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Tree ensemble methods

Consist in aggregating the predictions of
several decision trees:

More flexible methods / useful for mod-
elling complex input-output relations

More robust than individual trees to
changes in data
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Tree ensemble methods

How to do that?
Random forests (parallel methods)
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Tree construction

Tree construction
Input: a dataset, an impurity measure.
At each node A, select the best split via

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j, s; A).

Repeat for each cell until each leaf contains one
observation.
Output: a fully-grown decision tree.

Tree pruning
Input: A fully-grown decision tree, a data set, an
impurity measure.
Choose one of the two pruning strategies:

▶ Reduction Error pruning (RE, C4.5)
▶ Cost complexity pruning (CART)

Output: a pruned decision tree.
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Tree construction in random forests

Tree construction
Input: a dataset, an impurity measure.
At each node A, select the best split via

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j, s; A).

Repeat for each cell until each leaf contains one
observation.
Output: a fully-grown decision tree.

Tree pruning
For trees in random forests, no pruning strategy
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Tree construction
Input: a dataset, an impurity measure.
At each node A, select the best split via

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j, s; A).

Repeat for each cell until each leaf contains one
observation.
Output: a fully-grown decision tree.

Tree pruning
For trees in random forests, no pruning strategy

Such trees have a small bias (fully-grown) but a large
variance (one point per leaf).

They cannot be used as single estimators!
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Bagging - Averaging predictors via data set resampling

Bagging (Bootstrap aggregating) consists
in running a learning algorithm on mulit-
ple modified data sets to stabilize its perfor-
mance.
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Bagging - Averaging predictors via data set resampling

Bagging (Bootstrap aggregating) consists
in running a learning algorithm on mulit-
ple modified data sets to stabilize its perfor-
mance.

Bootstrap. A sampling scheme that consists
in drawing n observations with replacement
among the n original ones. Applied once,
bootstrap creates one new data set, called
a bootstrapped data set.
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Bagging - Averaging predictors via data set resampling

Interests:
Increase stability - data modification has
less impact on the final predictor
Parallel method - computationnally effi-
cient
Can be applied to a wide range of
learning algorithm (for example, decision
trees!)

Inconvenient: individual predictors may be
too correlated (built on similar observa-
tions).
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Split randomization in tree construction

Random forests
Two randomization ingredients:

Bagging
Split randomization
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Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.
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Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.
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Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46



Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to select-
ing this split.
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Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

The same procedure is repeated on the re-
sulting cells, with a new random choice of
the splitting directions.
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Construction of random forests
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Construction of Breiman forests

Build in parallel n-estimators CART as follows.

CART
▶ Bootstrap - Select max-samples observations with replacement among the original sample

Dn. Use only these observations to build the tree.
▶ For each cell,

⋆ Select randomly max-features coordinates among {1, . . . , d};
⋆ Choose the best split along previous directions, based on the choosen criterion (impurity

measure).

▶ Stop splitting each cell when all observations inside it have the same label or when a stopping
criterion is met:

⋆ there are less than min-sample-leaf observation in the leaf
⋆ resulting cells would contain less than min-sample-split observation
⋆ cell is already split max-depth times
⋆ there are already max-leaf-nodes leaves

Compute the forest prediction by averaging the predictions of all trees.
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List of all random forest hyperparameters

See Scikit-learn documentation for
more details: RandomForestRegressor /
RandomForestClassifier.
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List of all random forest hyperparameters

See Scikit-learn documentation for
more details: RandomForestRegressor /
RandomForestClassifier.

List of all hyperparameters in the forest:
n-estimators = 100
criterion=’gini’
max-depth=None,
min-samples-split = 2,
min-samples-leaf = 1,
min-weight-fraction-leaf = 0.0,
min-impurity-decrease = 0.0,
max-leaf-nodes=None
→ By default, trees are fully grown with
no pruning strategy
max-features=’sqrt’ (classif.) ’None’
(regression).
bootstrap=True, max-samples=None
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List of all random forest hyperparameters

See Scikit-learn documentation for
more details: RandomForestRegressor /
RandomForestClassifier.

Remarks.
Due to bootstrap and split randomiza-
tion, running twice RF may lead to dif-
ferent results. Increasing the number of
trees limits this difference.
Fixing a random-state makes two runs
of RF identical.
Beware, by default, split randomization
is used in classification but not in regres-
sion!
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Role of each hyperparameter

Number of trees.
Larger values are better
No statistical tradeoff between low and
high values
Limited by computational power - grow-
ing many trees is expensive
Default values (several hundreds / thou-
sands) usually do a good job

E. Scornet Tree ensemble methods 13 / 46



Role of each hyperparameter

Bootstrap size / tree shape.
Control the bias/variance tradeoff: small
bootstrap size / shallow trees lead to
predictors with a large bias but a small
variance
Use small bootstrap size or shallow tree
if data are very noisy
Use default setting for modelling very
complex phenomenon

→ Precise tuning can help but default
values are good in general
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Role of each hyperparameter

Split randomization
Most complex parameter to tune
Small values of max-features lead to
very different trees
→ max-features=1 corresponds to
drawing randomly the splitting direction
Large values of max-features lead to
similar trees
→ max-features=d corresponds to
building the same tree (if no bootstrap
is used)
No precise heuristic, can be tuned by
cross-validation.
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Out-of-bag error

Idea. Evaluate the error of a random forest
using the fact that each observation has not
been used in all tree constructions and can
thus be used as test points for such aggre-
gated trees.
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Out-of-bag error

Idea. Evaluate the error of a random forest
using the fact that each observation has not
been used in all tree constructions and can
thus be used as test points for such aggre-
gated trees.

General procedure (short):
Consider that a forest has been trained
on the data set Dn.
For each observation i ∈ {1, . . . , n},

▶ Consider the bootstrap samples that
do not contain this observation.

▶ For the trees that are not built using
observation i , compute the predictions
at Xi and aggregate them. Compute
the loss of such an aggregated predic-
tion.

Compute the Out-of-bag error by
averaging the losses over all
observations.
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Out-of-bag error

Benefits:
No need for dividing the data set into a
train and a test set
Easily parallelizable
Asymptotically equivalent to the risk of
the forest for large M.

Drawback:
Do not compute exactly the error of the
whole forest but rather the aggregated
error of some trees in the forest.
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Out-of-bag procedure
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Out-of-bag (detailed procedure)

Consider that a forest has been trained on the data set Dn.
For each observation i ∈ {1, . . . , n},

▶ Consider the bootstrap samples that do not contain this observation, that is the set
Λi,n = {m, (Xi , Yi ) /∈ D̃m,n}

▶ For the trees that are not built using observation i , compute the prediction at Xi and
aggregate them as

f (OOB)
M,n (Xi ) =

1
|Λi,n|

∑
m∈Λn,i

tn(Xi , Θm)1|Λn,i |>0 in regression,

= argmax
k∈{1,...,K}

∑
ℓ∈Λn,i

1tn(Xi ,Θℓ)=k in classification.

▶ Compute the associated loss
ℓ(f (OOB)

M,n (Xi ), Yi ) = (f (OOB)
M,n (Xi ) − Yi )2 in regression,

= ℓ(f (OOB)
M,n (Xi ), Yi ) = 1

f (OOB)
M,n (Xi ) ̸=Yi

in classification.

Compute the Out-of-bag error by averaging the losses over all observations, that is

ROOB
n = 1

n

n∑
i=1

ℓ(f (OOB)
M,n (Xi ), Yi )
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Variable importance via random forests
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Figure: One of the two variable importance
measure, Mean Decrease in Impurity (MDI)
computed on the California housing data set.
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Figure: One of the two variable importance
measure, Mean Decrease in Accuracy (MDA)
computed on the California housing data set.
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Variable importance via random forests

0.0 0.1 0.2 0.3 0.4 0.5

Average number of bedrooms

Block population

Average number of rooms

Median house age in block

House block longitude

House block latitude

Average house occupancy

Median income in block

Feature importances using MDI

0.0 0.2 0.4 0.6 0.8

Block population

Average number of bedrooms

Average number of rooms
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House block latitude

Median income in block

Feature importances using MDA

Going beyond prediction to understand
the black-box model
Finding the input variables that are the
most “linked” to the output
Here the variable ranking is not exactly
the same across these two different mea-
sures.
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Variable importance - to what aim?

One single good variable importance
measure does not exist. It always depend

on what it is used for.

A simple example. Assume that X ∈
R10, Y ∈ R and Y = X1 with X1 =
g(X2, . . . , X10) for some function g .

(Variable selection) If one is interested in
finding the smallest set of variables lead-
ing to good predictive performance, the
associated variable importance should be
large for X1 and null for X2, . . . , X10.

(Link identification) If one is interested
in finding all variables linked to the out-
put, the associated variable importance
should be large for X1, . . . , Xd .

The quality of a variable importance measure
depends on its final use (variable selection or
link identification).
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Variable importance in random forests

Two different measures often computed with
random forests:

Mean Decrease Impurity (MDI)
(Breiman, 2002)

▶ Tailored for decision tree methods
▶ Use the decrease in impurity in each

node to compute an aggregated vari-
able importance

Mean Decrease Accuracy (MDA) (also
called permutation importance, see
Breiman, 2001)

▶ Can be used with any supervised learn-
ing algorithm (not tree specific)

▶ Permute the values of a given feature
in the test set and compare the result-
ing decrease in predictive performance.
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Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1).
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Identify all splits that involve variable X (1)
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Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity between the parent node A and
the two resulting nodes AL and AR :

∆Impn(A) = Impn(A) − pL,nImpn(AL) − pR,nImpn(AR),
where pL,n (resp. pR,n) is the fraction of observations in A that fall into AL (resp.
AR). For example,

ImpV ,n(A) = Vn[Y |X ∈ A].
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Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity ∆Impn(A) between the parent node
A and the two resulting nodes AL and AR

The MDI of X (1) computed via this tree T is
M̂DIT (X (j)) =

∑
A∈T

jn,A=1

pn,A ∆Impn(A), (1)

where the sum ranges over all cells A in T that are split along variable j and pA,n is
the fraction of observations falling into A
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Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity ∆Impn(A) between the parent node
A and the two resulting nodes AL and AR

The MDI of X (1) computed via this tree T is
M̂DIT (X (j)) =

∑
A∈T

jn,A=1

pn,A ∆Impn(A) (1)

The MDI of X (1) output by a forest is the average of the MDI of X (1) of each tree.
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Mean Decrease in Impurity

Pros
Easily accessible via scikit-learn as the
attribute feature-importances- of a
RandomForest object
No extra computations needed
Adapted to the tree building process /
the predictor
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Mean Decrease in Impurity

Cons
biased towards variables with many cat-
egories (see, e.g., Strobl et al., 2007;
Nicodemus, 2011), variables that pos-
sess high-category frequency (Nicode-
mus, 2011; Boulesteix et al., 2011), bi-
ased in presence of correlated features
(Nicodemus and Malley, 2009)
Bias related to in-sample estimation (Li
et al., 2019; Zhou and Hooker, 2021) -
Same observations are used to build the
tree and estimate the MDI
Bias related to fully-grown tree
No information about the quantity it is
supposed to estimate!
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MDA illustration

MDA principle: decrease of accuracy of the
forest when a variable is noised up

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

Table: Example of the permutation of a dataset
Dn for n = 5.

quadratic error = 13.7
quadratic error = 16.4

MDA(X (j)) = 16.4 − 13.7 = 2.7
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MDA versions

The explained variance estimate of MDA al-
gorithms differ across implementations

Train-Test MDA: train data to fit the forest,
and test data for accuracy

Out-of-bag (OOB) samples: Dn is boot-
strap prior to the construction of each tree,
leaving aside a portion of Dn, which is not
involved in the tree growing and defines the
“out-of-bag” sample.
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MDA versions

The explained variance estimate of MDA al-
gorithms differ across implementations

Train-Test MDA: train data to fit the forest,
and test data for accuracy

Out-of-bag (OOB) samples: Dn is boot-
strap prior to the construction of each tree,
leaving aside a portion of Dn, which is not
involved in the tree growing and defines the
“out-of-bag” sample.
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2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

OOB samples: {1, . . . , n} \ Θ(S)
ℓ = {2, 5}
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Mean Decrease in Accuracy

Pros
Can be applied to any machine
learning algorithm via the function
permutation-importance in scikit-
learn
Fast to compute (no need to retrain a
forest)

Cons
Biased in presence of correlation
The quantity to which it converges is not
the correct for either of the two objec-
tives (designing a small model with high
predictivity or finding a large set of vari-
ables linked to the output)
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Take-home message on variable importance

Do not use MDI or MDA!
We do not know what quantity they are

targeting
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Take-home message on variable importance

Some alternatives:
MDI

▶ Out-of-sample estimation (Li et al.,
2019; Zhou and Hooker, 2021;
Loecher, 2022) with code in python:
https://github.com/ZhengzeZhou/

unbiased-feature-importance

MDA
▶ Rerun the model without a given co-

variate (expensive). Work for any pre-
dictive model (Williamson et al., 2021)

▶ Use the tree structure to remove a vari-
able from the model without needing
to rerun it (Bénard et al., 2022)
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Take-home message on variable importance

Some alternatives:
MDI

▶ Out-of-sample estimation (Li et al.,
2019; Zhou and Hooker, 2021;
Loecher, 2022) with code in python:
https://github.com/ZhengzeZhou/

unbiased-feature-importance

MDA
▶ Rerun the model without a given co-

variate (expensive). Work for any pre-
dictive model (Williamson et al., 2021)

▶ Use the tree structure to remove a vari-
able from the model without needing
to rerun it (Bénard et al., 2022)

Anyway, remember to check the predictive
performance of a model: it it is low, the
model is useless and variable importances

are misleading.
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Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees
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What is Boosting?

Boosting:
Combining weak predictors (classifica-
tion/regression) in a sequential manner
to obtain an aggregated predictor better
than each individual predictor
The predictor resulting from boosting is
a weighted average of some weak predic-
tors, resulting from a learning algorithm
applied to a modified dataset.

What do we need?
A data set
Dn = {(X1, Y1), . . . , (Xn, Yn)}
A weak learning procedure

▶ Decision tree (CART) → Tree
Boosting

▶ Linear models
▶ ...

A loss
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Boosting in a scheme
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Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees
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Generic Boosting pseudo-algorithm

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)},

a set H of weak learners, a loss ℓ.
2 Set f = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , f (xi ) + αh(xi ))

(2)
2 Update f = f + αtht

4 The final predictor is given by f =
∑T

t=1 αtht in
regression (or its sign in binary classification).

Idea. At each iteration, we try to find the weak predic-
tor that, when added to the current overall predictor,
decreases the most the risk on the training set.
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1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)},

a set H of weak learners, a loss ℓ.
2 Set f = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , f (xi ) + αh(xi ))

(2)
2 Update f = f + αtht

4 The final predictor is given by f =
∑T

t=1 αtht in
regression (or its sign in binary classification).

Remarks. Finding minimizers in equation is difficult
in general:

Optimization on a large space - the class H can
be infinite or very large, for example the set of all
decision trees.
Joint optimization procedure in (h, α).
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Generic Boosting pseudo-algorithm

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)},

a set H of weak learners, a loss ℓ.
2 Set f = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , f (xi ) + αh(xi ))

(2)
2 Update f = f + αtht

4 The final predictor is given by f =
∑T

t=1 αtht in
regression (or its sign in binary classification).

A special case to understand better the procedure: the
exponential loss (Adaboost).

E. Scornet Tree ensemble methods 33 / 46



AdaBoost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)} with Yi ∈ {−1, 1}, a set H of weak

learners.
2 Set f = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h,α

n∑
i=1

exp(−yi (f (xi ) + αh(xi ))) (3)

2 Update f = f + αtht

4 The final predictor is given by f =
∑T

t=1 αtht in regression (or its sign in binary
classification).
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AdaBoost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)} with Yi ∈ {−1, 1}, a set H of weak

learners.
2 Set f = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h,α

n∑
i=1

exp(−yi (f (xi ) + αh(xi ))) (3)

2 Update f = f + αtht

4 The final predictor is given by f =
∑T

t=1 αtht in regression (or its sign in binary
classification).

Assumptions
Assume that, for all h ∈ H,

−h ∈ H (symmetry)
There exist 1 ≤ i ̸= j ≤ n such that h(Xi ) = Yi and h(Xj) ̸= Yj (no perfect
classifier).

Under these assumptions, AdaBoost can be rewritten as follows.
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Adaboost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners.
2 Set f = 0 and w1,i = 1/n for all i ∈ {1, . . . , n}.
3 For t = 1, . . . , T

1 Select

ht ∈ argmin
h∈H

n∑
i=1

wt,i1Yi ̸=h(Xi ) (3)

2 Compute

αt =
1
2

log
(

εt(ht)
1 − εt(ht)

)
, with εt(ht) =

n∑
i=1

wt,i1Yi ̸=ht (Xi ). (4)

3 Set wt+1,i = wt,i exp(−yi αtht(xi ))/Zt+1, where Zt+1 is such that
∑n

i=1 wt+1,i = 1.
4 Update f = f + αtht

4 The final predictor is given by f = sign
(∑T

t=1 αtht

)
.
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3 Set wt+1,i = wt,i exp(−yi αtht(xi ))/Zt+1, where Zt+1 is such that
∑n

i=1 wt+1,i = 1.
4 Update f = f + αtht

4 The final predictor is given by f = sign
(∑T

t=1 αtht

)
.

Each observation receives an initial weight w1,i = 1/n
The weak classifier that minimizes the 0 − 1 loss on the weighted sample is selected
Its coefficient α is computed based on its error
The aggregated classifier is computed and weights are updated.
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Adaboost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners.
2 Set f = 0 and w1,i = 1/n for all i ∈ {1, . . . , n}.
3 For t = 1, . . . , T

1 Select

ht ∈ argmin
h∈H

n∑
i=1
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αt =
1
2

log
(

εt(ht)
1 − εt(ht)

)
, with εt(ht) =

n∑
i=1

wt,i1Yi ̸=ht (Xi ). (4)

3 Set wt+1,i = wt,i exp(−yi αtht(xi ))/Zt+1, where Zt+1 is such that
∑n

i=1 wt+1,i = 1.
4 Update f = f + αtht

4 The final predictor is given by f = sign
(∑T

t=1 αtht

)
.

In practice, finding the best weak predictor (equation (3)) might be difficult. We thus
simply fit an algorithm on the weighted training sample instead.
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Adaboost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure (e.g.,

decision trees of depth one trained with CART).
2 Set f = 0 and w1,i = 1/n for all i ∈ {1, . . . , n}.
3 For t = 1, . . . , T

1 Fit a weak learning algorithm (e.g., CART trees of depth 1, stumps) to the training set
with weights wt,i . Denote by ht the predictor.

2 Compute

αt =
1
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log
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)
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AdaBoost / Gradient Boosting

Adaboost among state-of-the-art meth-
ods for binary classification (2003 Gödel
Prize, see Freund and Schapire, 1995)

Can be adapted to multiclass
(Hastie et al., 2009) and regres-
sion (Drucker, 1997) via the func-
tion AdaBoostClassifier and
AdaBoostRegressor in scikit-learn.

Beware: it was claimed that AdaBoost
does not overfit but this is not true! Hy-
perparameters need to be chosen care-
fully to prevent overfitting.
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AdaBoost / Gradient Boosting

Pros:

Powerful classifier

Deterministic strategy: two runs of Ad-
aboost leads to the same classifier.

Cons:

Sensible to noise / outliers in the data
→ High importance is given to incor-
rectly classified observations due to the
exponential loss
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Going back to the general case

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f0 = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αh(xi )) (4)

2 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).

Remarks. At each step, we try to find the base/weak predictor ht that reduces the most
the training set error of the aggregated predictor.
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Going back to the general case

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f0 = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αh(xi )) (4)

2 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).

Problem. Finding minimizers in equation (4) is difficult in general:
Optimization on a large space - the class H can be infinite or very large, for example
the set of all decision trees.
Joint optimization procedure in (h, α).
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Going back to the general case

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f0 = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αh(xi )) (4)

2 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).

Solution. Consider a first-order approximation

ℓ(yi , ft−1(xi ) + αh(xi )) ≃ ℓ(yi , ft−1(xi )) + αh(xi )
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (5)

that is, solving

ht ∈ argmin
h∈H

n∑
i=1

h(xi )
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (6)
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Going back to the general case

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f0 = 0
3 For t = 1, . . . , T

1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (4)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Select

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αht(xi )). (5)

4 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).
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Going back to the general case

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (4)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αht(xi )). (5)

4 Update ft = ft−1 + αtht
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classification).
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2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (4)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αht(xi )). (5)

4 Update ft = ft−1 + ναtht

4 The final predictor is fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary
classification).

Gradient boosting. Improving the performance of a base/weak learning algorithm (e.g.
decision trees) by successively fitting it to a modified training set. Here, outputs of the
training set are replaced by the negative gradient of the loss at each iteration.
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A simple example: Gradient boosting with quadratic loss

Now, consider the Gradient Boosting algorithm with the square loss: ℓ(y , z) = (y − z)2.

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (6)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αht(xi )). (7)

4 Update ft = ft−1 + ναtht

4 fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary classification).

E. Scornet Tree ensemble methods 37 / 46



A simple example: Gradient boosting with quadratic loss

Now, consider the Gradient Boosting algorithm with the square loss: ℓ(y , z) = (y − z)2.
The pseudo residuals are given by

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (6)

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (7)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αht(xi )). (8)

4 Update ft = ft−1 + ναtht

4 fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary classification).

E. Scornet Tree ensemble methods 37 / 46



A simple example: Gradient boosting with quadratic loss

Now, consider the Gradient Boosting algorithm with the square loss: ℓ(y , z) = (y − z)2.
The pseudo residuals are given by

ri = 2(yi − ft−1(xi )). (6)

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (7)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αht(xi )). (8)

4 Update ft = ft−1 + ναtht

4 fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary classification).

E. Scornet Tree ensemble methods 37 / 46



A simple example: Gradient boosting with quadratic loss

Now, consider the Gradient Boosting algorithm with the square loss: ℓ(y , z) = (y − z)2.
The pseudo residuals are given by

ri = 2(yi − ft−1(xi )). (6)

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = 2(yi − ft−1(xi )). (7)
2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the

residual dataset (x1, r1), . . . , (xn, rn).
3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αht(xi )). (8)

4 Update ft = ft−1 + ναtht

4 fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary classification).

E. Scornet Tree ensemble methods 37 / 46



A simple example: Gradient boosting with quadratic loss

Now, consider the Gradient Boosting algorithm with the square loss: ℓ(y , z) = (y − z)2.

Gradient Boosting algorithm
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3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αht(xi )). (7)

4 Update ft = ft−1 + ναtht

4 fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary classification).

Gradient Boosting with quadratic loss amounts to iteratively fitting a weak learner to the
residuals of the current predictor.
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Gradient Boosting Decision Tree (GBDT)

GBDT algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure, a loss ℓ.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (8)

2 Denote by ht the predictor, obtained by fitting a weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αht(xi )). (9)

4 Update ft = ft−1 + ναtht

4 The final predictor is fT in regression (or its sign in binary classification).

Also called “Multiple additive regression trees” (MARS, see Friedman and Meulman,
2003).
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Gradient Boosting Decision Tree (GBDT)

GBDT algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure (shallow

trees), a loss ℓ.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (8)

2 Denote by ht the predictor, obtained by fitting a shallow tree to the residual dataset
(x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi ) + αht(xi )). (9)

4 Update ft = ft−1 + ναtht

4 The final predictor is fT in regression (or its sign in binary classification).

Also called “Multiple additive regression trees” (MARS, see Friedman and Meulman,
2003).
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Gradient Boosting Decision Tree (GBDT)

GBDT algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure (shallow

trees), a loss ℓ.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi )

. (8)

2 Denote by ht the predictor, obtained by fitting a shallow tree to the residual dataset
(x1, r1), . . . , (xn, rn). Let us denote by R1, . . . , Rj the leaves of ht .

3 Via direct computations, select

αt ∈ argmin
α∈RJ

n∑
i=1

ℓ(yi , ft−1(xi ) +
J∑

j=1

αj1xi ∈Rj ). (9)

4 Update ft(x) = ft−1(x) + ν
∑J

j=1 αj,t1xi ∈Rj .
4 The final predictor is fT in regression (or its sign in binary classification).

Also called “Multiple additive regression trees” (MARS, see Friedman and Meulman,
2003).
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Parameters in Gradient Boosting Decision Tree (GBDT)

Functions GradientBoostingClassifier
and GradientBoostingRegressor in
scikit-learn.
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Parameters in Gradient Boosting Decision Tree (GBDT)

Optimization/Statistical complexity trade-
off.

Number of boosted trees T .
→ Controls both the statistical complex-
ity of the final predictor (how many trees
are aggregated) and the number of iter-
ations in the optimization procedure (as
adding a tree can be seen as a gradient
descent step).
The shrinkage parameter ν.
→ It helps to prevent overfitting in the
early iterations. It can be seen as the
learning rate of the boosting procedure.
The smaller ν, the more iterations are
needed to converge. Related to the op-
timization procedure

⇒ Heuristic: fix ν to a small value (typically
0.1) and T = 100 (or optimize T via early
stopping).
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Parameters in Gradient Boosting Decision Tree (GBDT)

Tree structure.

Same parameters as in CART

No split randomization is performed, i.e.
max-features = d

Maximal depth is set to max-depth = 3

square-loss in regression /
log-loss in classification (as in
logistic/multinomial regression).
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Gradient Boosting

Pros:
State-of-the-art algorithm for supervised
learning with tabular data
Can handle regression and classification
tasks for various loss functions
Can handle continous and discrete fea-
tures
Deterministic strategy: two runs leads to
the same predictor.

Cons:
Can be computationally expensive - may
require a large number of trees
May overfit if too many trees are used
(early stopping can be used to prevent
overfitting)
May be sensible to outliers / noise in the
data
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XGBoost

Stands for eXtreme Gradient Boosting (Chen and
Guestrin, 2016)

State-of-the-art methods on tabular data sets (of-
ten better than random forests)
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XGBoost

Differences with Gradient Boosting
Second-order approximation of the loss with a
penalty term (number of leaves + leaf values):
assuming that ft−1 has been built, the loss at step
t is

argmin
h

n∑
i=1

ℓ(yi , ft−1(xi ) + h(xi ))︸ ︷︷ ︸
Replaced by a 2nd-order approx.

+ Ω(h)

→ New objective function to build a boosted tree
Feature discretization based on second-order
statistics
Feature subsampling can be used as in random
forest (in each node) or prior to the tree con-
struction.
Computationally more efficient (handling sparse
data, parallel and distributed computing)
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XGBoost

Benefits/drawbacks

Computationally efficient

Can be applied to large-scale data set due to the
new split finding scheme

High predictive acuracy on most tabular data sets.
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Variable importance in Gradient Boosting

The same variable importances as that in
Random Forests can be computed:

Mean Decrease in Impurity (MDI) for
each tree, which is then averaged (with
equal weights even with shrinkage) over
trees
Mean Decrease in Accuracy which is
computed on the final boosted predic-
tor.
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Variable importance in Gradient Boosting
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Feature importances using MDI

Figure: MDI computed with Gradient
Boosting on the California housing data set.
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Figure: MDA computed with Gradient Boost-
ing on the California housing data set.
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