent algorithm

Exercise: Prove the descent Lemma

k2
k+1 k1 K
w' = W — 2V F(wh)
L
o> <@ <= x 9ac

Proof - Descent Lemma for smooth functions
Using the fact that

f(w') = f(w) + L (VF(w + t(w —w)),w' — w)dt
= f(w) +{VFf(w),w —w)
so that

+ J1<Vf(w +t(w' —w)) = VF(w),w — w)dt,
0
[f(w') — f(w) —(VF(w),w —w)l

descent lemma is proved.

1
< f [VF(w + t(w' —w)) — Vf(w)HHW' — w|dt
0
1 L
< j Ltlw' — wldt = Sw' — w|?,
o 2
oy 9 = T 9ae

< L KVE(w + t(w' —w)) — VF(w), w — w)dt]|

Faster rate for strongly convex function
Strong convexity

is convex.

A function f : R — R is u-strongly convex if

x> £(x) = SlxI3

If f is differentiable it is equivalent to writing, for all x € RY,
This is also equivalent to, for all x,y € R?,
Theorem

Amin(V2F(x)) = pu

Fy) = F(x) + (VF(x)y =0 + Sy = xI3,

Let f : R — R be a L-smooth, y strongly convex function. Let w* be the minimum of
f on RY. Then, Gradient Descent with step size 1 < 1/L satisfies
k
Fw®) = F(w*) < (1= nu) 1FW®) = F(w)3.
or S = z 9ace

Comparison of rates

Gradient descent uses iterations

S WO W Ol
@ For L smooth convex function and n = 1/L,

F(w™) — F(w*)

@ For L smooth, u strongly convex function and n = 1/L,

2k

k
Fw™) = Fw") < (1= 5) 1w @) — Fwh).
=] (=) = £ DA

_Uw® —w

In practice, how to choose 7?

Setting n = 1/L

— Very pessimistic: Vf is thought to be more regular in a large part of the space,
allowing for a larger step size

Exact line search
Instead, at each step, choose the best 1 by optimizing

7 = argmin F(w™® — nvF(w®)).
n>0

— Too costly!

Backtracking line search
First, fix a parameter 0 < 3 < 1, then at each iteration k, start with n = 1 and while

Fw® = V(W) = F(w) > — 2V F (W),
update 7 < An.
— Simple and work pretty well in practice.

Indeed, for n > 0 small enough,
F(w™ — V(W) = (W) = —ne[VF(W)2 + o).
49 /102

Backtracking line search

First, fix a parameter 0 < /3 < 1, then at each iteration k, start with n = 1 and while
update 7 < An.

Fw® =gV F(w) = F(w) > — 2 F (W),
Theorem

— Simple and work pretty well in practice.

Let f: R - R be a L-smooth convex function. Let w* be the minimum of f on RY.
Then, Gradient Descent with backtracking line search satisfies

©) _ ., *)2
f'(W(k)) - f(W*) HW w H2

~ N .
2k min(1, 8/L)
[“Minimization of functions having Lipschitz continuous first partial derivatives”, Armijo 1966]

o F = £ DA
E. Scornet Deep Learning

Condition number

Gradient descent uses iterations

@ For L smooth convex function and n = 1/L,

e N O O

F(w!) = F(w")

2k

K
Fw®) = Fw*) < (1= 5) 1w @) = Fwh)3.
Condition number x = L/p > 1 stands for the difficulty of the learning problem.
o «F = T wace

LW —wE
@ For L smooth, u strongly convex function and n = 1/L,

Condition number

Condition number k = L/pu > 1

@ Assuming that kK = 1, u = L, then, for all x € R

V2 F(x) = pl.
In that case, level sets of f are circles (in dimension two).

— Very easy optimization problem: gradient is directed to the global minimum of
the function.

@ Assuming that
fi(xy) > arx’ + azy?,

£ » 1 means that the level sets of f are ellipses where a1 > an or the opposite.

— Optimization is much more difficult because of the step size which is the same for
both direction.

E. Scornet Deep Learning 52 / 102

[ll-conditioned problems

lll-conditioned problems are defined by a high condition number x = L/p » 1, typically of
order up to 10 in real-world applications.

If level sets are ellipsoid, it means that there is a large ratio between the largest and
smallest axis.

-V f(x)
—H'Vf(x)

On ill-conditioned problems, the gradient descent algorithm is slow!

A better descent direction is given by

—H7'VF(x).

[} 5 =

E. Scornet Deep Learning

Outline

© Gradient descent procedures

@ Second-order algorithms

=] F = = DA
E. Scornet Deep Learning

Newton algorithm

Take as descent direction, the Newton step:

di = —[V2F (W) 1V F(w®)

The Newton's direction minimizes the best locally quadratic approximation of f.
Indeed, by Taylor's expansion, we can approximate f locally around w by:

1
f(w+h) ~f(w)+VF(w) h+ 5th%f(W)h.
Minimizing f(w + h) with respect to h yields h = —[V2f(w)] 1V f(w).
In the very specific case of logistic regression, we can have an explicit expression of

the Newton's step and Newton's algorithm turns into the Iterative Reweighted
Least Squares (IRWLS).

E. Scornet Deep Learning 55 / 102

Quasi-Newton's methods

first order information (gradient).

where

In quasi-Newton's methods, the Newton direction is approximated by using only
Pk

g =~ V2 F(w) p,

wk+1) (k)
qk =

V(w) — vF(wh).
=] = = E E DA™

Key idea: successive iterates and gradients yield second order information

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
BFGS algorithm

d

By approximates the Hessian matrix at iteration k.
(kD)

—B'vi(w®),
w® + opde (find o via line-search)
yi = V() — v (w)
T T
Bixy1 = Bk + };kyk _ Bududi By
-yk O’kdk

— Efficient update to compute the inverse of By.

Considered as the state-of-the-art quasi-Newton's algorithm!

d] Bidy
O D = z wace

Outline

© Gradient descent procedures

@ Stochastic Gradient Descent

=] F = = DA
E. Scornet Deep Learning

Full gradients...

We say that these methods are based on full gradients, since at each iteration we need
to compute

VF(w) = %Z Vi(w),

which depends on the whole dataset

Question. If n is large, computing Vf(w) is long: need to pass on the whole data before
doing a step towards the minimum!

Idea. Large datasets make your modern computer look old

Go back to “old” algorithms.

[} 5 =

E. Scornet Deep Learning

Stochastic Gradient Descent (SGD)

Stochastic gradients

If I choose uniformly at random [/ € {1

n}, then
E[Vfi(w Zw

Vi(w)
Computation of Vf;(w) only requires the /-th line of data
— O(d) and smaller for sparse data

i w
O D = = z wace
E. Scornet Deep Learning

Vfi(w) is an unbiased but very noisy estimate of the full gradient Vf(w)
w

Stochastic Gradient Descent (SGD)

[“A stochastic approximation method”, Robbins and Monro 1985]

Stochastic gradient descent algorithm
Initialization: initial weight vector w©®,

Parameter: step size/learning rate 7y

For k = 1,2,... until convergence do
@ Pick at random (uniformly) ik in {1,..., n}
o Compute

W(k) _ W(k—l) _ ﬁkvﬁk(W(k_l))

Output: Return last w®

Remarks
o Each iteration has complexity O(d) instead of O(nd) for full gradient methods

@ Possible to reduce this to O(s) when features are s-sparse using lazy-updates.

E. Scornet Deep Learning 61 / 102

Convergence rate of SGD

Consider the stochastic gradient descent algorithm introduced previously but where each
iteration is projected into the ball B(0, R) with R > 0 fixed.

Let

fF(x) = % Z fi(x).

Theorem

Assume that f is convex and that there exists b > 0 satisfying, for all x € B(0, R),

[V£i(x)| < b.
Besides, assume that all minima of f belong to B(0, R). Then, setting 7x = 2R/(bv'k),
K

E[f(% 3 Wm)] —f(wh) < S—jf

t=1

E. Scornet Deep Learning 62 / 102

Convergence rate of SGD

Consider the stochastic gradient descent algorithm introduced previously but where each
iteration is projected into the ball B(0, R) with R > 0 fixed.

Let

F(x) = % >).

Theorem

Assume that f is p strongly convex and that there exists b > 0 satisfying, for all
x € B(0,R),
IVAX)] < b.
Besides, assume that all minima of f belong to B(0, R). Then, setting nx = 2/(p(k + 1)),
K

E[f(ﬁ tz tw V)| - f(w) < #(i—bﬂ).

=1

E. Scornet Deep Learning 63 / 102

Comparison of GD and SGD
Full gradient descent

o O(nd) iterations

n

w D B (, 3 Vf,-(w(*)))
n i=1

o Upper bound O((1 — (1/L))")

@ Numerical complexity O(nﬁ Iog(é)))

Stochastic gradient descent

e O(d) iterations

kD

—w! — Vi (w
@ Upper bound O(1/(uk))
@ Numerical complexity O(ﬁ)

(k)).

It does not depend on n for SGD !
or «F = T wace

Comparison GD versus SGD

Under strong convexity, GD versus SGD is

O(%Llog(é)) versus O(i)

GD leads to a more accurate solution, but what if n is very large?

Recipe
@ SGD is extremely fast in the early iterations (first two passes on the data)

@ But it fails to converge accurately to the minimum

Beyond SGD

@ Bottou and LeCun (2005),
Shalev-Shwartz et al (2007, 2009),
Nesterov et al. (2008, 2009),
Bach et al. (2011, 2012, 2014, 2015),
T. Zhang et al. (2014, 2015).

E. Scornet Deep Learning 65 / 102

Improving stochastic gradient descent

The problem
e Put X = Vfi(w) with [uniformly chosen at random in {1,...,n}
@ In SGD we use X = Vfi(w) as an approximation of EX = Vf(w)
@ How to reduce VX 7

- = T 9ac
E. Scornet Deep Learning

Improving stochastic gradient descent
An idea

correlated with X

@ Reduce it by finding C s.t. IEC is “easy” to compute and such that C is highly
e Put Z, = a(X — C) + EC for « € [0,1]. We have
and

EZ, = aEX + (1 - a)EC

VZ, = a*(VX + VC —2C(X, C))
@ Standard variance reduction: a = 1, so that EZ, = IEX (unbiased)
o> <@ «=» «Tr» T HAC

Improving stochastic gradient descent

Variance reduction of the gradient

In the iterations of SGD, replace Vﬁk(w(k’l)) by

a(VE, (W) = V£, (W) + V(i)
where W is an “old” value of the iterate.

Several cases
@ a = 1/n: SAG (Bach et al. 2013)
@ a=1: SVRG (T. Zhang et al. 2015, 2015)
e a = 1: SAGA (Bach et al., 2014)

Important remark
@ In these algorithms, the step-size 7 is kept constant

@ Leads to linearly convergent algorithms, with a numerical complexity comparable
to SGD!

E. Scornet Deep Learning 68 / 102

Improving stochastic gradient descent

Stochastic Average Gradient
Initialization: initial weight vector w(©®

Parameter: learning rate n > 0

For k =1,2,... until convergence do
@ Pick uniformly at random iy in {1,...,n}
e Put

47 (k—1) iz
gk(i)={ (w) if i =ik

gr—1(i) otherwise
o Compute

_ il 2)
W = w0 (1 550)
i=1

Output: Return last w(*)

E. Scornet Deep Learning 69 / 102

Improving stochastic gradient descent

Stochastic Variance Reduced Gradient (SVRG)

Initialization: initial weight vector w
Parameters: learning rate n > 0, phase size (typically m = n or m = 2n).

For k = 1,2, ... until convergence do
o Compute V£ (W)
o Put w® — &
e Fort=1,....m

Pick uniformly at random iz in {1,...,n}
Apply the step

wttD) WO _ p(VE(w®) — VE(W) + VF(W))
@ Set

Output: Return w.

E. Scornet Deep Learning 70 / 102

Improving stochastic gradient descent

SAGA

Initialization: initial weight vector w©®
Parameter: learning rate n > 0
Forall i = 1,...,n, compute go(i) — V£i(w®)
For k = 1,2,... until convergence do
o Pick uniformly at random iy in {1,...,n}
o Compute V£, (wk~1)
e Apply

_ _ . 1¢ .
W(k) - W(k 1) _ U(Vﬁ‘k(w(k 1)) — gk—l(’k) + . ng_l(l))
i=1
e Store gi(ix) — V£, (w*b)

Output: Return last w®)

E. Scornet Deep Learning 71 / 102

Outline

© Gradient descent procedures

@ Momentum

=] F = = DA
E. Scornet Deep Learning

Momentum algorithm

Aim: taking into account the previous update as additional velocity to avoid getting
stuck into local minima.

Particularly useful for stochastic gradient descent.

https://distill.pub/2017/momentum/

. AN

ALL \T
TAKESIS
ALITTLE
MOMENTUMN

E. Scornet Deep Learning 73 / 102

https://distill.pub/2017/momentum/

Momentum algorithm

[“Some methods of speeding up the convergence of iteration methods”, Polyak 1964]

Polyak’s momentum algorithm - Heavy ball method
Initialization: initial weight vector w® = w© initial velocity v® =0
Parameters: learning rate 7 > 0, momentum € [0, 1] (default 5 = 0.9)

For k = 1,2, ... until convergence do
o v = gwh — WD) _ p wr(w®)
o wk+D) — (0 L K

e k—k+1

Output: Return last w*).

If the step size nx = 71 is constant, the update equations can be written

K
w1t =y () n Z Bk_tVf(w(t)).

t=1

E. Scornet Deep Learning 74 / 102

Polyak's momentum failure

[“Analysis and design of optimization algorithms via integral quadratic constraints”, Lessard et al. 2016]

Polyak’'s momentum algorithm fails to converge in some specific cases, for instance:

Bxif x <1
Vix) =< x+24if 1 <x<?2
25x — 24 if x = 2

In that case, f is u strongly convex and L-smooth with (u, L) = (1,25). However,
iterations given by Polyak's algorithm cycles.

80

60

40

20

E. Scornet Deep Learning 75 / 102

Improving Polyak's momentum

Nesterov Accelerated Gradient Descent
Initialization: initial weight vector w® initial velocity v® =0
Parameters: learning rate > 0, momentum Sy € [0, 1].

For k =1,2,... until convergence do
o vt =) _ v f (W)
o wktD) — [(kt1) ,Bk+1(V(k+1) _ v(k))

o k—k+1

Output: Return last w(®).

[} 5 =

E. Scornet Deep Learning

Theorem

if Bkp1 = k/(k + 3),

Rate of convergence of Nesterov Accelerated Gradient (NAG)
Theorem

f(w®) — f(w*)

w”. Then, if

we have

_2w® — w3

n(k +1)2

Assume that f is a L-smooth, convex function whose minimum is reached at w*. Then,

Br

_ -Vl
14 +/p/L’
F(w™) — F(w*)

WO —w

Assume that f is a L-smooth, u strongly convex function whose minimum is reached at
E. Scornet

n

I3 (1_\/%)5

Deep Learning

Optimal bounds

Assumption 1 An iterative method M generates a sequence of test points {W(k>} such
that

w® e w® 4 Span(VF(w'?),..., VF(w D)),

Theorem

For any k satisfying 1 < k < (d —1)/2, and any w(®© € R, there exists a L-smooth
convex function f such that for any first order method M satisfying Assumption 1, we
have

o o LW — w3
Fw®) — F(w*) = 2
W) = FwW) > = a1y

Here, we consider an infinite dimension space > = {(u;)j=1..., |u|? < o}.

Theorem

For any w(® € ¢,, there exists a L-smooth, p strongly convex function f such that for
any first order method M satisfying Assumption 1, we have

= L2k
Fw®) = f(w) = £(w) 1w = w3,

~2\1 4+ /L

E. Scornet Deep Learning 78 / 102

Outline

© Gradient descent procedures

@ Coordinate Gradient Descent

=] F = = DA
E. Scornet Deep Learning

Coordinate Gradient Descent

Another approach: Coordinate Descent

@ Received a lot of attention in machine learning and statistics the last 10 years
@ |t is a state-of-the-art procedure on several machine learning problems, when possible

@ This is what is used in many R packages and for scikit-learn Lasso / Elastic-net
and LinearSVC

Idea. Minimize one coordinate at a time (keeping all others fixed)

E. Scornet Deep Learning 80 / 102

Coordinate Gradient Descent
Lemma

Given f : RY — R convex and smooth if

f(w+ zej) > f(w) forall ze Rand j =1,
(where € = j-th canonical vector of R?) then

f(w) =

min f(w’)
w/eRd
Proof. f(w + zej) = f(w) for all z e R implies that

of
() =0
which entails Vf(w) = 0, so that w is a minimum for f convex and smooth
o> <@ «=» «Tr» T HAC

Coordinate Gradient Descent

Exact coordinate descent (CD)

Initialization: initial weight vector w(©®

For k = 1,2, ... until convergence do
@ Choose j € {1,...,d}
o Compute
vu/j(k+1) = argErEin f(wl(k), ce Wj(_k)17 z, Wj(+k)17 A ng))
Wj(/k+l) _ Wj(/k) T (= f

Output: Return last w(*)

Remarks

@ Cycling through the coordinates is arbitrary: uniform sampling, pick a permutation
and cycle over it every each d iterations

@ Only 1D optimization problems to solve, but a lot of them

E. Scornet Deep Learning 82 / 102

Coordinate Gradient Descent

Theorem - Warga (1963)

If f is continuously differentiable and strictly convex, then exact coordinate descent
converges to a minimum.

Remarks

@ A 1D optimization problem to solve at each iteration: cheap for least-squares, but
can be expensive for other problems

@ Let's solve it approximately, since we have many iterations left

@ Replace exact minimization w.r.t. one coordinate by a single gradient step in the 1D
problem

=] =
E. Scornet Deep Learning

Coordinate gradient descent (CGD)
Initialization: initial weight vector w©

Parameter: step size 7; > 0.

For k =1,2,... until convergence do
o Choose j e {1,...,d}
o Compute

k+1 k k
WD — W g, f(w®)

Wj(,k+1) _ Wj(,k) o =

Output: Return last w®)

Note that

@ 7); = the step-size for coordinate j, can be taken as n; = 1/L; where L; is the
Lipchitz constant of
z— fi(z) = f(w+ ze) = f(wa, ..., Wj—1,2, Wji1,..., Wq)

o Coordinate gradient descent is much faster than GD and AGD! But why ?

E. Scornet Deep Learning 84 /102

Rate of Coordinate Gradient Descent

Theorem - Nesterov (2012)

Assume that f is convex and smooth and that each f; is L;-smooth.
Consider a sequence {w'¥} given by CGD with n; = 1/L; and coordinates ji, jo, . . .
independent and uniformly distributed over {1,...,d}. Then

BAw) —) < 2 (1= D)) =) + 51w — w'),

with |wl? = 3, Lw?.

Remark

@ Bound in expectation, since coordinates are taken at random.

@ For cycling cordinates j = (k mod d) + 1 the bound is much worse.

E. Scornet Deep Learning 85 / 102

Comparison of Gradient Descent and Coordinate Gradient Descent

@ GD achieves e-precision with

Lw®® — w3
2e
iterations. A single iteration for GD is O(nd)

@ CGD achieves e-precision with

(= 2w) = Fw) + 1w — w)

€
iterations. A single iteration for CGD is O(n)

o Note that

Fw®) = F(w') < 5 |w® — w3

B

but typically

NI~ NI~

B
S

Fw@) — f(w*) « © _ w3

] = = DQAC
E. Scornet Deep Learning

Outline

© Gradient descent for neural networks
o ADAGrad Optimizer
@ RMSprop optimizer
@ AdaDelta Optimizer
o ADAM: Adaptive moment estimation
@ A variant: Adamax

[} 5 =

E. Scornet Deep Learning

Outline

o ADAGrad Optimizer

=] F = = DA
E. Scornet Deep Learning

© Gradient descent for neural networks

ADAGRAD

First order method.

[“Adaptive subgradient methods for online learning and stochastic optimization”, Duchi et al. 2011]

ADAptive GRADient algorithm
Initialization: initial weight vector w©
Parameter: learning rate n > 0

For k = 1,2, ... until convergence do
o
wktD 00 n O VF(w®)
T (VA(w®))?

Output: Return last w®

All operations are computed component-wise.

u}
8
I
il
it

E. Scornet Deep Learning

ADAGRAD

Update equation for ADAGRAD

WD 00 Ul O VFw®)
S (VE(w))?

Pros:

o Different dynamic rates on each coordinate
@ Dynamic rates grow as the inverse of the gradient magnitude:

@ Large/small gradients have small/large learning rates
@ The dynamic over each dimension tends to be of the same order

© |Interesting for neural networks in which gradient at different layers can be of different
order of magnitude.

@ Accumulation of gradients in the denominator act as a decreasing learning rate.

Cons:
o Very sensitive to initial condition: large initial gradients lead to small learning rates.

o Can be fought by increasing the learning rate thus making the algorithm sensitive to
the choice of the learning rate.

E. Scornet Deep Learning 90 / 102

Outline

© Gradient descent for neural networks

@ RMSprop optimizer

=] F = = DA
E. Scornet Deep Learning

RMSprop

Unpublished methode, from the course of Geoff Hinton
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

RMSprop algorithm

Initialization: initial weight vector w©

Parameters: learning rate > 0 (default = 0.001), decay rate p (default p = 0.9)

For k = 1,2, ... until convergence do

@ First, compute the accumulated gradient

(VAR = p(VARY Y 4 (1= p)(VF(w))?
o Compute

WD R n O VFW®)
V" e

Output: Return last w®

v

E. Scornet Deep Learning 92 / 102

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Outline

© Gradient descent for neural networks

@ AdaDelta Optimizer

=] F = = DA
E. Scornet Deep Learning

Improving upon AdaGrad: AdaDelta

AdaDelta algorithm
Initialization: initial weight vector w(®, (Vf)zo =0, (Ax)20 =0
Parameters: decay rate p > 0, constant ¢,
For k = 1,2,... until convergence do
e Forall j=1,....d,
© Compute the accumulated gradient
_ 2
@Y = pTR4D 1 (1 -) (VE(W®))
@ Compute the update

Awp Y 4
WD) _ () _ (W)—(k)f © VW)
(VA2 +e
© Compute the aggregated update

Aw)2Y = p(aw2 T 4 (1 - p (WD — w02

Output: Return last w®)

E. Scornet Deep Learning 94 / 102

ADADELTA

[“ADADELTA: an adaptive learning rate method", Zeiler 2012]

Created as a response to ADAGRAD: less sensitivity to initial parameters.

Second order methods: make use of the Hessian matrix or approximate it.
— Often costly!

Update equation for adadelta

(Aw)2* Y 4 e

VPR +e

WD 0

O VF(w®)

Interpretation:

@ The numerator keeps the size of the previous step in memory and enforce larger
steps along directions in which large steps were made.

@ The denominator keeps the size of the previous gradients in memory and acts as a
decreasing learning rate. Weights are lower than in Adagrad due to the decay rate p.

E. Scornet Deep Learning 95 / 102

Adadelta

Determining a good learning rate becomes more of an art than science for many
problems.

Compute a dynamic learning rate per dimension based only on the gradient (first order
units. In second order methods,

M.D. Zeiler
method). Based on a second order method. Fundamental idea comes from studying
Roughly,

Aw ~ (V*F) 'V,

of
Aw =

ow 1 Aw
22f 2f — of ¢
ow? ow? ow
See also [“No more pesky learning rates”, Schaul et al. 2013]

[} 5 =
E. Scornet Deep Learning

Outline

© Gradient descent for neural networks

o ADAM: Adaptive moment estimation

=] F = = DA
E. Scornet Deep Learning

ADAM: ADAptive Moment estimation

[“Adam: A method for stochastic optimization”, Kingma and Ba 2014]
General idea: store the estimated first and second moment of the gradient and use them
to update the parameters.

Equations - first and second moment

Let m: be an exponentially decaying average over the past gradients
me = Bime—1 + (1 — B1)VF(w?)

Similarly, let v; be an exponentially decaying average over the past square gradients
ve = Baver + (1= B2)(VE(w))2.

Initialization: mg = vp = 0.

With this initialization, estimates m; and v; are biased towards zero in the early steps of
the gradient descent.

Final equations

& mz ~ Vi
=] Vi = .
ST T
(k+1) _ . (k) n -~
w = w — —— M.
Ve +e ‘

E. Scornet Deep Learning 98 / 102

Adam algorithm

Initialization: mo = 0 (Initialization of the first moment vector), vo = 0 (Initialization of
the second moment vector), wo (initial vector of parameters).

Parameters: stepsize 7 (default » = 0.001), exponential decay rates for the moment
estimates (31, 82 € [0,1) (default: 1 = 0.9, B2 = 0.999), numeric constant ¢ (default

e =107%).
For k = 1,2, ... until convergence do
o Compute first and second moment estimate
m® = gim" 7V 4+ (1 - B)VF(WY) v = Baviny + (1= B2) (VW)
o Compute their respective correction

S MY
1-Bf 1-55
o Update the parameters accordingly
Wkt 0 o e,

Output: Return last w®

v

Convergence results: [“Adam: A method for stochastic optimization”, Kingma and Ba 2014], [“On the convergence of
adam and beyond”, Reddi et al. 2018].

E. Scornet Deep Learning 99 / 102

Outline

© Gradient descent for neural networks

@ A variant: Adamax

=] F = = DA
E. Scornet Deep Learning

Adamax algorithm

Initialization: mo = 0 (Initialization of the first moment vector), up = 0 (Initialization of
the exponentially weighted infinity norm), wo (initial vector of parameters).

Parameters: stepsize) (default 7 = 0.001), exponential decay rates for the moment
estimates (1, 82 € [0,1) (default: 1 = 0.9, B> = 0.999)

For k = 1,2,... until convergence do
o Compute first moment estimate and its correction
m® = Bim_ 1y + (1= B)VFW®), aP = T

o Compute the quantity
u® = max(Bou™* ™V, |VF(w™))).
o Update the parameters accordingly
wktD _ 00 % o m®.

Output: Return last w(*)

[“Adam: A method for stochastic optimization”, Kingma and Ba 2014]

E. Scornet Deep Learning 101 / 102

@ Larry Armijo. “Minimization of functions having Lipschitz continuous first
partial derivatives”. In: Pacific Journal of mathematics 16.1 (1966), pp. 1-3.

@ Richard Bellman. “Adaptive control processes: a guided tour princeton
university press”. In: Princeton, New Jersey, USA (1961).

@ John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods
for online learning and stochastic optimization”. In: Journal of Machine
Learning Research 12.Jul (2011), pp. 2121-2159.

@ Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

@ Laurent Lessard, Benjamin Recht, and Andrew Packard. “Analysis and design
of optimization algorithms via integral quadratic constraints”. In: SIAM
Journal on Optimization 26.1 (2016), pp. 57-95.

@ Boris T Polyak. “Some methods of speeding up the convergence of iteration
methods”. In: USSR Computational Mathematics and Mathematical Physics
4.5 (1964), pp. 1-17.

@ Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. “On the convergence of
adam and beyond”. In: (2018).

[} 5 =

E. Scornet Deep Learning

Herbert Robbins and Sutton Monro. “A stochastic approximation method”.
In: Herbert Robbins Selected Papers. Springer, 1985, pp. 102-109.

Tom Schaul, Sixin Zhang, and Yann LeCun. “No more pesky learning rates”.
In: International Conference on Machine Learning. 2013, pp. 343-351.

Matthew D Zeiler. “ADADELTA: an adaptive learning rate method”. In:
arXiv preprint arXiv:1212.5701 (2012).

=] F = = DA

E. Scornet Deep Learning

	Motivation in Machine Learning
	Logistic regression
	Support Vector Machine
	General formulation

	Gradient descent procedures
	Gradient Descent
	Second-order algorithms
	Stochastic Gradient Descent
	Momentum
	Coordinate Gradient Descent

	Gradient descent for neural networks
	ADAGrad Optimizer
	RMSprop optimizer
	AdaDelta Optimizer
	ADAM: Adaptive moment estimation
	A variant: Adamax

