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RNNs offer a lot of variability

Vanilla Neural Networks
Image Captioning: image/sequence of words
Sentiment classification: sequence of words/sentiment
Translation: sequence of words/sequence of words
Video classification on frame level: sequence of images/sequence of labels
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Limitations of Neural Networks

ANNs can’t deal with sequential or “temporal” data

ANNs lack memory

ANNs have a fixed architecture: fixed input size and a fixed output size

RNNs are more “biologically realistic” because of recurrent connectivities found in
the visual cortex of the brain
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RNN Structure

E. Scornet Deep Learning 6 / 70



Definition of RNN

Input layer - Data comes sequentially: x1, x2, . . .
Hidden Layer - Hidden state of the network at time t: ht

Output layer - For the input xt , the prediction is given by ŷt
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Definition of RNN

Hidden neuron:
ht = tanh(WHHht−1 + WIHxt + bh)

Output neuron:
ŷt = softmax(WHOht + bout)
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Deep RNN
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Bi-directional RNN

Figure: bi-directional recurrent neural network (BRNN)

yt = W−→HO
−→
ht + W←−HO

←−
ht + bo
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Other types of RNN

Multi-dimensional Recurrent Neural Networks
[“Multi-Dimensional Recurrent Neural Networks”, Graves, Fernández, and Jürgen Schmidhuber 2007]

Recurrent Convolutional neural networks
[“Recurrent convolutional neural network for object recognition”, Liang and Hu 2015]

Differential recurrent neural networks
[“Differential recurrent neural networks for action recognition”, Veeriah et al. 2015]

Structurally Constrained Recurrent Neural Networks.
[“Learning longer memory in recurrent neural networks”, Tomas Mikolov, Joulin, et al. 2014]

Review on RNN: [“Recent Advances in Recurrent Neural Networks”, Salehinejad et al. 2017]

E. Scornet Deep Learning 11 / 70



Outline

1 Introduction

2 RNN architectures

3 Vanishing/Exploding gradient: problem and solutions
Vanishing/Exploding gradient
Penalization - Weight initialization
GRU and LSTM

4 Miscellaneous
Truncated backpropagation
Regularization

5 Applications
Scene labeling: image/image
Image Captioning: image/sequence of words
Sentiment classification: sequence of words/sentiment
Speech synthesis/recognition
Video classification on frame level: sequence of image/sequence of label
Generating text/music

E. Scornet Deep Learning 12 / 70



Outline

1 Introduction

2 RNN architectures

3 Vanishing/Exploding gradient: problem and solutions
Vanishing/Exploding gradient
Penalization - Weight initialization
GRU and LSTM

4 Miscellaneous
Truncated backpropagation
Regularization

5 Applications
Scene labeling: image/image
Image Captioning: image/sequence of words
Sentiment classification: sequence of words/sentiment
Speech synthesis/recognition
Video classification on frame level: sequence of image/sequence of label
Generating text/music

E. Scornet Deep Learning 13 / 70



Loss

The backpropagation equation is given by
∂LT

∂WHH
= ∂LT

∂ŷT

T∑
k=1

∂ŷT

∂hT

( T∏
m=k+1

∂hm

∂hm−1

)
∂hk

∂WHH
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Gradient

Backpropagation equation

∂LT

∂WHH
= ∂LT

∂ŷT

T∑
k=1

∂ŷT

∂hT

( T∏
m=k+1

∂hm

∂hm−1

)
∂hk

∂WHH

where

∂hm

∂hm−1
= W T

HHdiag(tanh′(WHHhm−1 + WIHxm)).

Any problems?
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Exercise - "Vanishing gradient"

Recall that the 2-norm of a matrix A is given by

‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2

= sup{‖Ax‖2, ‖x‖2 = 1}

=
√
λmax (ATA).

Assuming that tanh′(u) ≤ γ, and that the largest eigenvalue of W T
HH is bounded above

strictly by η/γ with η > 1,∥∥∥∥ ∂hm

∂hm−1

∥∥∥∥ ≤ ∥∥W T
HH
∥∥∥∥diag(tanh′(WHHhm−1 + WIHxm))

∥∥ < η.

Thus, ∥∥∥∥∥
T∏

m=k+1

∂hm

∂hm−1

∥∥∥∥∥ ≤ ηT−k .

As T − k gets larger, the contribution of the kth term to the gradient decreases
exponentially fast.
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Penalization

Exploding gradient: clipping the gradient

If the gradient is too large, threshold the gradient. Threshold can be chosen by
looking at statistics of the gradient over several updates.

[“Empirical evaluation and combination of advanced language modeling techniques”, Tomáš Mikolov et al. 2011]

Vanishing gradient: add a contraint
Enforce parameter updates associated with small gradient variation. Penalization:

Ω =
∑

k

(∥∥∥ ∂L
∂hk+1

∂hk+1
∂hk

∥∥∥∥∥∥ ∂L
∂hk+1

∥∥∥ − 1

)2

.

[“On the difficulty of training recurrent neural networks”, Pascanu et al. 2013]
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Clever weight initialization

The weight matrix WHH is initialized as the identity, biases are set to zero, with the
ReLU activation function.
[“A simple way to initialize recurrent networks of rectified linear units”, Le et al. 2015]

Learn a weight matrix that is a mixture of the Identity matrix and another matrix
(mix of long-term and small-term dependencies).
[“Learning longer memory in recurrent neural networks”, Tomas Mikolov, Joulin, et al. 2014]

Initialize W randomly among definite positive matrix (real and positive eigenvalues)
with one eigenvalue of 1 and the other less (or equal) than 1.
[“Improving performance of recurrent neural network with relu nonlinearity”, Talathi and Vartak 2015]
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Improving hidden units in RNN

Output gate (for reading)
ot = σ(Wo,hht−1 + Wo,x xt + bo)

Input gate (for writing)
it = σ(Wi,hht−1 + Wi,x xt + bi )

Forget gate (for remembering)
ft = σ(Wf ,hht−1 + Wf ,x xt + bf )

Candidate hidden state.
h̃t = tanh(Wh(ot�ht−1)+Wx xt +b)

The final state ht is given by

ht = ft � ht−1 + it � h̃t .

Warning: the forget gate is used for forgetting, but it actually operates as a remember
gate: 1 in a forget gate means remembering everything not forgetting everything.
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Improving hidden units in RNN: failure

The previous hidden units described by

ht = ft � ht−1 + it � h̃t

fail.

Two problems:

The forget gate and the input gate are not synchronized at the beginning of the
training, which can cause the hidden states to become large and unstable.

Since the hidden state is not bounded, the gates can be saturated, which implies
difficulties to train the network.

Empirical evidence:
[“LSTM: A search space odyssey”, Greff et al. 2017]
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Gated Recurrent Unit

One way to circumvent this issue is to specify explicitly the dependence structure
between the forget gate and the writing gate.

For example, we can set the forget gate to 1 minus the writing gate:

ht = (1− it)� ht−1 + it � h̃t .

In that case, the new hidden state ht is a weighted average of the previous hidden state
ht−1 and the newly created candidate h̃t .

Consequently, ht is bounded if ht−1 and h̃t are, which is the case using bounded
activation functions.

This is exactly the Gated Recurrent Unit.
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Gated Recurrent Unit

[“Empirical evaluation of gated recurrent neural networks on sequence modeling”, Chung et al. 2014]

Reset gate (read gate)
rt = σ(Wr,hht−1 + Wr,x xt + br )

Update gate (forget gate)
zt = σ(Wz,hht−1 + Wz,x xt + bz )

Candidate hidden state
h̃t = tanh(Wh(rt � ht−1) + Wx xt + b)

Hidden state
ht = zt � ht−1 + (1− zt)� h̃t
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Long Short Term Memory (LSTM)

LSTM is another way to circumvent the issue of unboundedness of internal states.
[“Long short-term memory”, Hochreiter and Jürgen Schmidhuber 1997]

LSTM equations:

it = σ(Wi,hht−1 + Wi,x xt + bi )
ot = σ(Wo,hht−1 + Wo,x xt + bo)
ft = σ(Wf ,hht−1 + Wf ,x xt + bf )
gt = tanh(Wg,hht−1 + Wg,x xt + bg )

Cell state
ct = ft � ct−1 + it � gt

Hidden state
ht = ot � tanh(ct)

The prediction of the network at time t only
depends on ht and not on ct .
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Comparison of LSTM and GRU

The traditional recurrent unit always replaces the activation, or the content of a unit
with a new value computed from the current input and the previous hidden state.
On the other hand, both LSTM unit and GRU keep the existing content and add the
new content on top of it.

I it is easy for each unit to remember the existence of a specific feature in the input
stream for a long sequence of steps. Any important feature, decided by either the
forget gate of the LSTM unit or the update gate of the GRU, will not be overwritten
but be maintained as it is.

I Creates shortcut paths that bypass multiple temporal steps. These shortcuts allow the
error to be back-propagated more easily with less vanishing effect.

Empirical results.
GRU perform comparably to LSTM and are better than standard RNN (particularly
on music and speech modelling)
No clear consensus between GRU and LSTM.

For LSTM:
the squashing function tanh(ct) is important
forget gate is important

[“LSTM: A search space odyssey”, Greff et al. 2017]
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Loss
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Backpropagation

Problem: one gradient step is too costly. It requires a pass through the entire data set.
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Truncated backpropagation

Choose a small number of steps (usually 100) and back-propagate only onto these data.
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Truncated backpropagation

Propagate the weights and use backpropagation on the second batch of data.
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Truncated backpropagation

Pursue...
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Regularization

L1 or L2 penalization
Lregularized (Dn, θ) = L(Dn, θ) + λ‖θ‖p

p,

for p = 1, 2.
Activation Stabilization

Lstabilized (Dn, θ) = L(Dn, θ) + λ
1
T

T∑
t=1

(‖ht‖2 − ‖ht−1‖2)2.

Experiments on language modelling and phoneme recognition show state-of-the-art
performances for this approach.
[“Regularizing rnns by stabilizing activations”, Krueger and Memisevic 2015]

Dropout (hidden state, forward connections...)
[“Rnndrop: A novel dropout for rnns in asr”, Moon et al. 2015]

[“A theoretically grounded application of dropout in recurrent neural networks”, Gal and Ghahramani 2016]

[“Recurrent dropout without memory loss”, Semeniuta et al. 2016]

Hidden activation preservation Forcing some hidden units to keep their activation
from the previous timestep (ht = ht−1):

ht = k� ht + (1− k)� ht−1,

where k is a Bernoulli mask. [“Zoneout: Regularizing rnns by randomly preserving hidden activations”,

Krueger, Maharaj, et al. 2016]
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Scene labeling: DAG-RNN

[“Dag-recurrent neural networks for scene labeling”, Shuai et al. 2016]

DAG-RNN is able to significantly boost the discriminative power of local representations
by modeling their contextual dependencies. As a result, it can produce smoother and
more semantically meaningful labeling map.
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Scene labeling: DAG-RNN

With the local representations extracted from CNN, the ‘sand’ pixels (in the first image)
are likely to be misclassified as ‘road’, and the ‘building’ pixels (in the second image) are
easy to get confused with ‘streetlight’.
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Scene labeling: DAG-RNN

From left to right:
1 input images,
2 local prediction maps (CNN),
3 contextual labeling maps

(DAG-RNN)
4 and their ground truth.

The numbers outside and inside the
parentheses are global and class
accuracy respectively.
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Image Captioning: Neural Image Caption

[“Show and tell: A neural image caption generator”, Vinyals et al. 2015]
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Image Captioning: Neural Image Caption

Aim:
θ? ∈ argmax

θ

∑
(I,S)

log(p(S|I))

where I is the input image and S the sentence describing the image. Since the sentence
length can be arbitrary long, the log probability is rewritten as

log(p(S|I)) =
N∑

t=0

p(St |I, S0, . . . , St−1).
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Image Captioning: Neural Image Caption

Inference time. Two approaches:
Sampling: sample the first word using p1 then use this word as input to sample the
second word according to p2. Repeat the process until the network produces a stop
word.
BeamSearch: Choose the k best sentences of length t then use this set to generate
the k best sentences of length t + 1.

How to compare two sentences?
Example:

Candidate: the the the the the the the
Reference 1: the cat is on the mat
Reference 2: There is a cat on the mat

Metric:
Precision : 7/7
BLEU (bilingual evaluation understudy): 2/7 (maximum number of times a word is
encountered in any reference sentence)

[“BLEU: a method for automatic evaluation of machine translation”, Papineni et al. 2002]

http://nic.droppages.com/
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Image Captioning: Neural Image Caption
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Image Captioning with attention mechanism

[“Show, attend and tell: Neural image caption generation with visual attention”, Xu et al. 2015]

Predicted sequence of words:
{y1, . . . , yC}, yi ∈ RK , where K is
the size of the dictionary.

Image features: {a1, . . . , aL}, where
ai ∈ RD is a feature corresponding
to a small precise area in the image
(extraction from a early layer of a
CNN).
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Image Captioning with attention mechanism

ẑt =
L∑

i=1

st,i ai ,

where st,i = 1 if position i in the image should be selected at time t.
P[st,i = 1|sj<t , a] = αt,i ,

eti = fatt(ai , ht−1),

αt,i = exp(eti )∑
j exp(etj )

.
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Image Captioning with attention mechanism
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Image Captioning with attention mechanism
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DenseCap

[“Densecap: Fully convolutional localization networks for dense captioning”, Johnson et al. 2016]
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DenseCap

https://cs.stanford.edu/people/karpathy/densecap/

Try it!

https://deepai.org/machine-learning-model/densecap
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Text/Sentiment classification

[“A convolutional neural network for modelling sentences”, Kalchbrenner et al. 2014]

They propose a shallow CNN architecture leveraging on k-max pooling which returns the
top k activations in the original order in the input sequence.

[“Multichannel variable-size convolution for sentence classification”, Yin and Schütze 2016]

They use hierarchical convolution architecture and further exploration of multichannel
and variable size feature detectors. The pooling operation can help the network deal with
variable sentence lengths.

[“Recurrent Convolutional Neural Networks for Text Classification.”, Lai et al. 2015]

RCNNs are used for text classification on several datasets.

[“Document modeling with gated recurrent neural network for sentiment classification”, Tang et al. 2015]

A variety of document classification tasks is proposed in the literature using RNNs. A
GRU is adapted to perform document level sentiment analysis.
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RNN for document embedding

[“Document modeling with gated recurrent neural network for sentiment classification”, Tang et al. 2015]
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RNN for document embedding

Word embedding: represent each word as an element of Rd .
Two different manners of creating word vectors:

Skip-gram: predict surrounding words of a given word.
Continuous Bag Of Words (CBOW): Predict a word given surrounding words.

Different types of algorithms:
Glove
[“Glove: Global vectors for word representation”, Pennington et al. 2014]

Word2vec
[“Distributed representations of words and phrases and their compositionality”, Tomas Mikolov, Sutskever, et al. 2013]

FastText
[“Bag of tricks for efficient text classification”, Joulin et al. 2016]
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RNN for document embedding

Each word wi is mapped to its embedding
representation ei ∈ Rd .

Output of convolutional layer:

Oc = Wc Ic + bc ,

where

Wc ∈ Rloc×d.lc ,

bc ∈ Rloc ,

loc is the length of the output layer,
lc the size of the window,
Ic = [ei , . . . , ei+lc−1].
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RNN for document embedding
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Speech emotion recognition

[“Abandoning emotion classes-towards continuous emotion recognition with modelling of long-range dependencies”, Wöllmer

et al. 2008]

A LSTM network is shown to have better performance than support vector machines
(SVMs) and conditional random fields (CRFs), possibly due to a better modelling of
long-term dependencies.

[“High-level feature representation using recurrent neural network for speech emotion recognition”, Lee and Tashev 2015]

They introduce a BLSTM for speech emotion recognition.

[“Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network”, Trigeorgis et al. 2016]

They design a deep convolutional LSTM. This model gives state-of-the-art performance
when tested on the RECOLA dataset, as the convolutional layers learns to remove
background noise and outline important features in the speech, while the LSTM models
the temporal structure of the speech sequence.
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Speech synthesis

The goal of speech synthesis is to generate speech sounds directly from a text. It has
been known for many years that the speech sounds generated by shallow structured
HMM networks are often muffled compared with natural speech.

RNNs were first used for speech synthesis to leverage these sequential dependencies
[“Text-to-speech conversion with neural networks: A recurrent TDNN approach”, Karaali et al. 1998] [“Speech synthesis using

artificial neural networks trained on cepstral coefficients”, Tuerk and Robinson 1993] and were then replaced with
LSTM models to better learn long term sequential dependencies [“Unidirectional long short-term

memory recurrent neural network with recurrent output layer for low-latency speech synthesis”, Zen and Sak 2015].

The BLSTM has been shown to perform very well in speech synthesis due to the ability
to integrate the relationship with neighbouring frames in both future and past time steps
[“TTS synthesis with bidirectional LSTM based recurrent neural networks”, Fan et al. 2014] [“Prosody contour prediction with

long short-term memory, bi-directional, deep recurrent neural networks.”, Fernandez et al. 2014]
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WaveNet

[“WaveNet: A generative model for raw audio.”, Van Den Oord et al. 2016].
WaveNet is a CNN capable of generating speech, using dilated convolutions. WaveNet
has shown better performance than LSTMs and HMMs.
Through the use of dilated causal convolutions, WaveNet can model long-range temporal
dependencies by increasing it’s receptive field of input.

Figure: Causal convolutions
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WaveNet

Figure: Dilated convolutions

Output signals are transformed via

f (xt) = sign(xt) ln 1 + µ|xt |
ln(1 + µ) ,

where xt ∈ (−1, 1) and µ = 255, and then quantized.

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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Speech recognition

[“Survey on speech emotion recognition: Features, classification schemes, and databases”, El Ayadi et al. 2011]

Automatic Speech Recognition (ASR) is the technology that converts human speech into
spoken words . Before applying CNN to ASR, this domain has long been dominated by
the Hidden Markov Model and Gaussian Mixture Model (GMM-HMM) methods which
usually require extracting hand-craft features on speech signals

[“Convolutional neural networks for speech recognition”, Abdel-Hamid et al. 2014]

CNNs have shown better performance over GMM-HMMs and general DNNs , since they
are well suited to exploit the correlations in both time and frequency domains through the
local connectivity and are capable of capturing frequency shift in human speech signals.

[“Advances in very deep convolutional neural networks for lvcsr”, Sercu and Goel 2016]

Very deep CNNs have shown impressive performance in ASR .
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Video

While different tasks have been performed on videos using RNNs, they are most prevalent
in video description generation. This application involves components of both image
processing and natural language processing.

[“Translating videos to natural language using deep recurrent neural networks”, Venugopalan et al. 2014]

They introduce a LSTM model, which directly connects to a deep CNN. This is the first
end-to-end solution for video annotations.

[“Video description generation incorporating spatio-temporal features and a soft-attention mechanism”, Yao et al. 2015]

They introduce a 3-dimensional convolutional architecture for feature extraction. These
features were then fed to an LSTM model based on a soft-attention mechanism to
dynamically control the flow of information from multiple video frames.

[“Long-term recurrent convolutional networks for visual recognition and description”, Donahue et al. 2015]

Another approach to model the dynamics of videos differently from spatial variations, is
to feed the CNN based features of individual frames to a sequence learning module e.g.,
a recurrent neural network.
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Video Description

[“Long-term recurrent convolutional networks for visual recognition and description”, Donahue et al. 2015]
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Generating text/music

LSTMs have improved RNN models for language modeling due to their due to their
ability to learn long-term dependencies in a sequence better than a simple hidden state
[“LSTM neural networks for language modeling”, Sundermeyer et al. 2012]

LSTMs are also used to generate complex text and online handwriting sequences with
long-range structure, simply by predicting one data point at a time.
[“Generating sequences with recurrent neural networks”, Graves 2013]

RNNs are also used to capture poetic style in works of literature and generate lyrics, for
example Rap lyric generation
[“Chinese poetry generation with recurrent neural networks”, Zhang and Lapata 2014][“GhostWriter: Using an LSTM for

automatic rap lyric generation”, Potash et al. 2015], [“Generating topical poetry”, Ghazvininejad et al. 2016]

[“A first look at music composition using lstm recurrent neural networks”, Eck and Juergen Schmidhuber 2002a] [“Finding

temporal structure in music: Blues improvisation with LSTM recurrent networks”, Eck and Juergen Schmidhuber 2002b]

It has been shown that RNN models struggle to keep track of distant events that indicate
the temporal structure of music. LSTM models have since been adapted in music
generation to better learn the long-term temporal structure of certain genres of music

E. Scornet Deep Learning 68 / 70



Speech and Audio

With the introduction of the connectionist temporal classification (CTC) function, RNNs
are capable of leveraging sequence learning on unsegmented speech data
[“Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks”, Graves, Fernández,

Gomez, et al. 2006]

Since then, the popularity of RNNs in speech recognition has exploded. Developments in
speech recognition then used the CTC function alongside newer recurrent network
architectures, which were more robust to vanishing gradients to improve performance and
perform recognition on larger vocabularies
[“Towards end-to-end speech recognition with recurrent neural networks”, Graves and Jaitly 2014] [“Long short-term memory

based recurrent neural network architectures for large vocabulary speech recognition”, Sak et al. 2014] [“End-to-end

attention-based large vocabulary speech recognition”, Bahdanau et al. 2016]

Iterations of the CTC model, such as the sequence transducer and neural transducer have
incorporated a second RNN to act as a language model to tackle tasks such as online
speech recognition. These augmentations allows the model to make predictions based on
not only the linguistic features, but also on the previous transcriptions made.
[“A neural transducer”, Jaitly et al. 2015]

[“Generating sequences with recurrent neural networks”, Graves 2013]
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