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Logistic regression

By far the most widely used classification algorithm
We want to explain the label y based on x , we want to “regress” y on x
Models the distribution of Y |X

For y P t´1, 1u, we consider the model
PpY “ 1|X “ xq “ σpxw , xy ` bq

where w P Rd is a vector of model weights and b P R is the intercept, and where σ is
the sigmoid function

σpzq “ 1
1` e´z
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Logistic regression

The sigmoid choice really is a choice. It is a modelling choice.

It’s a way to map RÑ r0, 1s (we want to model a probability)

We could also consider

PpY “ 1|X “ xq “ F pxw , xy ` bq,
for any distribution function F . Another popular choice is the Gaussian distribution

F pzq “ PpNp0, 1q ď zq,

which leads to another loss called probit
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Logistic regression

However, the sigmoid choice has the following nice interpretation: an easy
computation leads to

log
´

PpY “ 1|X “ xq
PpY “ ´1|X “ xq

¯

“ xw , xy ` b

This quantity is called the log-odd ratio
Note that

PpY “ 1|X “ xq ě PpY “ ´1|X “ xq
iff

xw , xy ` b ě 0.
This is a linear classification rule
Linear with respect to the considered features x
But, you choose the features: features engineering.

E. Scornet Deep Learning 6 / 102



Logistic regression

Estimation of w and b

We have a model for Y |X

Data pxi , yiq is assumed i.i.d with the same distribution as pX ,Y q

Compute estimators ŵ and b̂ by maximum likelihood estimation

Or equivalently, minimize the minus log-likelihood

More generally, when a model is used

Goodness-of-fit “ ´log likelihood

log is used mainly since averages are easier to study (and compute) than products
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Logistic regression

Likelihood is given by

n
ź

i“1

PpY “ yi |X “ xiq

“

n
ź

i“1

σpxw , xiy ` bq
1`yi
2
`

1´ σpxw , xiy ` bq
˘

1´yi
2

“

n
ź

i“1

σpxw , xiy ` bq
1`yi
2 σp´xw , xiy ´ bq

1´yi
2

and the minus log-likelihood is given by

n
ÿ

i“1

logp1` e´yi pxw,xi y`bq
q
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Logistic regression

Compute ŵ and b̂ as follows:

pŵ , b̂q P argmin
wPRd ,bPR

1
n

n
ÿ

i“1

logp1` e´yi pxw,xi y`bq
q

It is an average of losses, one for each sample point
It is a convex and smooth problem
Many ways to find an approximate minimizer
Convex optimization algorithms

If we introduce the logistic loss function

`py , y 1q “ logp1` e´yy 1
q

then

pŵ , b̂q P argmin
wPRd ,bPR

1
n

n
ÿ

i“1

`pyi , xw , xiy ` bq
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Support Vector Machine

A dataset is linearly separable if we can find an hyperplane H that puts

Points xi P R
d such that yi “ 1 on one side of the hyperplane

Points xi P R
d such that yi “ ´1 on the other

H do not pass through a point xi

An hyperplane

H “ tx P Rd : xw , xy ` b “ 0u

is a translation of a set of vectors orthogonal
to w .
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Support Vector Machine

The definition of H is invariant by multiplication of w and b by a non-zero scalar

If H do not pass through any sample point xi , we can scale w and b so that

min
pxi ,yi qPDn

|xw , xiy ` b| “ 1

For such w and b, we call H the canonical hyperplane
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Support Vector Machine

The distance of any point x 1 P Rd to H is given by

|xw , x 1y ` b|
}w}

So, if H is a canonical hyperplane, its
margin is given by

min
pxi ,yi qPDn

|xw , xiy ` b|
}w} “

1
}w} .
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Support Vector Machine

In summary.

If Dn is strictly linearly separable, we can find a canonical separating hyperplane

H “ tx P Rd : xw , xy ` b “ 0u.

that satisfies
|xw , xiy ` b| ě 1 for any i “ 1, . . . , n,

which entails that a point xi is correctly classified if

yipxw , xiy ` bq ě 1.

The margin of H is equal to 1{}w}.
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Support Vector Machine

Linear SVM: separable case

From that, we deduce that a way of classifying Dn with maximum margin is to solve the
following problem:

min
wPRd ,bPR

1
2 }w}

2
2

subject to yipxw , xiy ` bq ě 1 for all i “ 1, . . . , n

Note that:
This problem admits a unique solution
It is a “quadratic programming” problem, which is easy to solve numerically
Dedicated optimization algorithms can solve this on a large scale very efficiently
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SVM for the non linearly separable case

Introducing slack variables ξi ě 0.

Modeling potential errors

pxi , yiq

#

no error: yipxw , xiy ` bq ě 1ñ ξi “ 0
error: yipxw , xiy ` bq ă 1ñ ξi “ 1´ yipxw , xiy ` bq ą 0
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New optimization problem

min
w,b,ξ

1
2 }w}

2
2 ` C

n
ÿ

i“1

ξi

subject to, for all i “ 1, . . . , n,
yipxw , xiy ` bq ě 1´ ξi

ξi ě 0.

Introducing the hinge loss `py , y 1q “ maxp0, 1´ yy 1q, the optimization can be rewritten as

SVM with hinge loss

min
w,b

1
2 }w}

2
2 ` C

n
ÿ

i“1

`pyi , ŷiq.
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General optimization problem

We have seen a lot of problems of the form

argmin
wPRd

f pwq ` gpwq

with f a goodness-of-fit function

f pwq “ 1
n

n
ÿ

i“1

`pyi , xw , xiyq

where ` is some loss and

gpwq “ λpenpwq
where penp¨q is some penalization function, examples being

penpwq “ }w}22 (ridge)
penpwq “ }w}1 (Lasso)
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Different losses for classification

Logistic loss, `py , y 1q “ logp1` e´yy 1
q

Hinge loss, `py , y 1q “ p1´ yy 1q`
Quadratic hinge loss, `py , y 1q “ 1

2 p1´ yy 1q2`
Huber loss `py , y 1q “ ´4yy 11yy 1ă´1 ` p1´ yy 1q2`1yy 1ě´1

These losses can be understood as a convex approximation of the 0/1 loss
`py , y 1q “ 1yy 1ď0
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Minimization problems

Aim: minimizing a function h : Rd Ñ R

d : dimension of the search space.
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Level sets

One-dimensional (1-D) representations are often misleading, we therefore often represent
level-sets of functions

Cc “ tx P Rd , f pxq “ cu.

Example of level sets in dimension two
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Topographic sets

The function is the altitude!

See https://mathinsight.org/applet/directional_derivative_mountain
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Exhaustive search

Consider the problem
w‹ P argmin

wPr0,1sd
f pwq.

One can optimize this problem on a grid of r0, 1sd . For example, if the function f is
regular enough, in dimension 1, to achieve a precision of ε we need t1{εu evaluation of f .
In dimension d , we need t1{εud evaluations.

For example, evaluating the expression
f pxq “ }x}22,

to obtain a precision of ε “ 10´2 requires:
1, 75.10´3 seconds in dimension 1
1, 75.1015 seconds in dimension 10, i.e., nearly 32 millions years.

Ñ Prohibitive in high dimensions (curse of dimensionality, term introduced by Bellman
1961)
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Necessary condition

First order necessary condition

In dimension one.
Let f : RÑ R be a differentiable function. If x‹ is a local extremum
(minimum/maximum) then f 1px‹q “ 0.

Generalization for d ą 1.
Let f : Rd

Ñ R be a differentiable function. If x‹ is a local extremum then
∇f px‹q “ 0.

Remark.
Points such that ∇f px‹q “ 0 are called critical points.
Critical points are not always extrema (consider x ÞÑ x3)
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Gradient - Definition

The gradient of a function f : Rd Ñ R in x denoted as ∇f pxq is the vector of
partial derivatives

∇f pxq “

¨

˚

˝

Bf
Bx1...
Bf
Bxd

˛

‹

‚

Exercise
If f : RÑ R, ∇f pxq “ f 1pxq
f pxq “ xa, xy: ∇f pxq “ a
f pxq “ xT Ax : ∇f pxq “ pA` AT qx
Particular case: f pxq “ }x}2, ∇f pxq “ 2x .
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Gradient - Level sets

The gradient is orthogonal to level sets.
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Gradient descent algorithm

Gradient descent
Input: Function f to minimize.

Initialization: initial weight vector w p0q

Parameters: step size η ą 0.

While not converge do
w pk`1q

Ð w pkq ´ η∇f pw pkqq
k Ð k ` 1.

Output: w pkq.
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Heuristic: why gradient descent works?

For a function f : Rd
Ñ R, define the level sets:

Cc “ tx P Rd , f pxq “ cu.

Figure: Gradient descent for function f : px , yq ÞÑ x2 ` 2y2

Exercise:
1 The gradient is orthogonal to level sets.
2 The gradient is a good direction to follow, if step size is small enough.
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Gradient orthogonal to level sets

1 Locally near w p0q,
f pwq “ f pw p0qq ` x∇f pw p0qq,w ´ w p0qy ` Op}w ´ w p0q}2q.

Thus, for all w P Cf pwp0qq,

lim
wÑwp0q,wPCf pwp0qq

x∇f pw p0qq, w ´ w p0q

}w ´ w p0q} y “ 0.

2 Locally near w p0q,
f pwq “ f pw p0qq ` x∇f pw p0qq,w ´ w p0qy ` Op}w ´ w p0q}2q.

Thus, locally, minimizing f pwq is equivalent to

argmin
wPBpwp0q,εq

f pw p0qq ` x∇f pw p0qq,w ´ w p0qy,

for ε small enough, that is
w ´ w p0q “ ´η∇f pw p0qq,

for some η ą 0. This gives the final gradient descent equation
w “ w p0q ´ η∇f pw p0qq,

E. Scornet Deep Learning 32 / 102



Bad objective functions

Figure: Gradient descent for f : px , yq ÞÑ sinp1{p2x2q ´ 1{p4y2q ` 3q cosp2x ` 1´ exppyqq

http://yulijia.net/vistat/2013/03/gradient-descent-algorithm-with-r
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Convexity

Convexity - Definition
We say that f : Rd

Ñ R is convex if (Rd is convex and if)
f pλx ` p1´ λqyq ď λf pxq ` p1´ λqf pyq, for all x , y P Rd , λ P r0, 1s.
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Convexity

Convexity - First derivative
A twice differentiable function f : Rd

Ñ R is convex if and only if
f pxq ě f pyq ` x∇f pyq, x ´ yy, for all x , y P Rd .
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Convexity 3

Convexity - Hessian
A twice differentiable function f : Rd

Ñ R is convex if and only if
∇2f pxq ľ 0, for all x ,

that is hT ∇2f pxqh ě 0, for all h P Rd .
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Hessian

If f : Rd Ñ R is twice differentiable, the Hessian matrix in x denoted by ∇2f pxq is
given by

∇2f pxq “

¨

˚

˚

˚

˚

˚

˝

B
2f
Bx2

1
pxq B

2f
Bx1Bx2 pxq . . . B

2f
Bx1Bxd

pxq
B
2f

Bx2Bx1 pxq
B
2f
Bx2

2
pxq . . . B

2f
Bx2Bxd

pxq
...

...
...

...
B
2f

BxdBx1 pxq
B
2f

BxdBx2 pxq . . . B
2f
Bx2

d
pxq

˛

‹

‹

‹

‹

‹

‚

The Hessian matrix is symmetric if f is twice continuously differentiable (C2).
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Optimality conditions: second order

Assume that f is twice continuously differentiable (C2).

Necessary condition

If x‹ is a local minimum, then ∇f px‹q “ 0 and ∇2f px‹q is positive semi-definite.

Sufficient condition

If ∇f px‹q “ 0 and ∇2f px‹q is positive definite then x‹ is a strict local optimum.

Remark. For d “ 1, this condition boils down to f 1px‹q “ 0 and f 2px‹q ą 0.
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Classes of algorithms

In this lecture, we are going to study iterative algorithms. There are two classes of
such algorithms, depending on the information that is used to compute the next
iteration.

First-order algorithms that use f and ∇f . Standard algorithms when f is
differentiable and convex.

Second-order algorithms that use f ,∇f and ∇2f . They are useful when
computing the Hessian matrix is not too costly.

E. Scornet Deep Learning 39 / 102



Gradient descent algorithm

Gradient descent
Input: Function f to minimize, initial vector w p0q, k “ 0.

Parameters: step size η ą 0.

While not converge do
w pk`1q

Ð w pkq ´ η∇f pw pkqq
k Ð k ` 1.

Output: w pkq.
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When does gradient descent converge?

Convex function
A function f : Rd

Ñ R is convex on Rd if, for all x , y P Rd , for all λ P r0, 1s,
f pλx ` p1´ λqyq ď λf pxq ` p1´ λqf pyq.

L-smooth function
A function f is said to be L-smooth if f is differentiable and if, for all x , y P Rd ,

}∇f pxq ´∇f pyq} ď L}x ´ y}.

Exercise: If f is twice differentiable, this is equivalent to writing that for all x P Rd ,

λmax p∇2f pxqq ď L.
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Proof

Proposition
If f is twice differentiable, f is L-smooth if and only if for all x P Rd ,

λmax p∇2f pxqq ď L.

Proof

Fix x , y P Rd and c ą 0. Let gptq “ ∇f px ` tcyq. Thus, g 1ptq “ r∇2f px ` tcyqspcyq.
By the mean value theorem, there exists some constant tc P r0, 1s such that

∇f px ` cyq ´∇f pxq “ gp1q ´ gp0q “ g 1ptcq “ r∇2f px ` tccyqspcyq. (1)

First implication

Taking the norm of both sides of (1) and applying the smoothness condition, we obtain

}r∇2f px ` tccyqsy} ď L}y}.
By taking c Ñ 0 and using the fact that tc P r0, 1s and f P C2, we have

}r∇2f pxqsy} ď L}y}.
Then, λmax p∇2f pxqq ď L.
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Proof

Second implication

Taking the norm of both sides of (1), we have

}∇f px ` cyq ´∇f pxq}2 “ }r∇2f px ` tccyqspcyq}2.
Note that, for any real-valued symmetric matrix A and any vector u,

}Au}22 “ uTATAu “ xATAu, uy ď λmax pAq2}u}2

Thus,
}∇f px ` cyq ´∇f pxq}2 ď λmax pr∇2f px ` tccyqsq}pcyq}2 ď L}cy}2.
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Convergence of GD

Theorem
Let f : Rd

Ñ R be a L-smooth convex function. Let w‹ be the minimum of f on Rd .
Then, Gradient Descent with step size η ď 1{L satisfies

f pw pkqq ´ f pw‹q ď }w p0q ´ w‹}22
2ηk .

In particular, for η “ 1{L,
L}w p0q ´ w‹}22{p2εq

iterations are sufficient to get an ε-approximation of the minimal value of f .
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Descent Lemma

A key point: the descent lemma.
If f is L-smooth, then for any w ,w 1 P Rd

f pw 1q ď f pwq ` x∇f pwq,w 1 ´ wy ` L
2 }w ´ w 1}22.

Assuming the descent Lemma holds, remark that

argmin
wPRd

!

f pw k
q ` x∇f pw k

q,w ´ w k
y `

L
2 }w ´ w k

}
2
2

)

“ argmin
wPRd

›

›

›
w ´

´

w k
´

1
L∇f pw k

q

¯›

›

›

2

2

Hence, it is natural to choose
w k`1

“ w k
´

1
L∇f pw k

q

This is the basic gradient descent algorithm
Exercise: Prove the descent Lemma.
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Proof - Descent Lemma for smooth functions

Using the fact that

f pw 1q “ f pwq `
ż 1

0
x∇f pw ` tpw 1 ´ wqq,w 1 ´ wydt

“ f pwq ` x∇f pwq,w 1 ´ wy

`

ż 1

0
x∇f pw ` tpw 1 ´ wqq ´∇f pwq,w 1 ´ wydt,

so that
|f pw 1q ´ f pwq ´ x∇f pwq,w 1 ´ wy|

ď

ż 1

0
|x∇f pw ` tpw 1 ´ wqq ´∇f pwq,w 1 ´ wydt|

ď

ż 1

0
}∇f pw ` tpw 1 ´ wqq ´∇f pwq}}w 1 ´ w}dt

ď

ż 1

0
Lt}w 1 ´ w}2dt “ L

2 }w
1
´ w}2,

descent lemma is proved.
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Faster rate for strongly convex function

Strong convexity
A function f : Rd

Ñ R is µ-strongly convex if
x ÞÑ f pxq ´ µ

2 }x}
2
2

is convex.

If f is differentiable it is equivalent to writing, for all x P Rd ,
λminp∇2f pxqq ě µ.

This is also equivalent to, for all x , y P Rd ,
f pyq ě f pxq ` x∇f pxq, y ´ xy ` µ

2 }y ´ x}22.

Theorem
Let f : Rd

Ñ R be a L-smooth, µ strongly convex function. Let w‹ be the minimum of
f on Rd . Then, Gradient Descent with step size η ď 1{L satisfies

f pw pkqq ´ f pw‹q ď
´

1´ ηµ
¯k
}f pw p0qq ´ f pw‹q}22.
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Comparison of rates

Gradient descent uses iterations

w pk`1q
Ð w pkq ´ η∇f pw pkqq

For L smooth convex function and η “ 1{L,

f pw pkqq ´ f pw‹q ď L}w p0q ´ w‹}22
2k .

For L smooth, µ strongly convex function and η “ 1{L,

f pw pkqq ´ f pw‹q ď
´

1´ µ

L

¯k
}f pw p0qq ´ f pw‹q}22.
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In practice, how to choose η?

Setting η “ 1{L
Ñ Very pessimistic: ∇f is thought to be more regular in a large part of the space,
allowing for a larger step size

Exact line search
Instead, at each step, choose the best η by optimizing

ηpkq “ argmin
ηą0

f pw pkq ´ η∇f pw pkqqq.

Ñ Too costly!

Backtracking line search
First, fix a parameter 0 ă β ă 1, then at each iteration k, start with η “ 1 and while

f pw pkq ´ η∇f pw pkqqq ´ f pw pkqq ą ´η2 }∇f pw pkqq}2,
update η Ð βη.

Ñ Simple and work pretty well in practice.

Indeed, for η ą 0 small enough,
f pw pkq ´ ηk∇f pw pkqqq ´ f pw pkqq “ ´ηk}∇f pw pkqq}2 ` opηkq.
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Backtracking line search

First, fix a parameter 0 ă β ă 1, then at each iteration k, start with η “ 1 and while

f pw pkq ´ η∇f pw pkqqq ´ f pw pkqq ą ´η2 }∇f pw pkqq}2,
update η Ð βη.
Ñ Simple and work pretty well in practice.

Theorem
Let f : Rd

Ñ R be a L-smooth convex function. Let w‹ be the minimum of f on Rd .
Then, Gradient Descent with backtracking line search satisfies

f pw pkqq ´ f pw‹q ď }w p0q ´ w‹}22
2k minp1, β{Lq .

[“Minimization of functions having Lipschitz continuous first partial derivatives”, Armijo 1966]
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Condition number

Gradient descent uses iterations

w pk`1q
Ð w pkq ´ η∇f pw pkqq

For L smooth convex function and η “ 1{L,

f pw pkqq ´ f pw‹q ď L}w p0q ´ w‹}22
2k .

For L smooth, µ strongly convex function and η “ 1{L,

f pw pkqq ´ f pw‹q ď
´

1´ µ

L

¯k
}f pw p0qq ´ f pw‹q}22.

Condition number κ “ L{µ ě 1 stands for the difficulty of the learning problem.
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Condition number

Condition number κ “ L{µ ě 1

Assuming that κ “ 1, µ “ L, then, for all x P Rd

∇2f pxq “ µI.
In that case, level sets of f are circles (in dimension two).
Ñ Very easy optimization problem: gradient is directed to the global minimum of
the function.

Assuming that
f : px , yq ÞÑ α1x2

` α2y 2,

κ " 1 means that the level sets of f are ellipses where α1 " α2 or the opposite.
Ñ Optimization is much more difficult because of the step size which is the same for
both direction.
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Ill-conditioned problems

Ill-conditioned problems are defined by a high condition number κ “ L{µ " 1, typically of
order up to 1010 in real-world applications.

If level sets are ellipsoid, it means that there is a large ratio between the largest and
smallest axis.

On ill-conditioned problems, the gradient descent algorithm is slow!

A better descent direction is given by

´H´1∇f pxq.
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Newton algorithm

Take as descent direction, the Newton step:

dk “ ´r∇2f pw pkqqs´1∇f pw pkqq

The Newton’s direction minimizes the best locally quadratic approximation of f .
Indeed, by Taylor’s expansion, we can approximate f locally around w by:

f pw ` hq » f pwq `∇f pwqT h ` 1
2hT ∇2f pwqh.

Minimizing f pw ` hq with respect to h yields h “ ´r∇2f pwqs´1∇f pwq.

In the very specific case of logistic regression, we can have an explicit expression of
the Newton’s step and Newton’s algorithm turns into the Iterative Reweighted
Least Squares (IRWLS).
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Quasi-Newton’s methods

In quasi-Newton’s methods, the Newton direction is approximated by using only
first order information (gradient).

Key idea: successive iterates and gradients yield second order information

qk » ∇2f pw pk`1qqpk ,

where
pk “ w pk`1q ´ w pkq,
qk “ ∇f pw pk`1qq ´∇f pw pkqq.
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

BFGS algorithm

Bk approximates the Hessian matrix at iteration k.

dk “ ´B´1
k ∇f pw pkqq,

w pk`1q
“ w pkq ` σkdk (find σk via line-search)

yk “ ∇f pw pk`1q
q ´∇f pw pkqq

Bk`1 “ Bk `
ykyT

k
yT

k σkdk
´

BkdkdT
k Bk

dT
k Bkdk

.

Ñ Efficient update to compute the inverse of Bk .

Considered as the state-of-the-art quasi-Newton’s algorithm!
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Full gradients...

We say that these methods are based on full gradients, since at each iteration we need
to compute

∇f pwq “ 1
n

n
ÿ

i“1

∇fipwq,

which depends on the whole dataset

Question. If n is large, computing ∇f pwq is long: need to pass on the whole data before
doing a step towards the minimum!

Idea. Large datasets make your modern computer look old

Go back to “old” algorithms.
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Stochastic Gradient Descent (SGD)

Stochastic gradients

If I choose uniformly at random I P t1, . . . , nu, then

Er∇fIpwqs “
1
n

n
ÿ

i“1

∇fipwq “ ∇f pwq

∇fIpwq is an unbiased but very noisy estimate of the full gradient ∇f pwq

Computation of ∇fIpwq only requires the I-th line of data

Ñ Opdq and smaller for sparse data
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Stochastic Gradient Descent (SGD)

[“A stochastic approximation method”, Robbins and Monro 1985]

Stochastic gradient descent algorithm
Initialization: initial weight vector w p0q,

Parameter: step size/learning rate ηk

For k “ 1, 2, . . . until convergence do

Pick at random (uniformly) ik in t1, . . . , nu
Compute

w pkq “ w pk´1q
´ ηk∇fik pw

pk´1q
q

Output: Return last w pkq

Remarks
Each iteration has complexity Opdq instead of Opndq for full gradient methods
Possible to reduce this to Opsq when features are s-sparse using lazy-updates.
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Convergence rate of SGD

Consider the stochastic gradient descent algorithm introduced previously but where each
iteration is projected into the ball Bp0,Rq with R ą 0 fixed.

Let

f pxq “ 1
n

n
ÿ

i“1

fipxq.

Theorem
Assume that f is convex and that there exists b ą 0 satisfying, for all x P Bp0,Rq,

}∇fipxq} ď b.

Besides, assume that all minima of f belong to Bp0,Rq. Then, setting ηk “ 2R{pb
?
kq,

E
„

f
´ 1
k

k
ÿ

t“1

w ptq
¯



´ f pw‹q ď 3Rb
?
k
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Convergence rate of SGD

Consider the stochastic gradient descent algorithm introduced previously but where each
iteration is projected into the ball Bp0,Rq with R ą 0 fixed.

Let

f pxq “ 1
n

n
ÿ

i“1

fipxq.

Theorem
Assume that f is µ strongly convex and that there exists b ą 0 satisfying, for all
x P Bp0,Rq,

}∇fipxq} ď b.

Besides, assume that all minima of f belong to Bp0,Rq. Then, setting ηk “ 2{pµpk ` 1qq,

E
”

f
´ 2
kpk ` 1q

k
ÿ

t“1

t w pt´1q
¯ı

´ f pw‹q ď 2b2

µpk ` 1q .
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Comparison of GD and SGD

Full gradient descent

w pk`1q
Ð w pkq ´ ηk

´1
n

n
ÿ

i“1

∇fipw pkqq
¯

Opndq iterations
Upper bound Opp1´ pµ{Lqqkq
Numerical complexity Opn L

µ
logp 1

ε
qqq

Stochastic gradient descent
w pk`1q

Ð w pkq ´ ηk∇fik pw
pkq
q.

Opdq iterations
Upper bound Op1{pµkqq
Numerical complexity Op 1

µε
q

It does not depend on n for SGD !
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Comparison GD versus SGD

Under strong convexity, GD versus SGD is

O
´nL
µ

log
`1
ε

˘

¯

versus O
´ 1
µε

¯

GD leads to a more accurate solution, but what if n is very large?

Recipe
SGD is extremely fast in the early iterations (first two passes on the data)
But it fails to converge accurately to the minimum

Beyond SGD

Bottou and LeCun (2005),
Shalev-Shwartz et al (2007, 2009),
Nesterov et al. (2008, 2009),
Bach et al. (2011, 2012, 2014, 2015),
T. Zhang et al. (2014, 2015).
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Improving stochastic gradient descent

The problem

Put X “ ∇fIpwq with I uniformly chosen at random in t1, . . . , nu

In SGD we use X “ ∇fIpwq as an approximation of EX “ ∇f pwq

How to reduce VX ?
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Improving stochastic gradient descent

An idea

Reduce it by finding C s.t. EC is “easy” to compute and such that C is highly
correlated with X

Put Zα “ αpX ´ Cq `EC for α P r0, 1s. We have

EZα “ αEX ` p1´ αqEC
and

VZα “ α2
pVX `VC ´ 2CpX ,Cqq

Standard variance reduction: α “ 1, so that EZα “ EX (unbiased)
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Improving stochastic gradient descent

Variance reduction of the gradient

In the iterations of SGD, replace ∇fik pw pk´1q
q by

αp∇fik pw
pk´1q

q ´∇fik pw̃qq `∇f pw̃q
where w̃ is an “old” value of the iterate.

Several cases
α “ 1{n: SAG (Bach et al. 2013)
α “ 1: SVRG (T. Zhang et al. 2015, 2015)
α “ 1: SAGA (Bach et al., 2014)

Important remark
In these algorithms, the step-size η is kept constant
Leads to linearly convergent algorithms, with a numerical complexity comparable
to SGD!
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Improving stochastic gradient descent

Stochastic Average Gradient
Initialization: initial weight vector w p0q

Parameter: learning rate η ą 0

For k “ 1, 2, . . . until convergence do
Pick uniformly at random ik in t1, . . . , nu
Put

gkpiq “
#

∇fipw pk´1q
q if i “ ik

gk´1piq otherwise
Compute

w pkq “ w pk´1q
´ η

´1
n

n
ÿ

i“1

gkpiq
¯

Output: Return last w pkq
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Improving stochastic gradient descent

Stochastic Variance Reduced Gradient (SVRG)

Initialization: initial weight vector w̃

Parameters: learning rate η ą 0, phase size (typically m “ n or m “ 2n).

For k “ 1, 2, . . . until convergence do
Compute ∇f pw̃q
Put w p0q Ð w̃
For t “ 1, . . . ,m

§ Pick uniformly at random it in t1, . . . , nu
§ Apply the step

wpt`1q Ð wptq ´ ηp∇fi pwptqq ´∇fi pw̃q `∇f pw̃qq

Set

w̃ Ð 1
m

m
ÿ

t“1

w ptq

Output: Return w̃ .
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Improving stochastic gradient descent

SAGA

Initialization: initial weight vector w p0q

Parameter: learning rate η ą 0

For all i “ 1, . . . , n, compute g0piq Ð ∇fipw p0qq

For k “ 1, 2, . . . until convergence do
Pick uniformly at random ik in t1, . . . , nu
Compute ∇fik pw pk´1q

q

Apply

w pkq Ð w pk´1q
´ η

´

∇fik pw
pk´1q

q ´ gk´1pikq `
1
n

n
ÿ

i“1

gk´1piq
¯

Store gkpikq Ð ∇fik pw pk´1q
q

Output: Return last w pkq
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Momentum algorithm

Aim: taking into account the previous update as additional velocity to avoid getting
stuck into local minima.
Particularly useful for stochastic gradient descent.

https://distill.pub/2017/momentum/
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Momentum algorithm

[“Some methods of speeding up the convergence of iteration methods”, Polyak 1964]

Polyak’s momentum algorithm - Heavy ball method
Initialization: initial weight vector w p1q “ w p0q, initial velocity v p0q “ 0

Parameters: learning rate ηk ą 0, momentum β P r0, 1s (default β “ 0.9)

For k “ 1, 2, . . . until convergence do
v pkq “ βpw pkq ´ w pk´1q

q ´ ηk∇f pw pkqq
w pk`1q

“ w pkq ` v pkq

k Ð k ` 1

Output: Return last w pkq.

If the step size ηk “ η is constant, the update equations can be written

w pk`1q
“ w pkq ´ η

k
ÿ

t“1

βk´t∇f pw ptqq.
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Polyak’s momentum failure

[“Analysis and design of optimization algorithms via integral quadratic constraints”, Lessard et al. 2016]

Polyak’s momentum algorithm fails to converge in some specific cases, for instance:

∇f pxq “

$

’

&

’

%

25x if x ă 1
x ` 24 if 1 ď x ă 2
25x ´ 24 if x ě 2

In that case, f is µ strongly convex and L-smooth with pµ, Lq “ p1, 25q. However,
iterations given by Polyak’s algorithm cycles.
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Improving Polyak’s momentum

Nesterov Accelerated Gradient Descent
Initialization: initial weight vector w p0q, initial velocity v p0q “ 0

Parameters: learning rate η ą 0, momentum βk P r0, 1s.

For k “ 1, 2, . . . until convergence do
v pk`1q

“ w pkq ´ η∇f pw pkqq
w pk`1q

“ v pk`1q
` βk`1pv pk`1q

´ v pkqq
k Ð k ` 1

Output: Return last w pkq.
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Rate of convergence of Nesterov Accelerated Gradient (NAG)

Theorem
Assume that f is a L-smooth, convex function whose minimum is reached at w‹. Then,
if βk`1 “ k{pk ` 3q,

f pw pkqq ´ f pw‹q ď 2}w p0q ´ w‹}22
ηpk ` 1q2 .

Theorem
Assume that f is a L-smooth, µ strongly convex function whose minimum is reached at
w‹. Then, if

βk “
1´

a

µ{L
1`

a

µ{L
,

we have

f pw pkqq ´ f pw‹q ď }w p0q ´ w‹}22
η

´

1´
c

µ

L

¯k
.
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Optimal bounds

Assumption 1 An iterative method M generates a sequence of test points tw pkqu such
that

w pkq P w p0q ` Spanp∇f pw p0qq, . . . ,∇f pw pk´1q
qq.

Theorem
For any k satisfying 1 ď k ď pd ´ 1q{2, and any w p0q P Rd , there exists a L-smooth
convex function f such that for any first order method M satisfying Assumption 1, we
have

f pw pkqq ´ f pw‹q ě 3L}w p0q ´ w‹}22
32pk ` 1q2 .

Here, we consider an infinite dimension space `2 “ tpujqj“1..., }u}22 ă 8u.

Theorem
For any w p0q P `2, there exists a L-smooth, µ strongly convex function f such that for
any first order method M satisfying Assumption 1, we have

f pw pkqq ´ f pw‹q ě µ

2

´1´
a

µ{L
1`

a

µ{L

¯2k
}w p0q ´ w‹}22.
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Coordinate Gradient Descent

Another approach: Coordinate Descent

Received a lot of attention in machine learning and statistics the last 10 years

It is a state-of-the-art procedure on several machine learning problems, when possible

This is what is used in many R packages and for scikit-learn Lasso / Elastic-net
and LinearSVC

Idea. Minimize one coordinate at a time (keeping all others fixed)
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Coordinate Gradient Descent

Lemma
Given f : Rd

Ñ R convex and smooth if

f pw ` zejq ě f pwq for all z P R and j “ 1, . . . , d

(where ej “ j-th canonical vector of Rd) then

f pwq “ min
w 1PRd

f pw 1q

Proof. f pw ` zejq ě f pwq for all z P R implies that

Bf
Bw j pwq “ 0

which entails ∇f pwq “ 0, so that w is a minimum for f convex and smooth
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Coordinate Gradient Descent

Exact coordinate descent (CD)
Initialization: initial weight vector w p0q

For k “ 1, 2, . . . until convergence do
Choose j P t1, . . . , du
Compute

w pk`1q
j “ argmin

zPR
f pw pkq1 , . . . ,w pkqj´1, z,w

pkq
j`1, . . . ,w

pkq
d q

w pk`1q
j1 “ w pkqj1 for j 1 ‰ j

Output: Return last w pkq

Remarks
Cycling through the coordinates is arbitrary: uniform sampling, pick a permutation
and cycle over it every each d iterations

Only 1D optimization problems to solve, but a lot of them
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Coordinate Gradient Descent

Theorem - Warga (1963)
If f is continuously differentiable and strictly convex, then exact coordinate descent
converges to a minimum.

Remarks

A 1D optimization problem to solve at each iteration: cheap for least-squares, but
can be expensive for other problems

Let’s solve it approximately, since we have many iterations left

Replace exact minimization w.r.t. one coordinate by a single gradient step in the 1D
problem
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Coordinate gradient descent (CGD)
Initialization: initial weight vector w p0q

Parameter: step size ηj ą 0.

For k “ 1, 2, . . . until convergence do
Choose j P t1, . . . , du
Compute

w pk`1q
j “ w pkqj ´ ηj∇wj f pw

pkq
q

w pk`1q
j1 “ w pkqj1 for j 1 ‰ j

Output: Return last w pkq

Note that

ηj “ the step-size for coordinate j, can be taken as ηj “ 1{Lj where Lj is the
Lipchitz constant of

z ÞÑ fjpzq “ f pw ` zejq “ f pw1, . . . ,wj´1, z,wj`1, . . . ,wdq

Coordinate gradient descent is much faster than GD and AGD! But why ?
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Rate of Coordinate Gradient Descent

Theorem - Nesterov (2012)
Assume that f is convex and smooth and that each fj is Lj -smooth.
Consider a sequence tw pkqu given by CGD with ηj “ 1{Lj and coordinates j1, j2, . . .
independent and uniformly distributed over t1, . . . , du. Then

Ef pw pk`1q
q ´ f pw‹q ď n

n ` k

´

`

1´ 1
n
˘

pf pw p0qq ´ f pw‹qq ` 1
2 }w

p0q
´ w‹}2L

¯

,

with }w}2L “
řd

j“1 Ljw2
j .

Remark

Bound in expectation, since coordinates are taken at random.

For cycling cordinates j “ pk mod dq ` 1 the bound is much worse.
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Comparison of Gradient Descent and Coordinate Gradient Descent

GD achieves ε-precision with

L}w p0q ´ w‹}22
2ε

iterations. A single iteration for GD is Opndq

CGD achieves ε-precision with

d
ε

´

`

1´ 1
n
˘

pf pw p0qq ´ f pw‹qq ` 1
2 }w

p0q
´ w‹}2L

¯

iterations. A single iteration for CGD is Opnq

Note that
f pw p0qq ´ f pw‹q ď L

2 }w
p0q
´ w‹}22

but typically

f pw p0qq ´ f pw‹q ! L
2 }w

p0q
´ w‹}22
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ADAGRAD

First order method.
[“Adaptive subgradient methods for online learning and stochastic optimization”, Duchi et al. 2011]

ADAptive GRADient algorithm
Initialization: initial weight vector w p0q

Parameter: learning rate η ą 0

For k “ 1, 2, . . . until convergence do

w pk`1q
Ð w pkq ´ η

b

řk
t“1p∇f pw ptqqq2

d∇f pw pkqq

Output: Return last w pkq

All operations are computed component-wise.
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ADAGRAD

Update equation for ADAGRAD

w pk`1q
Ð w pkq ´ η

b

řk
t“1p∇f pw ptqqq2

d∇f pw pkqq

Pros:
Different dynamic rates on each coordinate
Dynamic rates grow as the inverse of the gradient magnitude:

1 Large/small gradients have small/large learning rates
2 The dynamic over each dimension tends to be of the same order
3 Interesting for neural networks in which gradient at different layers can be of different

order of magnitude.

Accumulation of gradients in the denominator act as a decreasing learning rate.

Cons:
Very sensitive to initial condition: large initial gradients lead to small learning rates.
Can be fought by increasing the learning rate thus making the algorithm sensitive to
the choice of the learning rate.
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RMSprop

Unpublished methode, from the course of Geoff Hinton

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

RMSprop algorithm
Initialization: initial weight vector w p0q

Parameters: learning rate η ą 0 (default η “ 0.001), decay rate ρ (default ρ “ 0.9)

For k “ 1, 2, . . . until convergence do
First, compute the accumulated gradient

Ğp∇f q2pkq “ ρĞp∇f q2pk´1q
` p1´ ρqp∇f pw pkqqq2

Compute

w pk`1q
Ð w pkq ´ η

b

Ğp∇f q2pkq ` ε
d∇f pw pkqq

Output: Return last w pkq

E. Scornet Deep Learning 92 / 102

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


Outline

1 Motivation in Machine Learning
Logistic regression
Support Vector Machine
General formulation

2 Gradient descent procedures
Gradient Descent
Second-order algorithms
Stochastic Gradient Descent
Momentum
Coordinate Gradient Descent

3 Gradient descent for neural networks
ADAGrad Optimizer
RMSprop optimizer
AdaDelta Optimizer
ADAM: Adaptive moment estimation
A variant: Adamax

E. Scornet Deep Learning 93 / 102



Improving upon AdaGrad: AdaDelta

AdaDelta algorithm

Initialization: initial weight vector w p0q, Ğp∇f q20 “ 0, Ğp∆xq20 “ 0

Parameters: decay rate ρ ą 0, constant ε,

For k “ 1, 2, . . . until convergence do

For all j “ 1, . . . , d ,
1 Compute the accumulated gradient

Ğp∇f q2pkq “ ρĞp∇f q2pk´1q
` p1´ ρq

´

∇f pwpkqq
¯2

2 Compute the update

wpk`1q “ wpkq ´

b

Ğp∆wq2pk´1q
` ε

b

Ğp∇f q2pkq ` ε
d∇f pwpkqq

3 Compute the aggregated update
Ğp∆wq2pkq “ ρ Ğp∆wq2pk´1q

` p1´ ρqpwpk`1q ´ wpkqq2

Output: Return last w pkq
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ADADELTA

[“ADADELTA: an adaptive learning rate method”, Zeiler 2012]

Created as a response to ADAGRAD: less sensitivity to initial parameters.

Second order methods: make use of the Hessian matrix or approximate it.
Ñ Often costly!

Update equation for adadelta

w pk`1q
“ w pkq ´

b

Ğp∆wq2pk´1q
` ε

b

Ğp∇f q2pkq ` ε
d∇f pw pkqq

Interpretation:
The numerator keeps the size of the previous step in memory and enforce larger
steps along directions in which large steps were made.
The denominator keeps the size of the previous gradients in memory and acts as a
decreasing learning rate. Weights are lower than in Adagrad due to the decay rate ρ.
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Adadelta

Determining a good learning rate becomes more of an art than science for many
problems.

M.D. Zeiler

Compute a dynamic learning rate per dimension based only on the gradient (first order
method). Based on a second order method. Fundamental idea comes from studying
units. In second order methods,

∆w » p∇2f q´1∇f .
Roughly,

∆w “
Bf
Bw
B2f
Bw2

ô
1
B2f
Bw2

“
∆w
Bf
Bw

.

See also [“No more pesky learning rates”, Schaul et al. 2013]
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ADAM: ADAptive Moment estimation

[“Adam: A method for stochastic optimization”, Kingma and Ba 2014]

General idea: store the estimated first and second moment of the gradient and use them
to update the parameters.

Equations - first and second moment
Let mt be an exponentially decaying average over the past gradients

mt “ β1mt´1 ` p1´ β1q∇f pw ptqq
Similarly, let vt be an exponentially decaying average over the past square gradients

vt “ β2vt´1 ` p1´ β2qp∇f pw ptqqq2.
Initialization: m0 “ v0 “ 0.

With this initialization, estimates mt and vt are biased towards zero in the early steps of
the gradient descent.

Final equations

m̃t “
mt

1´ βt
1

ṽt “
vt

1´ βt
2
.

w pk`1q
“ w pkq ´ η

?
ṽt ` ε

m̃t .
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Adam algorithm
Initialization: m0 “ 0 (Initialization of the first moment vector), v0 “ 0 (Initialization of
the second moment vector), w0 (initial vector of parameters).

Parameters: stepsize η (default η “ 0.001), exponential decay rates for the moment
estimates β1, β2 P r0, 1q (default: β1 “ 0.9, β2 “ 0.999), numeric constant ε (default
ε “ 10´8).

For k “ 1, 2, . . . until convergence do
Compute first and second moment estimate

mpkq “ β1mpk´1q
` p1´ β1q∇f pw pkqq v pkq “ β2vpk´1q ` p1´ β2qp∇f pw pkqqq2.

Compute their respective correction

m̃pkq “ mpkq

1´ βk
1

ṽ pkq “ v pkq

1´ βk
2
.

Update the parameters accordingly
w pk`1q

“ w pkq ´ η
?
ṽ pkq ` ε

d m̃pkq.

Output: Return last w pkq

Convergence results: [“Adam: A method for stochastic optimization”, Kingma and Ba 2014], [“On the convergence of

adam and beyond”, Reddi et al. 2018].
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Adamax algorithm
Initialization: m0 “ 0 (Initialization of the first moment vector), u0 “ 0 (Initialization of
the exponentially weighted infinity norm), w0 (initial vector of parameters).

Parameters: stepsize η (default η “ 0.001), exponential decay rates for the moment
estimates β1, β2 P r0, 1q (default: β1 “ 0.9, β2 “ 0.999)

For k “ 1, 2, . . . until convergence do

Compute first moment estimate and its correction

mpkq “ β1mpk´1q ` p1´ β1q∇f pw pkqq, m̃pkq “ mpkq

1´ βk
1

Compute the quantity
upkq “ maxpβ2upk´1q, |∇f pw pkqq|q.

Update the parameters accordingly
w pk`1q

“ w pkq ´ η

upkq d m̃pkq.

Output: Return last w pkq

[“Adam: A method for stochastic optimization”, Kingma and Ba 2014]

E. Scornet Deep Learning 101 / 102



Larry Armijo. “Minimization of functions having Lipschitz continuous first
partial derivatives”. In: Pacific Journal of mathematics 16.1 (1966), pp. 1–3.

Richard Bellman. “Adaptive control processes: a guided tour princeton
university press”. In: Princeton, New Jersey, USA (1961).

John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods
for online learning and stochastic optimization”. In: Journal of Machine
Learning Research 12.Jul (2011), pp. 2121–2159.

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

Laurent Lessard, Benjamin Recht, and Andrew Packard. “Analysis and design
of optimization algorithms via integral quadratic constraints”. In: SIAM
Journal on Optimization 26.1 (2016), pp. 57–95.

Boris T Polyak. “Some methods of speeding up the convergence of iteration
methods”. In: USSR Computational Mathematics and Mathematical Physics
4.5 (1964), pp. 1–17.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. “On the convergence of
adam and beyond”. In: (2018).

E. Scornet Deep Learning 102 / 102



Herbert Robbins and Sutton Monro. “A stochastic approximation method”.
In: Herbert Robbins Selected Papers. Springer, 1985, pp. 102–109.

Tom Schaul, Sixin Zhang, and Yann LeCun. “No more pesky learning rates”.
In: International Conference on Machine Learning. 2013, pp. 343–351.

Matthew D Zeiler. “ADADELTA: an adaptive learning rate method”. In:
arXiv preprint arXiv:1212.5701 (2012).

E. Scornet Deep Learning 103 / 102


	Motivation in Machine Learning
	Logistic regression
	Support Vector Machine
	General formulation

	Gradient descent procedures
	Gradient Descent
	Second-order algorithms
	Stochastic Gradient Descent
	Momentum
	Coordinate Gradient Descent

	Gradient descent for neural networks
	ADAGrad Optimizer
	RMSprop optimizer
	AdaDelta Optimizer
	ADAM: Adaptive moment estimation
	A variant: Adamax


